Carboxylic Acids: Common in Nature Industrial Synthesis of Acetic Acid: Ch.20 Carboxylic Acids and Nitriles

Total Page:16

File Type:pdf, Size:1020Kb

Carboxylic Acids: Common in Nature Industrial Synthesis of Acetic Acid: Ch.20 Carboxylic Acids and Nitriles Ch.20 Carboxylic Acids and Nitriles Carboxylic Acids: common in nature COOH CH COOH OH 3 CH3 vinegar CH H 3 Cholic acid COOH H (major component of human bile) odor of sour butter HO OH H COOH COOH odor of goats, socks palmitic acid (precursor of fat) Industrial synthesis of acetic acid: cobalt acetate Rh catalyst CH3OH CH3CHO o CH3COOH O2 80 C CO 20.1 Nomenclature Carboxylic Acids: RCO2H alkane (-e) → -oic acid - parent chain contains the -COOH group, - carboxyl carbon is numbered as 1 CO2HCO2H 1 1 Propanoic acid 4-Methylpentanoic acid 1 CO2H HO2C Et 3-Ethyl-6-methyloctanedioic acid -COOH is attached to a ring -carboxylic acid Br 1 COOH 3-Bromocyclohexanecarboxylic acid CO2H 1 1-Cyclopentenecarboxylic acid Common Names Acyl groups HCOOH Formic acid HCO- Formyl Acetyl H3C COOH Acetic acid H3CCO- COOH Propionic acid CO- Propionyl COOH Butyric acid CO- Butyryl HOOC COOH Oxalic acid -OC CO- Oxalyl HOOC COOH Malonic acid -OC CO- Malonyl HOOC -OC COOH Succinic acid CO- Succinyl COOH Acrylic acid CO- Acryloyl COOH Benzoic acid CO- Benzoyl Nitrile: RCN - nitrile - CN carbon is numbered as 1 4 CN 1 4-Methylpentanenitrile complex nitrile -(o)ic acid → onitrile -carboxylic acid → -carbonitrile 1 CN CN CH3 H3CCN 2 CH3 Acetonitrile Benzonitrile 2,2-Dimethylcyclohexanecarbonitrile 20.2 Structure and Physical Properties of Carboxylic Acids Structure 2 O R sp H O O O H H RO RO 120o planar dimer: H-bonding (high b.p.) - high b.p. and m.p. - b.p. of acetic acid: 118oC 20.3 Dissociation of Carboxylic Acids Acidity: weak bases (NaOH, NaHCO3) generate carboxylate, - + RCO2 Na O O + NaOH + ROH RONa + H2O H2O water-insoluble water-soluble Acetic acid: only 0.1% dissociate in 0.1M solution HCl: 100% dissociate O HCl CH3CH2OH H3COH pKa = 16 4.75 -7 Alkoxide / Carboxylate ion H2 H2 C H C H3C O H3C O localized charge O O O H H CO H CO 3 3 H3CO delocalized charge resonance-stabilized carboxylate ion 127 pm 120 pm O 134 pm O Na+ C C H O H H O Formic acid Sodium formate purification of acid: dissolve salts in water, extract out organic impurities with organic solvent, acidify aqueous layer to obtain carboxylic acids 20.4 Substituent Effects on Acidity Carboxylic acids with Acid pKa more than six carbons are insoluble in water CH3CH2OH 16 CH3CH2COOH 4.87 CH3COOH 4.75 H C=CHCO H 4.25 stronger 2 2 acid PhCO2H 4.19 HOCH2COOH 3.83 HCO2H 3.75 ICH2CO2H 3.12 BrCH2CO2H 2.68 ClCH2CO2H 2.85 FCH2CO2H 2.59 F3CCO2H 0.23 Acidity of chloroacetic acids: inductive effect O O O O Cl Cl H COH Cl CH OH CH OH COH 3 2 Cl Cl Cl stronger acid O - Cl CH2 O electronegative Cl stabilizes anion - inductive