Fungi Morphology, Cytology, Vegetative and Sexual Reproduction

Total Page:16

File Type:pdf, Size:1020Kb

Fungi Morphology, Cytology, Vegetative and Sexual Reproduction Fungi morphology, cytology, vegetative and sexual reproduction Jarmila Pazlarová Micromycetes, molds, filamentous fungi • Filamentous fungi - molds • In mycology – molds – only the fungi of subphyllum Oomycota (ie. Phytophtora infestans – potato mold), Chytridiomycota (ie. Synchytrium endobioticum) and Zygomycota (ie. Mucor mucedo ) • In some popular medical booklets is term mold used even for indication of yeasts. Alternative system of Kingdom Simpson and Roger (2004) Today situation FUNGI -Kingdom of Eukaryota -Eukaryotic organisms without plastids -Nutrition absorptive (osmotrophic) -Cell walls containing chitin and β-glucans -mitochondria with flattened cristae -Unicelullar or filamentous -Mostly non flagellate -Reproducing sexually or asexually -The diploid phase generally short-lived -Saprobic, mutualialistic or parasitic Size of micromycetes • 1,5 milions species, only 5% of them was formaly classified • Great diversity of life cycles and morphology • Recent taxonomy is based on DNA sequences Fungi and pseudofungi Kingdom: PROTOZOA Division Acrasiomycota Myxomycota Plasmodiophoromycota Kingdom: CHROMISTA Division Labyrinthulomycota Peronosporomycota Hyphochytriomycota Kingdom: FUNGI Division Chytridiomycota Microsporidiomycota Glomeromycota Zygomycota Ascomycota Basidiomycota kingdom: Fungi Division: Eumycota – true fungi Subdivision: Zygomycotina Ascomycotina Basidiomycotina Supporting subdivision: Deuteromycotina Kingdom: Fungi (Ophisthokonta) • Division: • Chytridiomycota • Microsporidiomycota • Zygomycota • Glomeromycota • Ascomycota • Basidiomycota Characteristics of forms • Majority of filamentous fungi grow as fibres (hypha), that are cylindrical thread-like structures 2–10 µm in diameter, long up to several cm. • Hyphae grow at their ends (apices); new hyphae are formed by origination of new ends on existing hypha, process is designated branching. • Sometimes growing end of hypha splits in two, and then grow two parallel hyphae. Structure of hyphae cell Growing tip of hypha Mikromycetes – cells Cell wall – chemical composition • Polysacharides - chitin(N-acetylglukosamin) - chitosan (deacetylated chitin) - β-glucans, mannans - other polysaccharides formed from 6-deoxyhexoses (rhamnose -6-deoxy-L-mannose) - cellulose - compounds alike lignine (increase the wall firmness) • Proteins • Fats • Waxes (responsible for minimal affinity to water) Cytoplasmatic membrane • Responsible for transport of nutrients and osmoregulation • Site of synthesis - components of cell wall • Enzymes of oxidative phosphorylation are not placed there • Invaginations are not so frequent as in yeasts Basic cytoplasma • Composition and function does not differ from yeasts cytoplasma • Main storage compound are lipids • Lipids are placed in vacuoles • In older cells lipids are released from the cells, maz be considered for spores Principal organelles • Nucleus • Mitochodria (mtDNA) • Endoplasmatic reticulum • Golgi apparatus • Vacuoles Mycelium - substrate and aerial Aerial mycelium Substrate mycelium agar Kingdom: Fungi (Ophisthokonta) • Division: • Chytridiomycota • Microsporidiomycota • Glomeromycota • Zygomycota • Ascomycota • Basidiomycota • Zygomycetes are a diverse fungal class of the phylum Zygomycota that can be found worldwide. • There are well over 800 species of Zygomycetes fungi within the 124 genera, 32 families and 10 orders that make up Zygomycota. Industrial purposes of Zygomycetes Species Product Uses Leather, detergent and Several Mucor and Lipases and proteases medical industry (Steroid Rhizopus transformation) Food production Rhizopus Cellulases (i.e.Tofu) R. oryzae, Rhizopus spp Fumaric acid Diverse Rhizopus sp. Lactic acid Diverse R. delemar Biotin Diverse