Virus Like Particle-Based Vaccines Against Emerging Infectious Disease Viruses

Total Page:16

File Type:pdf, Size:1020Kb

Virus Like Particle-Based Vaccines Against Emerging Infectious Disease Viruses VIROLOGICA SINICA 2016, 31 (4): 279–287 DOI: 10.1007/s12250-016-3756-y REVIEW Virus like particle-based vaccines against emerging infectious disease viruses Jinliang Liu, Shiyu Dai, Manli Wang, Zhihong Hu, Hualin Wang, Fei Deng* State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China Emerging infectious diseases are major threats to human health. Most severe viral disease outbreaks occur in developing regions where health conditions are poor. With increased international travel and business, the possibility of eventually transmitting infectious viruses between different countries is increasing. The most effective approach in preventing viral diseases is vaccination. However, vaccines are not currently available for numerous viral diseases. Virus- like particles (VLPs) are engineered vaccine candidates that have been studied for decades. VLPs are constructed by viral protein expression in various expression systems that promote the self- assembly of proteins into structures resembling virus particles. VLPs have antigenicity similar to that of the native virus, but are non-infectious as they lack key viral genetic material. VLP vaccines have attracted considerable research interest because they offer several advantages over traditional vaccines. Studies have shown that VLP vaccines can stimulate both humoral and cellular immune responses, which may offer effective antiviral protection. Here we review recent developments with VLP-based vaccines for several highly virulent emerging or re-emerging infectious diseases. The infectious agents discussed include RNA viruses from different virus families, such as the Arenaviridae, Bunyaviridae, Caliciviridae, Coronaviridae, Filoviridae, Flaviviridae, Orthomyxoviridae, Paramyxoviridae, and Togaviridae families. KEYWORDS emerging infectious disease; self-assembly; vaccine; virus; virus-like particle (VLP) INTRODUCTION break was reported in West Africa. By December 2015, 28, 637 cases of Ebola infection were reported, including With the increase in international travel, pathogen trans- 11, 315 deaths (WHO, 2015), with mortality rates of up to mission across countries has increased and has resulted in 40%. Such pandemics cause significant mortality and eco- several pandemics, especially of viral diseases. In 2012, nomic losses; thus, it is critical to prevent the spread of the outbreak of a newly identified coronavirus, Middle emerging viruses. East respiratory syndrome coronavirus (MERS-CoV) was Vaccination is most effective in preventing viral infec- reported in Saudi Arabia (de groot et al., 2013). As of tion; however, vaccine development against emerging vi- December 2015, the World Health Organization (WHO) ruses faces several challenges. Some emerging viruses was notified of 1625 laboratory-confirmed MERS-CoV cause high infectivity and mortality; therefore, a maxi- infections from 26 countries, with at least 586 deaths mum (level 4) biosafety lab is needed, and live attenuated (WHO, 2016). In March 2014, an Ebola virus disease out- strains or inactivated vaccines are not adequately safe (Garcia-sastre and Mena, 2013). Second, in an outbreak of Received: 29 February 2016, Accepted: 25 June 2016, infections by an emerging virus, every second matters; Published online: 11 July 2016 *Correspondence: therefore, a rapid development of engineered vaccines is Phone: +86-27-87198465, Fax: +86-27-87198465 required for pandemic control. Third, some vaccines, such Email: [email protected] as influenza virus vaccines, are not effective against all ORCID: 0000-0002-5385-083X strains. Because of mutations, antigenic drift, and antigenic © Wuhan Institute of Virology, CAS and Springer Science+Business Media Singapore 2016 AUGUST 2016 VOLUME 31 ISSUE 4 279 VLP-based vaccines for emerging infectious diseases shift, influenza virus strains differ with influenza seasons vaccines have been produced using this system, such as and pandemics. Furthermore, because a virus cannot re- one against hepatitis E virus (HEV) VLPs (Hecolin1, Xia- produce autonomously in vitro, vaccines against viruses men