effect operates through σ-bond and depends on distance Cl COOH COOH COOH Cl Cl COOH pKa = 2.86 4.05 4.52 4.82 20.5 Substituent Effects in Substituted Benzoic Acids O O O OH OH OH MeO O2N pKa = 4.46 4.19 3.41 stronger acid - acidity of substituted benzoic acid correlate reactivity of the substituted benzene O OH Y Y predict reactivity of pK a electrophilic attack "inverse relationship" 20.6 Preparation of Carboxylic Acids Oxidation of benzylic C-H CH3 COOH KMnO4 H2O 95oC H KMnO4 O +CO2 H + H H3O HO Oxidation of alcohol/aldehyde CrO3 RCH2OH RCOOH H2SO4, H2O AgNO3 R CHO R COOH NH4OH Hydrolysis of nitrile - 1. H2O, OH RCN R COOH + 2. H3O N + NH + O H3O H3O RCN OH- ROH ROH ROH - a typical way to introduce one carbon fragment from alkyl halides 1. KCN Br - COOH O 2. H2O, OH O + 3. H3O Carboxylation of Grignard reagents O + CO2 H3O RCH2MgX RCH2 C O MgX RCH2 COOH O CO Br MgBr COOH Mg 1. CO2 ether + 2. H3O 20.7 Reactions of Carboxylic Acids: An Overview General reactions of carboxylic acids O H H H C H C C O C OH Deprotonation O Reduction H C C OH O O R C H C C OH C Y Alpha-substitution Nucleophilic acyl substitution 20.8 Reduction of Carboxylic Acids LiAlH4: alkenes are not reduced O 1. LiAlH 4 OH + 2. H3O OH BH3: alkenes can be hydroborated, esters are not reduced O2N O2N O 1. BH3, THF + OH 2. H3O OH - LiAlH4 reduces both nitro and acid 20.9 Chemistry of Nitriles O R C N C R OH same oxidation level Preparation - SN2 substitution by CN NaCN R CH2 Br R CH2 CN From amide: SOCl2, POCl3 O SOCl2 + R CH2 CN + SO2 2 HCl RNH2 benzene 80oC O O O S S S O Cl Cl O Cl O Cl RNH2 RNH2 RN H SO2 + HCl + RCN Reactions of Nitriles - O O R R products RR Nu- Nu alkoxide ion N products R CN R Nu Nu- imine ion 1. R'MgX + O H2O 2. H3O O RCN R OH R R' - 1. [H-] 1. [H ] + 2. H O+ 2. H3O 3 O R NH 2 R H Hydrolysis: acidic or basic conditions - H2O, OH RCN R COOH + or H3O N NH H2O O R CN - R R OH OH OH R NH2 imine anion O R OH Reduction: LiAlH4, DIBAL to primary amine: 1. LiAlH 4 R CN RNH2 + 2. H3O to aldehyde: 1. DIBAL CN CHO 2. H2O 1. LiAlH NH LiAlH 4 N 4 2 R CN - R + R H H H 2. H3O H imine anion DIBAL toluene O N H2O R R H H imine anion Grignard addition: ketone formation N +MgX H O+ O 3 + NH R CN R 3 R'MgX R' R R' imine anion O CN 1. EtMgBr + 2. H3O 20.9 Spectroscopy of Carboxylic Acids and Nitriles IR Spectroscopy 1760 cm-1 free carboxyl (uncommon) C=O 1710 cm-1 associated carboxyl (usual case) O-H 2500-3300 cm-1 very broad O R H O O O H H RO RO -1 1760 cm 1710 cm-1 RCN 2250 cm-1 IR Spectrum of n-Butanoic acid NMR Spectroscopy 1H NMR COO-H ~ 12 ppm, 13C NMR C=O 165-185 ppm CH3CH2CN 10 11 121 1H NMR Spectrum Chemistry @ Work Vitamin C Vitamin C: ascorbic acid OH OH H O O HO O HO H HO OH HO OH OH Vitamin C Glucose (Ascorbic acid) Chemistry @ Work Industrial synthesis of ascorbic acid from glucose Problem Sets Chapter 20 20, 26, 35, 39, 45.