Mortierella romanniana, Mortierella vinacea and Linolenic acid Diverse Mucor indicus Mortierella alpina Arachidonic acid Diverse Blakeslea trispora β-carotene Diverse Kingdom: Fungi (Ophisthokonta) • Division: • Chytridiomycota • Microsporidiomycota • Zygomycota • Glomeromycota • Ascomycota • Basidiomycota Characteristics of Ascomycota • Most species grow as filamentous, microscopic structures – hyphae. • Many interconnected hyphae form a mycelium, which—when visible to the naked eye (macroscopic)—is commonly called mold (or, in botanical terminology, thallus). • During sexual reproduction, many Ascomycota typically produce large numbers of asci. The asci is often contained in a multicellular, occasionally readily visible fruiting structure, the ascocarp (also called an ascoma). • Ascocarps come in a very large variety of shapes - solitary or clustered. • Some ascomyceous fungi, such as Saccharomyces cerevisiae, grow as single-celled yeasts, which—during sexual reproduction— develop into an ascus, and do not form fruiting bodies. Kingdom: Fungi (Ophistokonta) Ascomycota -The biggest group of Fungi -Shared attribute - ascus with ascospore (endospore) Division ASCOMYCOTA Schizosaccharomyces pombe • Subdivision: Taphrinomycotina (syn. ARCHIASCOMYCOTINA) Class: Schizosaccharomycetes Class: Taphrinomycetes • Subdivision Saccharomycotina Class: Saccharomycetes • Subdivision Pezizomycotina (syn. ASCOMYCOTINA) Class: Laboulbeniomycetes Class: Eurotiomycetes Class: Pezizomycetes Class: Leotiomycetes Class: Lecanoromycetes Class: Sordariomycetes Class: Dothideomycetes Division ASCOMYCOTA • Subdivision: Taphrinomycotina (syn. ARCHIASCOMYCOTINA) Class: Schizosaccharomycetes Class: Taphrinomycetes • Subdivision Saccharomycotina Class: Saccharomycetes • Subdivision Pezizomycotina (syn. ASCOMYCOTINA) Class: Laboulbeniomycetes Class: Eurotiomycetes Class: Pezizomycetes Class: Leotiomycetes Class: Lecanoromycetes Class: Sordariomycetes Class: Dothideomycetes Subdivision Pezizomycotina Class Eurotiomycetes 1. order Eurotiales 2. order Elaphomycetales 3. order Onygenales Order: Eurotiales Order: Eurotiales • Aspergillus ochraceus • Aspergillus niger • Byssochlamys fulva • Paecilomyces variotii • Neosartorya fischeri • Penicillium expansum • Penicillium chrysogenum • Penicillium digitatum Aspergillus Foto: A. kubátová -frequently causes contamination of food and feed -manufacture of organic acids -mycotoxine (Aflatoxins) -osmophilic, osmotolerant -allergens -opportunistic pathogen -warmer parts of the world Aspergillus ochraceus Important (toxic) metabolites: penicillic acid, ochratoxin A, xanthomegnin, viomellein Conidial heads yellow, globose, when young The most important mycotoxins 1.Aflatoxiny B a G 2.Aflatoxin M1 3.Patulin 4.Ochratoxin A 5.Deoxynivalenol (DON) 6.Zearalenon 7.Fumonisiny 8.T-2 toxin Vesicles globose, hyaline. Phialides borne on metulae. Conidia globose to subglobose. Penicillium • Over 300 species • One of the most widespread fungus • Frequently causes contamination of food and feed • mycotoxine • allergens • Pathogen – only one species P. marnefei • Food processing (P. camemberti, P. roqueforti, P. nalgiovense) • Antibiotic (Penicilin) conidia phialides metulae Branch (ramus) stipe stipe Penicillium chrysogenum Conidiophore and conidia Exudate typically produced Odour aromatic, fruity Important (toxic) metabolited: roquefortine C (P. chrysogenum); tryptoquivalins Penicillium digitatum (P.digitatum) Conidiophore irregularly branched. Colonies velvety Phialides often solitary. Kingdom: Fungi (Ophisthokonta) • Division: • Chytridiomycota • Microsporidiomycota • Zygomycota • Ascomycota • Basidiomycota Rhodotorula sp. Basidium Basidiomycetes basidiospore sterigma karyogamy basidia basidiospore basidiospore Plasmogamy Dikaryotic Primare mycelium basidium mycelium sterigma Taxonomy of Basidiomycetes Hibbett & al. (2007) Mycol. Res. Subdivision: Pucciniomycotina Ustilaginomycotina Agaricomycotina Basidiomycete yeasts Mycotoxines • Mycotoxines are toxic secondary metabolites of many species of micromycetes (molds), that can contaminate wide spectrum of food and feed. These dangerous natural contaminants cause various toxic syndroms, called mycotoxikoses. • Impact of mycotoxines depends on the type of toxine, duration of its effect, dose and and the age of man, his nutrition and actual heath status. • Target organs of mycotoxine effects are cells of liver, kidney, lungs, nerves, endocrine glands and cells of immune system. They can cause acute toxic reaction, some have mutagenic, teratogenic, carcinogenic and estrogenic efect. MAIN GROUPS OF FUNGI AND THEIR MYCOTOXINES * Aspergillus flavus Aspergillus flavus SEM - Aspergillus flavus. microscopie. Aflatoxin B1, B2 and cyclopiazonic acid Penicillium expansum patulin Fusarium graminearum deoxynivalenol, zeralenone Most frequent mycotoxines -AFLATOXINES -OCHRATOXINES -TRICHOTECENS -ZEARALENONS STRUCTURE OF AFLATOXINS Aflatoxin B1 Aflatoxin B2 Aflatoxin G1 Aflatoxin G2 Monitoring of mycotoxines • Many international authorities are trying to accomplish the global standardization of regulatory limits for mycotoxines. Today, more then 100 countries set up regulatory limits for mycotoxines in feed industry. • In total 13 mycotoxines (or groups of mycotoxines) has been followed. Evaluation process of mycotoxine regulation includes a large battery of laboratory tests using extractions, purifications and techniques of separation. • Majority of official control methods is based on High Pressure Liquid Chromatography (HPLC). • Many standards for mycotoxines analytics has been guaranteed by European Committee for Standardization (CEN). Ochratoxin • Ochratoxin is mycotoxin formed by three types of secondary metabolites: A, B, a C. • All are produced by specia of genus Penicillium and Aspergillus. All three types are formed so, that
Recommended publications
  • Review of Oxepine-Pyrimidinone-Ketopiperazine Type Nonribosomal Peptides
    H OH metabolites OH Review Review of Oxepine-Pyrimidinone-Ketopiperazine Type Nonribosomal Peptides Yaojie Guo , Jens C. Frisvad and Thomas O. Larsen * Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby, Denmark; [email protected] (Y.G.); [email protected] (J.C.F.) * Correspondence: [email protected]; Tel.: +45-4525-2632 Received: 12 May 2020; Accepted: 8 June 2020; Published: 15 June 2020 Abstract: Recently, a rare class of nonribosomal peptides (NRPs) bearing a unique Oxepine-Pyrimidinone-Ketopiperazine (OPK) scaffold has been exclusively isolated from fungal sources. Based on the number of rings and conjugation systems on the backbone, it can be further categorized into three types A, B, and C. These compounds have been applied to various bioassays, and some have exhibited promising bioactivities like antifungal activity against phytopathogenic fungi and transcriptional activation on liver X receptor α. This review summarizes all the research related to natural OPK NRPs, including their biological sources, chemical structures, bioassays, as well as proposed biosynthetic mechanisms from 1988 to March 2020. The taxonomy of the fungal sources and chirality-related issues of these products are also discussed. Keywords: oxepine; nonribosomal peptides; bioactivity; biosynthesis; fungi; Aspergillus 1. Introduction Nonribosomal peptides (NRPs), mostly found in bacteria and fungi, are a class of peptidyl secondary metabolites biosynthesized by large modularly organized multienzyme complexes named nonribosomal peptide synthetases (NRPSs) [1]. These products are amongst the most structurally diverse secondary metabolites in nature; they exhibit a broad range of activities, which have been exploited in treatments such as the immunosuppressant cyclosporine A and the antibiotic daptomycin [2,3].