Innovax Biotech Co. Ltd.). The E. coli expression are produced by propagating viruses in large quantities in system is the most economical and easy-to-use system. living cells of susceptible organisms. For example, tradi- However, this system lacks a post-translational modifica- tional influenza vaccines are manufactured using embry- tion system and can only be used to produce simple VLPs, onated chicken eggs for virus propagation. However, such as non-enveloped VLPs, which are based on the abil- some viruses still cannot be cultured in cells or organs, ity of viral protein components to self-assemble in the outside of the natural host(s). bacterial host during expression. Yeast systems are com- Virus-like particles (VLPs) are generated from viral monly used in VLP vaccine production, for example with proteins that self-assemble into structures resembling na- the HBV vaccine Engerix-B® (GlaxoSmithKline) and the tive virions and can have some antigenicity of the native HPV vaccine Gardasil® (Merck & Co., Inc). Yeast sys- virus, but are non-infectious due to their lack of viral ge- tems offer high expression and easy scale-up and, unlike netic material. VLPs have been studied as vaccines for the E. coli system, provide post-translational modification decades, and the first VLP-based vaccine approved by the of the expressed proteins. However, neither the E. coli nor US FDA was the HBV vaccine (HEPTAVAX-B; Merck; the yeast system can express enveloped VLPs. The bacu- 1981) (Zhao et al., 2013). More recently, 2 VLP-based lovirus-insect cell and mammalian-cell systems show HPV vaccines, Gardasil1 (Merck and Co. Inc.) and Cer- more complete post-translational modification including varix1 (GlaxoSmithKline), were approved by the US glycosylation and are better systems for expressing com- FDA. These vaccines are produced in yeast and insect plex VLPs (Rodriguez-limas et al., 2013). Successful VLP cells, respectively (Rodriguez-limas et al., 2013). With ad- vaccines produced using these systems include the HPV vances in biotechnology, the development of VLP vac- vaccine Cervix® (GlaxoSmithKline) and the HBV vac- cines has progressed greatly. VLPs offer several advan- cine GenHevac B® (Pasteur-Mérieux Aventis). These sys- tages as vaccines against emerging viruses. First, safety tems are more expensive than E. coli and yeast, and down- consideration in developing these vaccines is not neces- stream processing is more difficult. In the plant expres- sary, as VLPs are not live viruses; thus, the manufactur- sion system, protein assembly and post-translational ing process offers a safer environment for the operators. modifications are similar to those occurring in mammalian Second, VLPs can display major antigens and elicit strong cells. As production system, it is cost-effective and highly humoral and cellular immune responses. The potency of scalable. VLPs in stimulating immune responses can be signifi- Most emerging human pathogens are single-stranded cantly enhanced relative to inactivated viral particles, as RNA viruses. Here, we summarize several VLP vaccines viruses have evolved different ways to evade the host im- against emerging viruses, including negative-strand RNA mune system. Some structural and non-structural proteins viruses belonging to 5 families (Arenaviridae, Bunyavi- inhibit immune responses, especially cellular immune re- ridae, Filoviridae, Orthomyxoviridae and Paramyxoviridae) sponses (Frazer et al., 1999; Pukhalsky et al., 2003; and positive-strand RNA viruses from 4 families (Calicivi- Sarobe et al., 2003), but VLPs can be deficient in proteins ridae, Coronaviridae, Flaviviridae, and Togaviridae). or domains that inhibit immune responses. Compare to the Some viruses from these families are human pathogens individual proteins or peptides, VLPs have better immu- with high virulence and lethality, and vaccines against nogenicity, as the peptides conformation of VLPs is more these viruses are urgently needed for pandemic control. similar to the virus than in inactivated viruses. Due to highly repetitive epitopes on the surface, VLPs are able to induce strong B cells responses (Roldão et al., 2010). NEGATIVE-STRAND RNA VIRUSES VLPs can also be internalized by antigen presenting cells that active CD4+ and CD8+ T