Recommended publications
  • The Reaction of Aminonitriles with Aminothiols: a Way to Thiol-Containing Peptides and Nitrogen Heterocycles in the Primitive Earth Ocean
    life Article The Reaction of Aminonitriles with Aminothiols: A Way to Thiol-Containing Peptides and Nitrogen Heterocycles in the Primitive Earth Ocean Ibrahim Shalayel , Seydou Coulibaly, Kieu Dung Ly, Anne Milet and Yannick Vallée * Univ. Grenoble Alpes, CNRS, Département de Chimie Moléculaire, Campus, F-38058 Grenoble, France; [email protected] (I.S.); [email protected] (S.C.); [email protected] (K.D.L.); [email protected] (A.M.) * Correspondence: [email protected] Received: 28 September 2018; Accepted: 18 October 2018; Published: 19 October 2018 Abstract: The Strecker reaction of aldehydes with ammonia and hydrogen cyanide first leads to α-aminonitriles, which are then hydrolyzed to α-amino acids. However, before reacting with water, these aminonitriles can be trapped by aminothiols, such as cysteine or homocysteine, to give 5- or 6-membered ring heterocycles, which in turn are hydrolyzed to dipeptides. We propose that this two-step process enabled the formation of thiol-containing dipeptides in the primitive ocean. These small peptides are able to promote the formation of other peptide bonds and of heterocyclic molecules. Theoretical calculations support our experimental results. They predict that α-aminonitriles should be more reactive than other nitriles, and that imidazoles should be formed from transiently formed amidinonitriles. Overall, this set of reactions delineates a possible early stage of the development of organic chemistry, hence of life, on Earth dominated by nitriles and thiol-rich peptides (TRP). Keywords: origin of life; prebiotic chemistry; thiol-rich peptides; cysteine; aminonitriles; imidazoles 1. Introduction In ribosomes, peptide bonds are formed by the reaction of the amine group of an amino acid with an ester function.
    [Show full text]
  • Hydrogen Atom Transfer-Mediated Cyclisations of Nitriles
    Hydrogen Atom Transfer-Mediated Cyclisations of Nitriles Oliver J. Turner,*[a,b] John A. Murphy,*[b] David. J. Hirst[a] and Eric P. A. Talbot*[a]† Abstract: Hydrogen atom transfer-mediated intramolecular C-C coupling reactions between alkenes and nitriles, using PhSiH3 and catalytic Fe(acac)3, are described. This introduces a new strategic bond disconnection for ring-closing reactions, forming ketones via imine intermediates. Of note is the scope of the reaction, including formation of sterically hindered ketones, spirocycles and fused cyclic systems. In the early 1960s, Kwiatek and Seyler first reported the use of metal hydrides as catalysts in the hydrogenation of α,β- unsaturated compounds.[1,2] The discovery by Halpern,[3] later elegantly developed by Norton,[4] that metal-hydride hydrogen atom transfer (HAT) proceeded by a free-radical mechanism opened the door to a wide range of alkene hydrofunctionalisation reactions. But it was the pioneering work by Mukaiyama[5] on the catalytic hydration of alkenes, using Co(acac)2 and oxygen, that sparked wider interest in the field of alkene hydrofunctionalisation. As a result, there now exists an extensive ‘toolkit’ for the addition of hydrogen and a functional group to an alkene with Markovnikov selectivity and high chemo-selectivity using cobalt, manganese and iron complexes.[6,7] Efforts have also been made to extend HAT methodologies to C-C bond formation, both in an intra- and intermolecular fashion: Baran’s group developed a general C-C coupling reaction, utilising electron-deficient alkenes as capable radical acceptors (Scheme 1ai).[8–10] Hydropyridylation of alkenes by intramolecular Minisci reaction was recently demonstrated by Starr,[11] which allows for the formation of structures such as Scheme 1.
    [Show full text]
  • Nitrile Synthesis with Aldoxime Dehydratases: a Biocatalytic Platform with Applications in Asymmetric Synthesis, Bulk Chemicals, and Biorefineries
    molecules Review Nitrile Synthesis with Aldoxime Dehydratases: A Biocatalytic Platform with Applications in Asymmetric Synthesis, Bulk Chemicals, and Biorefineries Pablo Domínguez de María Sustainable Momentum, SL, Av. Ansite 3, 4–6, 35011 Las Palmas de Gran Canaria, Canary Islands, Spain; [email protected]; Tel.: +34-6-0956-5237 Abstract: Nitriles comprise a broad group of chemicals that are currently being industrially produced and used in fine chemicals and pharmaceuticals, as well as in bulk applications, polymer chemistry, solvents, etc. Aldoxime dehydratases catalyze the cyanide-free synthesis of nitriles starting from aldoximes under mild conditions, holding potential to become sustainable alternatives for industrial processes. Different aldoxime dehydratases accept a broad range of aldoximes with impressive high substrate loadings of up to >1 Kg L−1 and can efficiently catalyze the reaction in aqueous media as well as in non-aqueous systems, such as organic solvents and solvent-free (neat substrates). This paper provides an overview of the recent developments in this field with emphasis on strategies that may be of relevance for industry and sustainability. When possible, potential links to biorefineries and to the use of biogenic raw materials are discussed. Keywords: biocatalysis; green chemistry; nitriles; aldoxime dehydratases; sustainability Citation: Domínguez de María, P. Nitrile Synthesis with Aldoxime Dehydratases: A Biocatalytic Platform with Applications in Asymmetric Synthesis, Bulk 1. Aldoxime Dehydratases as Biocatalysts for the Cyanide-Free Synthesis of Nitriles Chemicals, and Biorefineries. Nitriles comprise an important group of chemicals that are widely spread in industry Molecules 2021, 26, 4466. in a broad range of sectors, being used as products, solvents, polymers, commodities, or https://doi.org/10.3390/ as starting materials for the production of other chemicals such as amines, amides, etc.