    [Show full text]
  • Fungi-Insect Symbiosis Laboulbeniomycetes
    Important Dates zDecember 6th – Last lecture. zDecember 12th – Study session at 2:30? Where? Fungi-Insect zDecember 13th – Final Exam: 12:00-2:00 Symbiosis Fungi-Insect Symbiosis Fungi-Insect Symbiosis zMany examples of fungi-insect zMany examples of fungi-insect symbiosis. symbiosis (continue). zCover the following examples zInsects that cultivate fungi: Laboulbeniomycetes – Class of Attine Ants Ascomycota. Mostly on insects. Septobasidium –Genus of Mound Building Termites Basidiomycota Ambrosia Beetles Laboulbeniomycetes Laboulbeniomycetes zAscocarps occur on very specific zVery poorly known example. localities in some species: zRelationship between fungi and insects unclear. One species parasitic? Species of this fungus probably occurs on all insects Fungus is a member of Ascomycota zRickia dendroiuli Only found on forelegs of millipedes 1 Rickia dendroiuli Rickia dendroiuli Mature ascocarp zLow magnification showing three ascocarps zHigh magnification showing two ascocarps, as seen through the microscope. left is mature Laboulbeniomycetes Laboulbeniomycetes zIn some species specific localities zVariations were based on mating habit misleading. For example: of insects involved. In some insects, “species A” may have ascocarps arising only on front, upper pair of legs of males However, “Species A” have ascocarps arising only on the back, lower pair of legs of females of same insect species. Peyritschiella protea Peyritschiella protea zAscocarps not zHigh magnification always in specific of ascocarps and localities. ascospores. ascocarps and ascospores 2 Stigmatomyces majewski Stigmatomyces majewskii zLow and high z Ascocarps occur magnification mostly on of ascocarps. segment. zNote one on wing. Laboulbenia cristata Laboulbenia cristata zAscocarps occur on zHigh magnification middle segment of ascocarp with legs. ascospores. SeptobasidiuSeptobasidiumm SeptobasidiuSeptobasidiumm zGenus of Basidiomycota that forms a zMore examples: symbiotic relationship with scale insects.
    [Show full text]
  • Studies of the Laboulbeniomycetes: Diversity, Evolution, and Patterns of Speciation
    Studies of the Laboulbeniomycetes: Diversity, Evolution, and Patterns of Speciation The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:40049989 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA ! STUDIES OF THE LABOULBENIOMYCETES: DIVERSITY, EVOLUTION, AND PATTERNS OF SPECIATION A dissertation presented by DANNY HAELEWATERS to THE DEPARTMENT OF ORGANISMIC AND EVOLUTIONARY BIOLOGY in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biology HARVARD UNIVERSITY Cambridge, Massachusetts April 2018 ! ! © 2018 – Danny Haelewaters All rights reserved. ! ! Dissertation Advisor: Professor Donald H. Pfister Danny Haelewaters STUDIES OF THE LABOULBENIOMYCETES: DIVERSITY, EVOLUTION, AND PATTERNS OF SPECIATION ABSTRACT CHAPTER 1: Laboulbeniales is one of the most morphologically and ecologically distinct orders of Ascomycota. These microscopic fungi are characterized by an ectoparasitic lifestyle on arthropods, determinate growth, lack of asexual state, high species richness and intractability to culture. DNA extraction and PCR amplification have proven difficult for multiple reasons. DNA isolation techniques and commercially available kits are tested enabling efficient and rapid genetic analysis of Laboulbeniales fungi. Success rates for the different techniques on different taxa are presented and discussed in the light of difficulties with micromanipulation, preservation techniques and negative results. CHAPTER 2: The class Laboulbeniomycetes comprises biotrophic parasites associated with arthropods and fungi.