cells to elicit and sustain Arenaviridae family specific cytotoxic T lymphocyte (CTL) responses (Wagner Arenaviruses are pathogens of rodents-transmitted dis- et al., 1994; Chackerian et al., 2002; Cox et al., 2014), and eases, some of which cause severe cases and are responsi- CD4+ T cells play an important role in sustaining virus- ble for hemorrhagic fever (Oldstone, 2002). Lassa fever is specific CD8+ CTLs during virus infection (Matloubian et an acute viral illness that has been reported in West Africa al., 1994). and is caused by Lassa fever virus (LASV), which is a Several platforms for producing VLPs exist, such as member of the Arenaviridae family. The genome of bacteria (Escherichia coli), yeast, insect cells, mammalian LASV consists of 2 RNA segments (S and L). The S seg- cells, plant expression systems, and in vitro cell-free sys- ment encodes the viral nucleocapsid protein (NP) and 2 tems. The bacterial expression system was the first sys- glycoproteins (GP1 and GP2), whereas the L segment en- tem used to produce VLPs, and several commercial VLP codes the viral polymerase (L) and RING-finger matrix 280 AUGUST 2016 VOLUME 31 ISSUE 4
Recommended publications
  • Antiviral Bioactive Compounds of Mushrooms and Their Antiviral Mechanisms: a Review
    viruses Review Antiviral Bioactive Compounds of Mushrooms and Their Antiviral Mechanisms: A Review Dong Joo Seo 1 and Changsun Choi 2,* 1 Department of Food Science and Nutrition, College of Health and Welfare and Education, Gwangju University 277 Hyodeok-ro, Nam-gu, Gwangju 61743, Korea; [email protected] 2 Department of Food and Nutrition, School of Food Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, 4726 Seodongdaero, Daeduck-myun, Anseong-si, Gyeonggi-do 17546, Korea * Correspondence: [email protected]; Tel.: +82-31-670-4589; Fax: +82-31-676-8741 Abstract: Mushrooms are used in their natural form as a food supplement and food additive. In addition, several bioactive compounds beneficial for human health have been derived from mushrooms. Among them, polysaccharides, carbohydrate-binding protein, peptides, proteins, enzymes, polyphenols, triterpenes, triterpenoids, and several other compounds exert antiviral activity against DNA and RNA viruses. Their antiviral targets were mostly virus entry, viral genome replication, viral proteins, and cellular proteins and influenced immune modulation, which was evaluated through pre-, simultaneous-, co-, and post-treatment in vitro and in vivo studies. In particular, they treated and relieved the viral diseases caused by herpes simplex virus, influenza virus, and human immunodeficiency virus (HIV). Some mushroom compounds that act against HIV, influenza A virus, and hepatitis C virus showed antiviral effects comparable to those of antiviral drugs. Therefore, bioactive compounds from mushrooms could be candidates for treating viral infections. Citation: Seo, D.J.; Choi, C. Antiviral Bioactive Compounds of Mushrooms Keywords: mushroom; bioactive compound; virus; infection; antiviral mechanism and Their Antiviral Mechanisms: A Review.
    [Show full text]
  • Guide for Common Viral Diseases of Animals in Louisiana
    Sampling and Testing Guide for Common Viral Diseases of Animals in Louisiana Please click on the species of interest: Cattle Deer and Small Ruminants The Louisiana Animal Swine Disease Diagnostic Horses Laboratory Dogs A service unit of the LSU School of Veterinary Medicine Adapted from Murphy, F.A., et al, Veterinary Virology, 3rd ed. Cats Academic Press, 1999. Compiled by Rob Poston Multi-species: Rabiesvirus DCN LADDL Guide for Common Viral Diseases v. B2 1 Cattle Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 2 Deer and Small Ruminants Please click on the principle system involvement Generalized viral disease Respiratory viral disease Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 3 Swine Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 4 Horses Please click on the principle system involvement Generalized viral diseases Neurological viral diseases Respiratory viral diseases Enteric viral diseases Abortifacient/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 5 Dogs Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Back to the Beginning DCN LADDL Guide for Common Viral Diseases v.
