Carboxylic Acids: Common in Nature Industrial Synthesis of Acetic Acid: Ch.20 Carboxylic Acids and Nitriles
Total Page:16
File Type:pdf, Size:1020Kb
Ch.20 Carboxylic Acids and Nitriles Carboxylic Acids: common in nature COOH CH COOH OH 3 CH3 vinegar CH H 3 Cholic acid COOH H (major component of human bile) odor of sour butter HO OH H COOH COOH odor of goats, socks palmitic acid (precursor of fat) Industrial synthesis of acetic acid: cobalt acetate Rh catalyst CH3OH CH3CHO o CH3COOH O2 80 C CO 20.1 Nomenclature Carboxylic Acids: RCO2H alkane (-e) → -oic acid - parent chain contains the -COOH group, - carboxyl carbon is numbered as 1 CO2HCO2H 1 1 Propanoic acid 4-Methylpentanoic acid 1 CO2H HO2C Et 3-Ethyl-6-methyloctanedioic acid -COOH is attached to a ring -carboxylic acid Br 1 COOH 3-Bromocyclohexanecarboxylic acid CO2H 1 1-Cyclopentenecarboxylic acid Common Names Acyl groups HCOOH Formic acid HCO- Formyl Acetyl H3C COOH Acetic acid H3CCO- COOH Propionic acid CO- Propionyl COOH Butyric acid CO- Butyryl HOOC COOH Oxalic acid -OC CO- Oxalyl HOOC COOH Malonic acid -OC CO- Malonyl HOOC -OC COOH Succinic acid CO- Succinyl COOH Acrylic acid CO- Acryloyl COOH Benzoic acid CO- Benzoyl Nitrile: RCN - nitrile - CN carbon is numbered as 1 4 CN 1 4-Methylpentanenitrile complex nitrile -(o)ic acid → onitrile -carboxylic acid → -carbonitrile 1 CN CN CH3 H3CCN 2 CH3 Acetonitrile Benzonitrile 2,2-Dimethylcyclohexanecarbonitrile 20.2 Structure and Physical Properties of Carboxylic Acids Structure 2 O R sp H O O O H H RO RO 120o planar dimer: H-bonding (high b.p.) - high b.p. and m.p. - b.p. of acetic acid: 118oC 20.3 Dissociation of Carboxylic Acids Acidity: weak bases (NaOH, NaHCO3) generate carboxylate, - + RCO2 Na O O + NaOH + ROH RONa + H2O H2O water-insoluble water-soluble Acetic acid: only 0.1% dissociate in 0.1M solution HCl: 100% dissociate O HCl CH3CH2OH H3COH pKa = 16 4.75 -7 Alkoxide / Carboxylate ion H2 H2 C H C H3C O H3C O localized charge O O O H H CO H CO 3 3 H3CO delocalized charge resonance-stabilized carboxylate ion 127 pm 120 pm O 134 pm O Na+ C C H O H H O Formic acid Sodium formate purification of acid: dissolve salts in water, extract out organic impurities with organic solvent, acidify aqueous layer to obtain carboxylic acids 20.4 Substituent Effects on Acidity Carboxylic acids with Acid pKa more than six carbons are insoluble in water CH3CH2OH 16 CH3CH2COOH 4.87 CH3COOH 4.75 H C=CHCO H 4.25 stronger 2 2 acid PhCO2H 4.19 HOCH2COOH 3.83 HCO2H 3.75 ICH2CO2H 3.12 BrCH2CO2H 2.68 ClCH2CO2H 2.85 FCH2CO2H 2.59 F3CCO2H 0.23 Acidity of chloroacetic acids: inductive effect O O O O Cl Cl H COH Cl CH OH CH OH COH 3 2 Cl Cl Cl stronger acid O - Cl CH2 O electronegative Cl stabilizes anion - inductive effect operates through σ-bond and depends on distance