    [Show full text]
  • FINAL RISK ASSESSMENT for Aspergillus Niger (February 1997)
    ATTACHMENT I--FINAL RISK ASSESSMENT FOR Aspergillus niger (February 1997) I. INTRODUCTION Aspergillus niger is a member of the genus Aspergillus which includes a set of fungi that are generally considered asexual, although perfect forms (forms that reproduce sexually) have been found. Aspergilli are ubiquitous in nature. They are geographically widely distributed, and have been observed in a broad range of habitats because they can colonize a wide variety of substrates. A. niger is commonly found as a saprophyte growing on dead leaves, stored grain, compost piles, and other decaying vegetation. The spores are widespread, and are often associated with organic materials and soil. History of Commercial Use and Products Subject to TSCA Jurisdiction The primary uses of A. niger are for the production of enzymes and organic acids by fermentation. While the foods, for which some of the enzymes may be used in preparation, are not subject to TSCA, these enzymes may have multiple uses, many of which are not regulated except under TSCA. Fermentations to produce these enzymes may be carried out in vessels as large as 100,000 liters (Finkelstein et al., 1989). A. niger is also used to produce organic acids such as citric acid and gluconic acid. The history of safe use for A. niger comes primarily from its use in the food industry for the production of many enzymes such as a-amylase, amyloglucosidase, cellulases, lactase, invertase, pectinases, and acid proteases (Bennett, 1985a; Ward, 1989). In addition, the annual production of citric acid by fermentation is now approximately 350,000 tons, using either A.
    [Show full text]
  • Aspergillus Penicillioides Speg. Implicated in Keratomycosis
    Polish Journal of Microbiology ORIGINAL PAPER 2018, Vol. 67, No 4, 407–416 https://doi.org/10.21307/pjm-2018-049 Aspergillus penicillioides Speg. Implicated in Keratomycosis EULALIA MACHOWICZ-MATEJKO1, AGNIESZKA FURMAŃCZYK2 and EWA DOROTA ZALEWSKA2* 1 Department of Diagnostics and Microsurgery of Glaucoma, Medical University of Lublin, Lublin, Poland 2 Department of Plant Pathology and Mycology, University of Life Sciences in Lublin, Lublin, Poland Submitted 9 November 2017, revised 6 March 2018, accepted 28 June 2018 Abstract The aim of the study was mycological examination of ulcerated corneal tissues from an ophthalmic patient. Tissue fragments were analyzed on potato-glucose agar (PDA) and maltose (MA) (Difco) media using standard laboratory techniques. Cultures were identified using classi- cal and molecular methods. Macro- and microscopic colony morphology was characteristic of fungi from the genus Aspergillus (restricted growth series), most probably Aspergillus penicillioides Speg. Molecular analysis of the following rDNA regions: ITS1, ITS2, 5.8S, 28S rDNA, LSU and β-tubulin were carried out for the isolates studied. A high level of similarity was found between sequences from certain rDNA regions, i.e. ITS1-5.8S-ITS2 and LSU, what confirmed the classification of the isolates to the species A. penicillioides. The classification of our isolates to A. penicillioides species was confirmed also by the phylogenetic analysis. K e y w o r d s: Aspergillus penicillioides, morphology, genetic characteristic, cornea Introduction fibrosis has already been reported (Bossche et al. 1988; Sandhu et al. 1995; Hamilos 2010; Gupta et al. 2015; Fungi from the genus Aspergillus are anamorphic Walicka-Szyszko and Sands 2015).
    [Show full text]
  • Deteriorative Changes in Oilseeds Due to Storage Fungi and Efficacy of Botanicals Rajendra B
    Curr. Bot. 2(1):17-22, 2011 REGULAR ARTICLE Deteriorative changes in oilseeds due to storage fungi and efficacy of botanicals Rajendra B. Kakde and Ashok M. Chavan Seed Pathology and Fungal Biotechnology Laboratory, Department of Botany, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (M.S.) India K EYWORDS A BSTRACT Oilseeds, storage fungi, nutritional changes, Improper storage makes the oilseeds vulnerable to storage fungi which deteriorate the aqueous extract, fungitoxic stored oilseeds both qualitatively and quantitatively. They bring about the variety of biochemical changes in the suitable conditions. Considering this fact, experiments C ORRESPONDENCE were undertaken to understand nutritional changes like change in reducing sugar, change in crude fat content and change in crude fiber content of oilseeds due to Rajendra B. Kakde, Seed Pathology and Fungal artificial infestation of storage fungi. It was found that, Alternaria dianthicola, Biotechnology Laboratory, Department of Botany, Curvularia lunata, Fusarium oxysporum, Fusarium equiseti, Macrophomina Dr. Babasaheb Ambedkar Marathwada University, phaseolina and Rhizopus stolonifer causes decrease in reducing sugar of oilseeds. Aurangabad-431004 (M.S.) India Alternaria dianthicola, Curvularia pellescens, Macrophomina phaseolina, Penicillium digitatum and Penicillium chrysogenum hampered the fat content of oilseeds. E-mail: [email protected] Curvularia lunata, Curvularia pellescens, Fusarium oxysporum, Macrophomina phaseolina, Rhizopus stolonifer and Penicillium digitatum increased the fiber content E DITOR in oilseeds. An attempt was also made to control the seed-borne fungi by using Gadgile D.P. aqueous extract of ten medicinal plants. Aqueous extract of Eucalyptus angophoroides was found to be most fungitoxic. CB Volume 2, Year 2011, Pages 17-22 Introduction are not fit for human consumption and are also rejected at the India is one of the largest producers of oilseeds in the industrial level.