    [Show full text]
  • Reduction of Organic Functional Groups Using Hypophosphites Rim Mouselmani
    Reduction of Organic Functional Groups Using Hypophosphites Rim Mouselmani To cite this version: Rim Mouselmani. Reduction of Organic Functional Groups Using Hypophosphites. Other. Univer- sité de Lyon; École Doctorale des Sciences et de Technologie (Beyrouth), 2018. English. NNT : 2018LYSE1241. tel-02147583v2 HAL Id: tel-02147583 https://tel.archives-ouvertes.fr/tel-02147583v2 Submitted on 5 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE de DOCTORAT DE L’UNIVERSITE DE LYON EN COTUTELLE AVEC L'UNIVERSITÉ LIBANAISE opérée au sein de l’Université Claude Bernard Lyon 1 École Doctorale de Chimie-École Doctorale des Sciences et Technologies Discipline : Chimie Soutenue publiquement le 07/11/2018, par Rim MOUSELMANI Reduction of Organic Functional Groups Using Hypophosphites Devant le jury composé de Mme. Micheline DRAYE Université Savoie Mont Blanc Rapporteure M. Mohammad ELDAKDOUKI Université Arabe de Beyrouth Rapporteur Mme. Emmanuelle SCHULZ Université Paris 11 examinatrice M. Abderrahmane AMGOUNE Université Lyon 1 Président M. Mahmoud FARAJ Université Internationale Libanaise examinateur Mme. Estelle MÉTAY Université Lyon 1 Directrice de thèse M. Ali HACHEM Université Libanaise Directeur de thèse M. Marc LEMAIRE Université Lyon 1 Membre invité M.
    [Show full text]
  • Synthesis of Densely Substituted Pyridine Derivatives from Nitriles by a Non-Classical [4+2] Cycloaddition/1,5-Hydrogen Shift Strategy
    Synthesis of densely substituted pyridine derivatives from nitriles by a non-classical [4+2] cycloaddition/1,5-hydrogen shift strategy Wanqing Wu ( [email protected] ) South China University of Technology https://orcid.org/0000-0001-5151-7788 Dandan He South China University of Technology Kanghui Duan South China University of Technology Yang Zhou South China University of Technology Meng Li South China University of Technology Huanfeng Jiang South China University of Technology Article Keywords: pyridine derivatives, organic synthesis, medicinal chemistry. Posted Date: March 3rd, 2021 DOI: https://doi.org/10.21203/rs.3.rs-258126/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/18 Abstract A novel strategy has been established to assemble an array of densely substituted pyridine derivatives from nitriles and o-substituted aryl alkynes or 1-methyl-1,3-enynes via a non-classical [4 + 2] cycloaddition along with 1,5-hydrogen shift process. The well-balanced anities of two different alkali metal salts enable the C(sp3)-H bond activation as well as the excellent chemo- and regioselectivities. This protocol offers a new guide to construct pyridine frameworks from nitriles with sp3-carbon pronucleophiles, and shows potential applications in organic synthesis and medicinal chemistry. Introduction Compounds containing pyridine core structures, not only widely exist in natural products, pharmaceuticals, and functional materials,1–7 but also serve as useful and valuable building blocks for metal ligands.8,9 For instance, pyridine derivative Actos I10 is a famous drug for the treatment of type 2 diabetes; Bi-(or tri-)pyridines II11–15 are often used as ligands in metal-catalyzed reactions; Kv1.5 antagonist III16 and alkaloid papaverine IV17 are two representative isoquinolines as a promising atrial- selective agent and a smooth muscle relaxant, respectively (Fig.