    [Show full text]
  • Norovirus Infectious Agent Information Sheet
    Norovirus Infectious Agent Information Sheet Introduction Noroviruses are non-enveloped (naked) RNA viruses with icosahedral nucleocapsid symmetry. The norovirus genome consists of (+) ssRNA, containing three open reading frames that encode for proteins required for transcription, replication, and assembly. There are five norovirus genogroups (GI-GV), and only GI, GII, and GIV infect humans. Norovirus belongs to the Caliciviridae family of viruses, and has had past names including, Norwalk virus and “winter-vomiting” disease. Epidemiology and Clinical Significance Noroviruses are considered the most common cause of outbreaks of non-bacterial gastroenteritis worldwide, are the leading cause of foodborne illness in the United States (58%), and account for 26% of hospitalizations and 10% of deaths associated with food consumption. Salad ingredients, fruit, and oysters are the most implicated in norovirus outbreaks. Aside from food and water, Noroviruses can also be transmitted by person to person contact and contact with environmental surfaces. The rapid spread of secondary infections occurs in areas where a large population is enclosed within a static environment, such as cruise ships, military bases, and institutions. Symptoms typically last for 24 to 48 hours, but can persist up to 96 hours in the immunocompromised. Pathogenesis, Immunity, Treatment and Prevention Norovirus is highly infectious due to low infecting dose, high excretion level (105 to 107 copies/mg stool), and continual shedding after clinical recovery (>1 month). The norovirus genome undergoes frequent change due to mutation and recombination, which increases its prevalence. Studies suggest that acquired immunity only last 6 months after infection. Gastroenteritis, an inflammation of the stomach and small and large intestines, is caused by norovirus infection.
    [Show full text]
  • How Influenza Virus Uses Host Cell Pathways During Uncoating
    cells Review How Influenza Virus Uses Host Cell Pathways during Uncoating Etori Aguiar Moreira 1 , Yohei Yamauchi 2 and Patrick Matthias 1,3,* 1 Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; [email protected] 2 Faculty of Life Sciences, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; [email protected] 3 Faculty of Sciences, University of Basel, 4031 Basel, Switzerland * Correspondence: [email protected] Abstract: Influenza is a zoonotic respiratory disease of major public health interest due to its pan- demic potential, and a threat to animals and the human population. The influenza A virus genome consists of eight single-stranded RNA segments sequestered within a protein capsid and a lipid bilayer envelope. During host cell entry, cellular cues contribute to viral conformational changes that promote critical events such as fusion with late endosomes, capsid uncoating and viral genome release into the cytosol. In this focused review, we concisely describe the virus infection cycle and highlight the recent findings of host cell pathways and cytosolic proteins that assist influenza uncoating during host cell entry. Keywords: influenza; capsid uncoating; HDAC6; ubiquitin; EPS8; TNPO1; pandemic; M1; virus– host interaction Citation: Moreira, E.A.; Yamauchi, Y.; Matthias, P. How Influenza Virus Uses Host Cell Pathways during 1. Introduction Uncoating. Cells 2021, 10, 1722. Viruses are microscopic parasites that, unable to self-replicate, subvert a host cell https://doi.org/10.3390/ for their replication and propagation. Despite their apparent simplicity, they can cause cells10071722 severe diseases and even pose pandemic threats [1–3].