    [Show full text]
  • The Flora Mycologica Iberica Project Fungi Occurrence Dataset
    A peer-reviewed open-access journal MycoKeys 15: 59–72 (2016)The Flora Mycologica Iberica Project fungi occurrence dataset 59 doi: 10.3897/mycokeys.15.9765 DATA PAPER MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research The Flora Mycologica Iberica Project fungi occurrence dataset Francisco Pando1, Margarita Dueñas1, Carlos Lado1, María Teresa Telleria1 1 Real Jardín Botánico-CSIC, Claudio Moyano 1, 28014, Madrid, Spain Corresponding author: Francisco Pando ([email protected]) Academic editor: C. Gueidan | Received 5 July 2016 | Accepted 25 August 2016 | Published 13 September 2016 Citation: Pando F, Dueñas M, Lado C, Telleria MT (2016) The Flora Mycologica Iberica Project fungi occurrence dataset. MycoKeys 15: 59–72. doi: 10.3897/mycokeys.15.9765 Resource citation: Pando F, Dueñas M, Lado C, Telleria MT (2016) Flora Mycologica Iberica Project fungi occurrence dataset. v1.18. Real Jardín Botánico (CSIC). Dataset/Occurrence. http://www.gbif.es/ipt/resource?r=floramicologicaiberi ca&v=1.18, http://doi.org/10.15468/sssx1e Abstract The dataset contains detailed distribution information on several fungal groups. The information has been revised, and in many times compiled, by expert mycologist(s) working on the monographs for the Flora Mycologica Iberica Project (FMI). Records comprise both collection and observational data, obtained from a variety of sources including field work, herbaria, and the literature. The dataset contains 59,235 records, of which 21,393 are georeferenced. These correspond to 2,445 species, grouped in 18 classes. The geographical scope of the dataset is Iberian Peninsula (Continental Portugal and Spain, and Andorra) and Balearic Islands. The complete dataset is available in Darwin Core Archive format via the Global Biodi- versity Information Facility (GBIF).
    [Show full text]
  • Eight New<I> Elaphomyces</I> Species
    VOLUME 7 JUNE 2021 Fungal Systematics and Evolution PAGES 113–131 doi.org/10.3114/fuse.2021.07.06 Eight new Elaphomyces species (Elaphomycetaceae, Eurotiales, Ascomycota) from eastern North America M.A. Castellano1, C.D. Crabtree2, D. Mitchell3, R.A. Healy4 1US Department of Agriculture, Forest Service, Northern Research Station, 3200 Jefferson Way, Corvallis, OR 97331, USA 2Missouri Department of Natural Resources, Division of State Parks, 7850 N. State Highway V, Ash Grove, MO 65604, USA 33198 Midway Road, Belington, WV 26250, USA 4Department of Plant Pathology, University of Florida, Gainesville, FL 32611 USA *Corresponding author: [email protected] Key words: Abstract: The hypogeous, sequestrate ascomycete genus Elaphomyces is one of the oldest known truffle-like genera.Elaphomyces ectomycorrhizae has a long history of consumption by animals in Europe and was formally described by Nees von Esenbeck in 1820 from Europe. hypogeous fungi Until recently most Elaphomyces specimens in North America were assigned names of European taxa due to lack of specialists new taxa working on this group and difficulty of using pre-modern species descriptions. It has recently been discovered that North America sequestrate fungi has a rich diversity of Elaphomyces species far beyond the four Elaphomyces species described from North America prior to 2012. We describe eight new Elaphomyces species (E. dalemurphyi, E. dunlapii, E. holtsii, E. lougehrigii, E. miketroutii, E. roodyi, E. stevemilleri and E. wazhazhensis) of eastern North America that were collected in habitats from Quebec, Canada south to Florida, USA, west to Texas and Iowa. The ranges of these species vary and with continued sampling may prove to be larger than we have established.