    [Show full text]
  • Microflex Gloves Chemical Compatibility Chart
    1 1 1 2 2 3 1 CAUTION (LATEX): This product contains natural rubber 2 CAUTION (NITRILE: MEDICAL GRADE): Components used 3 CAUTION (NITRILE: NON-MEDICAL GRADE)): These latex (latex) which may cause allergic reactions. Safe use in making these gloves may cause allergic reactions in gloves are for non-medical use only. They may NOT be of this glove by or on latex sensitized individuals has not some users. Follow your institution’s policies for use. worn for barrier protection in medical or healthcare been established. applications. Please select other gloves for these applications. Components used in making these gloves may cause allergic reactions in some users. Follow your institution’s policies for use. For single use only. NeoPro® Chemicals NeoPro®EC Ethanol ■NBT Ethanolamine (99%) ■NBT Ether ■2 Ethidium bromide (1%) ■NBT Ethyl acetate ■1 Formaldehyde (37%) ■NBT Formamide ■NBT Gluteraldehyde (50%) ■NBT Test Method Description: The test method uses analytical Guanidine hydrochloride ■NBT equipment to determine the concentration of and the time at which (50% ■0 the challenge chemical permeates through the glove film. The Hydrochloric acid ) liquid challenge chemical is collected in a liquid miscible chemical Isopropanol ■NBT (collection media). Data is collected in three separate cells; each cell Methanol ■NBT is compared to a blank cell which uses the same collection media as both the challenge and Methyl ethyl ketone ■0 collection chemical. Methyl methacrylate (33%) ■0 Cautionary Information: These glove recommendations are offered as a guide and for reference Nitric acid (50%) ■NBT purposes only. The barrier properties of each glove type may be affected by differences in material Periodic acid (50%) ■NBT thickness, chemical concentration, temperature, and length of exposure to chemicals.
    [Show full text]
  • Nomenclature of Carboxylic Acids • Select the Longest Carbon Chain Containing the Carboxyl Group
    Chapter 5 Carboxylic Acids and Esters Carboxylic Acids • Carboxylic acids are weak organic acids which Chapter 5 contain the carboxyl group (RCO2H): Carboxylic Acids and Esters O C O H O RCOOH RCO2H Chapter Objectives: O condensed ways of • Learn to recognize the carboxylic acid, ester, and related functional groups. RCOH writing the carboxyl • Learn the IUPAC system for naming carboxylic acids and esters. group a carboxylic acid C H • Learn the important physical properties of the carboxylic acids and esters. • Learn the major chemical reaction of carboxylic acids and esters, and learn how to O predict the products of ester synthesis and hydrolysis reactions. the carboxyl group • Learn some of the important properties of condensation polymers, especially the polyesters. Mr. Kevin A. Boudreaux • The tart flavor of sour-tasting foods is often caused Angelo State University CHEM 2353 Fundamentals of Organic Chemistry by the presence of carboxylic acids. Organic and Biochemistry for Today (Seager & Slabaugh) www.angelo.edu/faculty/kboudrea 2 Nomenclature of Carboxylic Acids • Select the longest carbon chain containing the carboxyl group. The -e ending of the parent alkane name is replaced by the suffix -oic acid. • The carboxyl carbon is always numbered “1” but the number is not included in the name. • Name the substituents attached to the chain in the Nomenclature of usual way. • Aromatic carboxylic acids (i.e., with a CO2H Carboxylic Acids directly connected to a benzene ring) are named after the parent compound, benzoic acid. O C OH 3
    [Show full text]