Cl COOH COOH COOH Cl Cl COOH pKa = 2.86 4.05 4.52 4.82 20.5 Substituent Effects in Substituted Benzoic Acids O O O OH OH OH MeO O2N pKa = 4.46 4.19 3.41 stronger acid - acidity of substituted benzoic acid correlate reactivity of the substituted benzene O OH Y Y predict reactivity of pK a electrophilic attack "inverse relationship" 20.6 Preparation of Carboxylic Acids Oxidation of benzylic C-H CH3 COOH KMnO4 H2O 95oC H KMnO4 O +CO2 H + H H3O HO Oxidation of alcohol/aldehyde CrO3 RCH2OH RCOOH H2SO4, H2O AgNO3 R CHO R COOH NH4OH Hydrolysis of nitrile - 1. H2O, OH RCN R COOH + 2. H3O N + NH + O H3O H3O RCN OH- ROH ROH ROH - a typical way to introduce one carbon fragment from alkyl halides 1. KCN Br - COOH O 2. H2O, OH O + 3. H3O Carboxylation of Grignard reagents O + CO2 H3O RCH2MgX RCH2 C O MgX RCH2 COOH O CO Br MgBr COOH Mg 1. CO2 ether + 2. H3O 20.7 Reactions of Carboxylic Acids: An Overview General reactions of carboxylic acids O H H H C H C C O C OH Deprotonation O Reduction H C C OH O O R C H C C OH C Y Alpha-substitution Nucleophilic acyl substitution 20.8 Reduction of Carboxylic Acids LiAlH4: alkenes are not reduced O 1. LiAlH 4 OH + 2. H3O OH BH3: alkenes can be hydroborated, esters are not reduced O2N O2N O 1. BH3, THF + OH 2. H3O OH - LiAlH4 reduces both nitro and acid 20.9 Chemistry of Nitriles O R C N C R OH same oxidation level Preparation - SN2 substitution by CN NaCN R CH2 Br R CH2 CN From amide: SOCl2, POCl3 O SOCl2 + R CH2 CN + SO2 2 HCl RNH2 benzene 80oC O O O S S S O Cl Cl O Cl O Cl RNH2 RNH2 RN H SO2 + HCl + RCN Reactions of Nitriles - O O R R products RR Nu- Nu alkoxide ion N products R CN R Nu Nu- imine ion 1. R'MgX + O H2O 2. H3O O RCN R OH R R' - 1. [H-] 1. [H ] + 2. H O+ 2. H3O 3 O R NH 2 R H Hydrolysis: acidic or basic conditions - H2O, OH RCN R COOH + or H3O N NH H2O O R CN - R R OH OH OH R NH2 imine anion O R OH Reduction: LiAlH4, DIBAL to primary amine: 1. LiAlH 4 R CN RNH2 + 2. H3O to aldehyde: 1. DIBAL CN CHO 2. H2O 1. LiAlH NH LiAlH 4 N 4 2 R CN - R + R H H H 2. H3O H imine anion DIBAL toluene O N H2O R R H H imine anion Grignard addition: ketone formation N +MgX H O+ O 3 + NH R CN R 3 R'MgX R' R R' imine anion O CN 1. EtMgBr + 2. H3O 20.9 Spectroscopy of Carboxylic Acids and Nitriles IR Spectroscopy 1760 cm-1 free carboxyl (uncommon) C=O 1710 cm-1 associated carboxyl (usual case) O-H 2500-3300 cm-1 very broad O R H O O O H H RO RO -1 1760 cm 1710 cm-1 RCN 2250 cm-1 IR Spectrum of n-Butanoic acid NMR Spectroscopy 1H NMR COO-H ~ 12 ppm, 13C NMR C=O 165-185 ppm CH3CH2CN 10 11 121 1H NMR Spectrum Chemistry @ Work Vitamin C Vitamin C: ascorbic acid OH OH H O O HO O HO H HO OH HO OH OH Vitamin C Glucose (Ascorbic acid) Chemistry @ Work Industrial synthesis of ascorbic acid from glucose Problem Sets Chapter 20 20, 26, 35, 39, 45.