    [Show full text]
  • Microsatellite Characterization and Marker Development for the Fungus Penicillium Digitatum, Causal Agent of Green Mold of Citrus
    Received: 31 August 2018 | Revised: 14 November 2018 | Accepted: 16 November 2018 DOI: 10.1002/mbo3.788 ORIGINAL ARTICLE Microsatellite characterization and marker development for the fungus Penicillium digitatum, causal agent of green mold of citrus Erika S. Varady1,2 | Sohrab Bodaghi1 | Georgios Vidalakis1 | Greg W. Douhan3 1Department of Microbiology and Plant Pathology, University of California, Abstract Riverside, California Penicillium digitatum is one of the most important postharvest pathogens of citrus on 2 Department of Molecular Biology and a global scale causing significant annual losses due to fruit rot. However, little is Biochemistry, University of California Irvine, Irvine, California known about the diversity of P. digitatum populations. The genome of P. digitatum has 3University of California Cooperative been sequenced, providing an opportunity to determine the microsatellite distribu‐ Extension, Tulare, California tion within P. digitatum to develop markers that could be valuable tools for studying Correspondence the population biology of this pathogen. In the analyses, a total of 3,134 microsatel‐ Greg W. Douhan, University of California lite loci were detected; 66.73%, 23.23%, 8.23%, 1.24%, 0.16%, and 0.77% were de‐ Cooperative Extension, Tulare, CA. and tected as mono‐, di‐, tri‐, tetra‐, penta‐, and hexanucleotide repeats, respectively. As Georgios Vidalakis, Department of consistent with other ascomycete fungi, the genome size of P. digitatum does not Microbiology and Plant Pathology, University of California Riverside, Riverside, seem to correlate with the density of microsatellite loci. However, significantly longer CA. motifs of mono‐, di‐, and tetranucleotide repeats were identified in P. digitatum com‐ Emails: [email protected]; georgios. [email protected] pared to 10 other published ascomycete species with repeats of over 800, 300, and Funding information 900 motifs found, respectively.
    [Show full text]
  • Allergic Bronchopulmonary Aspergillosis and Severe Asthma with Fungal Sensitisation
    Allergic Bronchopulmonary Aspergillosis and Severe Asthma with Fungal Sensitisation Dr Rohit Bazaz National Aspergillosis Centre, UK Manchester University NHS Foundation Trust/University of Manchester ~ ABPA -a41'1 Severe asthma wl'th funga I Siens itisat i on Subacute IA Chronic pulmonary aspergillosjs Simp 1Ie a:spe rgmoma As r§i · bronchitis I ram une dysfu net Ion Lun· damage Immu11e hypce ractivitv Figure 1 In t@rarctfo n of Aspergillus Vliith host. ABP A, aHerg tc broncho pu~ mo na my as µe rgi ~fos lis; IA, i nvas we as ?@rgiH os 5. MANCHl·.'>I ER J:-\2 I Kosmidis, Denning . Thorax 2015;70:270–277. doi:10.1136/thoraxjnl-2014-206291 Allergic Fungal Airway Disease Phenotypes I[ Asthma AAFS SAFS ABPA-S AAFS-asthma associated with fu ngaIsensitization SAFS-severe asthma with funga l sensitization ABPA-S-seropositive a llergic bronchopulmonary aspergi ll osis AB PA-CB-all ergic bronchopulmonary aspergi ll osis with central bronchiectasis Agarwal R, CurrAlfergy Asthma Rep 2011;11:403 Woolnough K et a l, Curr Opin Pulm Med 2015;21:39 9 Stanford Lucile Packard ~ Children's. Health Children's. Hospital CJ Scanford l MEDICINE Stanford MANCHl·.'>I ER J:-\2 I Aspergi 11 us Sensitisation • Skin testing/specific lgE • Surface hydroph,obins - RodA • 30% of patients with asthma • 13% p.atients with COPD • 65% patients with CF MANCHl·.'>I ER J:-\2 I Alternar1a• ABPA •· .ABPA is an exagg·erated response ofthe imm1une system1 to AspergUlus • Com1pUcatio n of asthm1a and cystic f ibrosis (rarell·y TH2 driven COPD o r no identif ied p1 rior resp1 iratory d isease) • ABPA as a comp1 Ucation of asth ma affects around 2.5% of adullts.