  • Optimisation Du Métabolisme Énergétique Du Soufre Chez La Bactérie Hyperthermophile Aquifex Aeolicus
    Aix-Marseille Université Ecole Doctorale des Sciences de la Vie et de la Santé Thèse de Doctorat d’Université Mention Microbiologie Clément AUSSIGNARGUES Optimisation du métabolisme énergétique du soufre chez la bactérie hyperthermophile Aquifex aeolicus Soutenue le 17 Décembre 2012 devant le jury: Pr. Frédéric BARRAS Dr. Laurent COURNAC Dr. Bruno FRANZETTI Dr. Marie-Thérèse GIUDICI-ORTICONI Dr. Anne GODFROY Dr. Marianne ILBERT Laboratoire de Bioénergétique et Ingénierie des Protéines Centre National de la Recherche Scientifique Aix-Marseille Université Ecole Doctorale des Sciences de la Vie et de la Santé Thèse de Doctorat d’Université Mention Microbiologie Clément AUSSIGNARGUES Optimisation du métabolisme énergétique du soufre chez la bactérie hyperthermophile Aquifex aeolicus Soutenue le 17 Décembre 2012 devant le jury: Pr. Frédéric BARRAS Dr. Laurent COURNAC Dr. Bruno FRANZETTI Dr. Marie-Thérèse GIUDICI-ORTICONI Dr. Anne GODFROY Dr. Marianne ILBERT Laboratoire de Bioénergétique et Ingénierie des Protéines Centre National de la Recherche Scientifique Sommaire Sommaire Introduction 2 Chapitre I- Métabolismes énergétiques du soufre 4 I) Le soufre, un élément essentiel aux multiples facettes 6 II) Le soufre utilisé comme composé énergétique 9 A) Oxydation des composés du soufre 10 1. Oxydation du sulfure d’hydrogène H2S 10 a) La Sulfure Quinone Oxydoréductase (SQR) 10 b) La flavocytochrome c sulfure déshydrogénase (FCSD) 13 2- 2. Oxydation du thiosulfate (S2O3 ) 14 a) Thiosulfate : accepteur oxydoréductase (TAOR) 14 b) Le système Sox 16 2- 3. Oxydation du sulfite (SO3 ) 20 a) Sulfite : accepteur oxydoréductase (SAOR) 21 b) Voie de l’APS 23 4. Oxydation du soufre stocké dans les globules 26 B) La réduction du soufre : soufre/polysulfure réductase 29 C) Un cas particulier : la dismutation du soufre (SOR) 33 1.
    [Show full text]
  • KIMBERLY-CLARK* Nitrile Glove Chemical Resistance Guide the Science of Protection
    KIMBERLY-CLARK* Nitrile Glove Chemical Resistance Guide The Science of Protection. Permeation Time Permeation Rate Color Code Chemical Name (minutes) (pg/cm2/min) Concentration Rating ASTM F739-99A ASTM F739-99A Acetaldehyde <1 353 99.5% Acetic Acid 5 482 99.7% Use the color code rating system below with the chart at right to determine the Acetone 1 466 99.5% Acetonitrile 1 329 99% chemical compatibility for incidental exposure. Acrylic Acid 1 57.8 99% Ammonium Hydroxide 7 395 30% Amyl Acetate 4 261 99% GREEN Analine 7 74.7 99.5% Benzaldehyde 78 0.57 99.5% The results for this specific chemical suggest that the glove A glove/chemical combination receives a GREEN Benzene <1 627 99.8% rating if: Benzyl Alcohol 5 86.8 99% would provide an adequate barrier for use in most applications. • The permeation breakthrough time is excellent n-Butanol 10 5.99 99.8% or good and the chemical has high volatility. Butyl Acetate 3 233 99% OR Carbon Disulfide 2 3.81 99% • The permeation breakthrough time is excellent Carbon Tetrachloride 5 48.9 99.5% Chloroform 1 958 99% and the chemical has low volatility. Citric Acid >480 Not Detected 50% Cyclohexane >480 Not Detected 99.7% Cyclohexanol 112 1.18 99% YELLOW Cyclohexanone 1 787 99.8% d-Limonene 107 0.157 97% The results require additional consideration to determine A glove/chemical combination receives a YELLOW n-Dibutyl Phthalate >480 Not Detected 99% rating if: 1,2-Dichlorobenzene <1 1179 99% suitability for use. • Any glove/chemical combination does not Dichloromethane 1 2006 99.9% meet either set of conditions required for Diesel Fuel, mixture 160 0.63 Mixture a GREEN or RED rating.