    [Show full text]
  • Viruses in Transplantation - Not Always Enemies
    Viruses in transplantation - not always enemies Virome and transplantation ECCMID 2018 - Madrid Prof. Laurent Kaiser Head Division of Infectious Diseases Laboratory of Virology Geneva Center for Emerging Viral Diseases University Hospital of Geneva ESCMID eLibrary © by author Conflict of interest None ESCMID eLibrary © by author The human virome: definition? Repertoire of viruses found on the surface of/inside any body fluid/tissue • Eukaryotic DNA and RNA viruses • Prokaryotic DNA and RNA viruses (phages) 25 • The “main” viral community (up to 10 bacteriophages in humans) Haynes M. 2011, Metagenomic of the human body • Endogenous viral elements integrated into host chromosomes (8% of the human genome) • NGS is shaping the definition Rascovan N et al. Annu Rev Microbiol 2016;70:125-41 Popgeorgiev N et al. Intervirology 2013;56:395-412 Norman JM et al. Cell 2015;160:447-60 ESCMID eLibraryFoxman EF et al. Nat Rev Microbiol 2011;9:254-64 © by author Viruses routinely known to cause diseases (non exhaustive) Upper resp./oropharyngeal HSV 1 Influenza CNS Mumps virus Rhinovirus JC virus RSV Eye Herpes viruses Parainfluenza HSV Measles Coronavirus Adenovirus LCM virus Cytomegalovirus Flaviviruses Rabies HHV6 Poliovirus Heart Lower respiratory HTLV-1 Coxsackie B virus Rhinoviruses Parainfluenza virus HIV Coronaviruses Respiratory syncytial virus Parainfluenza virus Adenovirus Respiratory syncytial virus Coronaviruses Gastro-intestinal Influenza virus type A and B Human Bocavirus 1 Adenovirus Hepatitis virus type A, B, C, D, E Those that cause
    [Show full text]
  • Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris Spelaea)
    viruses Article Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris spelaea) Ian H Mendenhall 1,* , Dolyce Low Hong Wen 1,2, Jayanthi Jayakumar 1, Vithiagaran Gunalan 3, Linfa Wang 1 , Sebastian Mauer-Stroh 3,4 , Yvonne C.F. Su 1 and Gavin J.D. Smith 1,5,6 1 Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; [email protected] (D.L.H.W.); [email protected] (J.J.); [email protected] (L.W.); [email protected] (Y.C.F.S.) [email protected] (G.J.D.S.) 2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore 3 Bioinformatics Institute, Agency for Science, Technology and Research, Singapore 138671, Singapore; [email protected] (V.G.); [email protected] (S.M.-S.) 4 Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore 5 SingHealth Duke-NUS Global Health Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 168753, Singapore 6 Duke Global Health Institute, Duke University, Durham, NC 27710, USA * Correspondence: [email protected] Received: 30 January 2019; Accepted: 7 March 2019; Published: 12 March 2019 Abstract: Bats are unique mammals, exhibit distinctive life history traits and have unique immunological approaches to suppression of viral diseases upon infection. High-throughput next-generation sequencing has been used in characterizing the virome of different bat species. The cave nectar bat, Eonycteris spelaea, has a broad geographical range across Southeast Asia, India and southern China, however, little is known about their involvement in virus transmission.
    [Show full text]
  • Summary of Antimicrobial Activity
    SUMMARY OF ANTIMICROBIAL ACTIVITY 3x RENEGADE DAILY ONE-STEP DISINFECTANT Description 3x RENEGADE DAILY Disinfectant & Detergent is a broad spectrum, hard surface disinfectant. When used as directed, this product will deliver effective biocidal action against bacteria, fungi, and viruses. This formulation is a blend of a premium active ingredients and inerts: surfactants, chelates, and water. Biocidal performance is attained when this product is properly diluted at 1/2 oz. per gallon or 1:256 (1 oz. per gallon or 1:128 for Norovirus). 3x RENEGADE DAILY can be used to disinfect a wide variety of hard surfaces such as floors, walls, toilets, sinks, and countertops in hospitals, households, and institutions. Regulatory Summary Physical Properties EPA Registration No. 6836-349- pH of Concentrate 12.0 – 13.5 Flash Point (PMCC) >200 F 12120 USDA Authorization None Specific Gravity @ 0.98 – 1.05 g/mL % Quat (mol. wt.342.0) 22.24 25°C California Status Pounds per gallon @ 8.42 – 8.51 % Volatile 93.5-94.5 25°C Canadian PCP# None Canadian Din # None Summary of Antimicrobial Test Results 3x RENEGADE DAILY is a "One-Step" Hospital Disinfectant, Virucide, Fungicide, Mildewstat, Sanitizer and Cleaner. Listed in the following pages is a summary of Antimicrobial Claims and a review of test results. Claim: Contact time: Organic Soil: Water Conditions: Disinfectant Varies 5% 250ppm as CaCO3 Test Method: AOAC Germicidal Spray Test Organism Contact Dilution Time (Min) 868 ppm (1/2oz. per Acinetobacter baumannii 3 Gal) Bordetella bronchiseptica 3 868 ppm Bordetella pertussis 3 868 ppm Campylobacter jejuni 3 868 ppm Enterobacter aerogenes 3 1736 PPM (1 oz per Gal) Enterococcus faecalis 3 868 ppm Enterococcus faecalis - Vancomycin resistant [VRE] 3 868 ppm Escherichia coli 3 868 ppm Escherichia coli [O157:H7] 3 868 ppm Escherichia coli ESBL – Extended spectrum beta- 868 ppm 10 lactamase containing E.