    [Show full text]
  • The Evaluation of Adsorbents for the Removal of Aflatoxin M1 from Contaminated Milk
    Mississippi State University Scholars Junction Theses and Dissertations Theses and Dissertations 1-1-2015 The Evaluation of Adsorbents for the Removal of Aflatoxin M1 from Contaminated Milk Erika D. Womack Follow this and additional works at: https://scholarsjunction.msstate.edu/td Recommended Citation Womack, Erika D., "The Evaluation of Adsorbents for the Removal of Aflatoxin M1 from Contaminated Milk" (2015). Theses and Dissertations. 4456. https://scholarsjunction.msstate.edu/td/4456 This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholars Junction. For more information, please contact [email protected]. Automated Template B: Created by James Nail 2011V2.1 The evaluation of adsorbents for the removal of aflatoxin M1 from contaminated milk By Erika D. Womack A Dissertation Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Molecular Biology in the Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology Mississippi State, Mississippi December 2015 Copyright by Erika D. Womack 2015 The evaluation of adsorbents for the removal of aflatoxin M1 from contaminated milk By Erika D. Womack Approved: ____________________________________ Darrell L. Sparks, Jr. (Major Professor) ____________________________________ Ashli Brown-Johnson (Minor Professor)
    [Show full text]
  • Elaphomycetaceae, Eurotiales, Ascomycota) from Africa and Madagascar Indicate That the Current Concept of Elaphomyces Is Polyphyletic
    Cryptogamie, Mycologie, 2016, 37 (1): 3-14 © 2016 Adac. Tous droits réservés Molecular analyses of first collections of Elaphomyces Nees (Elaphomycetaceae, Eurotiales, Ascomycota) from Africa and Madagascar indicate that the current concept of Elaphomyces is polyphyletic Bart BUYCK a*, Kentaro HOSAKA b, Shelly MASI c & Valerie HOFSTETTER d a Muséum national d’Histoire naturelle, département systématique et Évolution, CP 39, ISYEB, UMR 7205 CNRS MNHN UPMC EPHE, 12 rue Buffon, F-75005 Paris, France b Department of Botany, National Museum of Nature and Science (TNS) Tsukuba, Ibaraki 305-0005, Japan, email: [email protected] c Muséum national d’Histoire naturelle, Musée de l’Homme, 17 place Trocadéro F-75116 Paris, France, email: [email protected] d Department of plant protection, Agroscope Changins-Wädenswil research station, ACW, rte de duiller, 1260, Nyon, Switzerland, email: [email protected] Abstract – First collections are reported for Elaphomyces species from Africa and Madagascar. On the basis of an ITS phylogeny, the authors question the monophyletic nature of family Elaphomycetaceae and of the genus Elaphomyces. The objective of this preliminary paper was not to propose a new phylogeny for Elaphomyces, but rather to draw attention to the very high dissimilarity among ITS sequences for Elaphomyces and to the unfortunate choice of species to represent the genus in most previous phylogenetic publications on Elaphomycetaceae and other cleistothecial ascomycetes. Our study highlights the need for examining the monophyly of this family and to verify the systematic status of Pseudotulostoma as a separate genus for stipitate species. Furthermore, there is an urgent need for an in-depth morphological study, combined with molecular sequencing of the studied taxa, to point out the phylogenetically informative characters of the discussed taxa.
    [Show full text]