    [Show full text]
  • In This Handout, All of Our Functional Groups Are Presented As Condensed Line Formulas, 2D and 3D Formulas and with Nomenclature Prefixes and Suffixes (If Present)
    In this handout, all of our functional groups are presented as condensed line formulas, 2D and 3D formulas and with nomenclature prefixes and suffixes (if present). Organic names are built on a foundation of alkanes, alkenes and alkynes. Those examples are presented first and you need to know those rules. The strategies can be found in Chapter 4 of our textbook (alkanes: pages 93-98, cycloalkanes 102-104, alkenes: pages 104-110, alkynes: pages 112-113 and combinations of all of them 113-115). After introducing examples of alkanes, alkenes, alkynes and combinations of them, the functional groups are presented in order of priority. A few nomenclature examples are provided for each of the functional groups. Examples of the various functional groups are presented on pages 115-135 in the textbook. Two overview pages are on pages 136-137. Some functional groups have a suffix name when they are the highest priority functional group and a prefix name when they are not the highest priority group, and these are added to the skeletal names with identifying numbers and stereochemistry terms (E and Z for alkenes, R and S for chiral centers and cis and trans for rings). Several low priority functional groups only have a prefix name. A few additional special patterns are shown on pages 98-102. The only way to learn this topic is practice (over and over). The best practice approach is to actually write out the names (on an extra piece of paper or on a white board, and then do it again). The same functional groups are used throughout the entire course.
    [Show full text]
  • And Intermolecular Addition of Carboxylic Acids to Alkynes in Aqueous Media: a Review
    catalysts Review Metal-Catalyzed Intra- and Intermolecular Addition of Carboxylic Acids to Alkynes in Aqueous Media: A Review Javier Francos and Victorio Cadierno * Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Departamento de Química Orgánica e Inorgánica, IUQOEM, Facultad de Química, Universidad de Oviedo, Julián Clavería 8, E-33006 Oviedo, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-985-103453 Received: 19 October 2017; Accepted: 2 November 2017; Published: 6 November 2017 Abstract: The metal-catalyzed addition of carboxylic acids to alkynes is a very effective tool for the synthesis of carboxylate-functionalized olefinic compounds in an atom-economical manner. Thus, a large variety of synthetically useful lactones and enol-esters can be accessed through the intra- or intermolecular versions of this process. In order to reduce the environmental impact of these reactions, considerable efforts have been devoted in recent years to the development of catalytic systems able to operate in aqueous media, which represent a real challenge taking into account the tendency of alkynes to undergo hydration in the presence of transition metals. Despite this, different Pd, Pt, Au, Cu and Ru catalysts capable of promoting the intra- and intermolecular addition of carboxylic acids to alkynes in a selective manner in aqueous environments have appeared in the literature. In this review article, an overview of this chemistry is provided. The synthesis of b-oxo esters by catalytic addition of carboxylic acids to terminal propargylic alcohols in water is also discussed. Keywords: aqueous catalysis; alkynes; carboxylic acids; alkynoic acids; hydrocarboxylation reactions; cycloisomerization reactions; enol esters; lactones; b-oxo esters 1.
    [Show full text]
  • Carboxylic Acid Addition to Terminal Alkynes Utilizing Ammonium Tagged
    Journal of Organometallic Chemistry 883 (2019) 11e16 Contents lists available at ScienceDirect Journal of Organometallic Chemistry journal homepage: www.elsevier.com/locate/jorganchem Carboxylic acid addition to terminal alkynes utilizing ammonium tagged Hoveyda-Grubbs catalyst supported on magnetically separable core/shell silica: A highly reusable and air compatible catalytic system € € * ** Bengi Ozgün Oztürk , Didar Gürcü, Solmaz Karabulut S¸ ehitoglu Hacettepe University, Faculty of Science, Chemistry Department, 06800, Beytepe, Ankara, Turkey article info abstract Article history: In this study, the performance of ammonium tagged Hoveyda-Grubbs catalyst supported on magnetically Received 24 October 2018 separable core/shell silica gel was tested on carboxylic acid addition reactions to terminal alkynes using a Received in revised form variety of carboxylic acid derivatives under air atmosphere. The catalytic system was found to be 13 December 2018 compatible with air atmosphere and can tolerate even non-degassed solvents. The reaction parameters Accepted 10 January 2019 such as temperature, substrate/catalyst ratio and the effect of carboxylic acid on the selectivity and yield Available online 14 January 2019 of the reaction were investigated in details. The reaction of arylacetylenes with acetic acid yielded the corresponding E-isomer with conversion values up to 99% with a catalytic loading of 1% Ru. The reus- Keywords: Carboxylic acid ability of the catalyst was tested using acetic acid/benzoic acid and phenylacetylene in toluene at 85 C Alkyne under air atmosphere. The catalyst was found to be highly reusable and maintained its activity up to 11th Ruthenium run, reaching a conversion value of 83% with minimum ruthenium leaching. Reusable catalyst © 2019 Elsevier B.V.
    [Show full text]