    [Show full text]
  • Borna Disease Virus Infection in Animals and Humans
    Synopses Borna Disease Virus Infection in Animals and Humans Jürgen A. Richt,* Isolde Pfeuffer,* Matthias Christ,* Knut Frese,† Karl Bechter,‡ and Sibylle Herzog* *Institut für Virologie, Giessen, Germany; †Institut für Veterinär-Pathologie, Giessen, Germany; and ‡Universität Ulm, Günzburg, Germany The geographic distribution and host range of Borna disease (BD), a fatal neuro- logic disease of horses and sheep, are larger than previously thought. The etiologic agent, Borna disease virus (BDV), has been identified as an enveloped nonsegmented negative-strand RNA virus with unique properties of replication. Data indicate a high degree of genetic stability of BDV in its natural host, the horse. Studies in the Lewis rat have shown that BDV replication does not directly influence vital functions; rather, the disease is caused by a virus-induced T-cell–mediated immune reaction. Because antibodies reactive with BDV have been found in the sera of patients with neuro- psychiatric disorders, this review examines the possible link between BDV and such disorders. Seroepidemiologic and cerebrospinal fluid investigations of psychiatric patients suggest a causal role of BDV infection in human psychiatric disorders. In diagnostically unselected psychiatric patients, the distribution of psychiatric disorders was found to be similar in BDV seropositive and seronegative patients. In addition, BDV-seropositive neurologic patients became ill with lymphocytic meningoencephali- tis. In contrast to others, we found no evidence is reported for BDV RNA, BDV antigens, or infectious BDV in peripheral blood cells of psychiatric patients. Borna disease (BD), first described more predilection for the gray matter of the cerebral than 200 years ago in southern Germany as a hemispheres and the brain stem (8,19).
    [Show full text]
  • And Filoviruses Asit K
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Veterinary and Biomedical Science Veterinary and Biomedical Sciences, Department of 2016 Overview of Rhabdo- and Filoviruses Asit K. Pattnaik University of Nebraska-Lincoln, [email protected] Michael A. Whitt University of Tennessee Health Science Center, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/vetscipapers Part of the Biochemistry, Biophysics, and Structural Biology Commons, Cell and Developmental Biology Commons, Immunology and Infectious Disease Commons, Medical Sciences Commons, Veterinary Microbiology and Immunobiology Commons, and the Veterinary Pathology and Pathobiology Commons Pattnaik, Asit K. and Whitt, Michael A., "Overview of Rhabdo- and Filoviruses" (2016). Papers in Veterinary and Biomedical Science. 229. http://digitalcommons.unl.edu/vetscipapers/229 This Article is brought to you for free and open access by the Veterinary and Biomedical Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Veterinary and Biomedical Science by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Biology and Pathogenesis of Rhabdo- and Filoviruses (2016), edited by Asit K Pattnaik and Michael A Whitt. Copyright © 2016 World Scientific Publishing Co Pte Ltd. Used by permission. digitalcommons.unl.edu CHAPTER 1 Overview of Rhabdo- and Filoviruses Asit K. Pattnaik1 and Michael A. Whitt2 1 School of Veterinary Medicine and Biomedical Sciences and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska 68583 2 Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163 The authors contributed equally to this work. Emails: [email protected] ; [email protected] Summary Enveloped viruses with a negative-sense, single-stranded monopartite RNA genome have been classified into the orderMononegavirales .
    [Show full text]
  • Hutchinson, EC, & Yamauchi, Y
    Hutchinson, E. C., & Yamauchi, Y. (2018). Understanding Influenza. In Influenza Virus: Methods and Protocols (pp. 1-21). (Methods in Molecular Biology; Vol. 1836). Humana Press. https://doi.org/10.1007/978-1-4939-8678-1_1 Peer reviewed version Link to published version (if available): 10.1007/978-1-4939-8678-1_1 Link to publication record in Explore Bristol Research PDF-document This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Springer Nature at https://link.springer.com/protocol/10.1007%2F978-1-4939-8678-1_1. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Understanding Influenza Edward C. Hutchinson1* and Yohei Yamauchi2* 1MRC-University of Glasgow Centre for Virus Research; 2School of Cellular and Molecular Medicine, University of Bristol. *Corresponding authors: [email protected], [email protected] Running Head: Understanding Influenza Abstract Influenza, a serious illness of humans and domesticated animals, has been studied intensively for many years. It therefore provides an example of how much we can learn from detailed studies of an infectious disease, and of how even the most intensive scientific research leaves further questions to answer. This introduction is written for researchers who have become interested in one of these unanswered questions, but who may not have previously worked on influenza.
    [Show full text]
  • Virus Pathogen Resource (Vipr) March 2019 New Features in Vipr
    Virus Pathogen Resource (ViPR) March 2019 New Features in ViPR New Genome Annotation Tool New RNA Structure Data VIGOR4, a new genome annotation tool is In collaboration with the NIAID-funded Loading Virus Pathogen Database and AnalysisAbout Resource Us Community (ViPR)... Announcements Links Resources Support now available on the Zika virus portal. VIGOR4 Orfeome project, we have released new RNA News & Events (Viral Genome ORF Reader) is developed by structure data for MERS-CoV on the ViPR • June 9-13, 2019: Positive Strand J. Craig Venter Institute. VIGOR 4 predicts site. This new dataset is generated as part RNA Viruses, Killarney, Ireland. Oral protein sequences encoded in a viral of the effort to identify, characterize and presentation. genomes by sequences similarity searching then determine the role of uncharacterized against curated viral protein databases. viral genesSearch that may function to auto- Analyze• July 21-25, 2019: Annual Conference Save to Workbench regulate virus replication efficiency and host In the next few releases, we will enhance the Search our comprehensive database for: Analyzeon Intelligent data online: Systems for Molecular Use your workbench to: responses. The structure data is predicted Biology, Basel, Switzerland. current VIGOR4 implementation and make it Sequences & strains Sequence Alignment Store and share data available for other virus familes. using SHAPE chemical reactivity data (PMID: 22475022Immune). epitopes • AugustPhylogenetic 4-9, T2019:ree 24th International Combine working sets 3D protein
    [Show full text]
  • University of Groningen Molecular Insights Into Viral Respiratory Infections Cong, Ying-Ying
    University of Groningen Molecular insights into viral respiratory infections Cong, Ying-Ying IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2019 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Cong, Y-Y. (2019). Molecular insights into viral respiratory infections. University of Groningen. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 25-09-2021 CHAPTER I General Introduction Chapter I The structure of the respiratory tract facilitates gas exchange between the exterior environment and interior milieu of the host, while it is a susceptible target and feasible gateway for diverse pathogens. Pandemics of severe acute respiratory infections have been serious threats to global health, causing significant morbidity and mortality. In particular, influenza viruses and coronaviruses (CoV), including MERS-CoV and SARS-CoV, have caused numerous outbreaks of viral pneumonia worldwide with different impacts.
    [Show full text]