Methylglyoxal Alters the Function and Stability of Critical Components of the Protein Quality Control

Total Page:16

File Type:pdf, Size:1020Kb

Methylglyoxal Alters the Function and Stability of Critical Components of the Protein Quality Control Methylglyoxal Alters the Function and Stability of Critical Components of the Protein Quality Control Carla Figueira Bento1,2, Filipa Marques1, Rosa Fernandes1, Paulo Pereira1* 1 Center of Ophthalmology and Vision Sciences, Institute for Biomedical Research in Light and Image (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal, 2 PhD Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal Abstract Background: Increased production and accumulation of methylglyoxal (MGO), as well as increased modification of proteins by glycoxidation, are hallmarks of aging and diabetes. MGO was shown to modify proteins and to contribute to the accumulation of damaged proteins that can be toxic to cells. However, the effect of MGO on the cell systems responsible for repairing or degrading damaged proteins is still unclear. In this study, the effect of MGO on the function of the ubiquitin- proteasome system (UPS) and on molecular chaperones, two cooperative mechanisms associated with protein quality control, was investigated. Principal Findings: In this work it is shown that treatment of cells with MGO leads to accumulation of ubiquitin conjugates and depletion of free ubiquitin. Moreover, MGO significantly decreases the proteolytic activity of the 20S proteasome. Data further shows that MGO decreases the levels of the molecular chaperones Hsc70 and Hsp90 and leads to accumulation of CHIP-, Hsp40- and ubiquitin-containing aggregates. The formation of large aggregates containing CHIP is a consequence of its binding to misfolded proteins and to molecular chaperones. Moreover, dysfunction of the chaperones/CHIP/UPS axis is associated with accumulation of oxidized and argpyrimidine-modified proteins, which is likely to be associated with decreased cell viability. Interestingly, data further shows that MGO-induced stress induces the activation of heat shock factor-1 (Hsf-1), the main transcription factor involved in the regulation of the expression of heat shock proteins (HSPs) and cell response to stress. Conclusions: The data obtained in this work suggests that MGO impairs both the UPS and the protein quality control dependent on CHIP and molecular chaperones, leading to accumulation of toxic aggregates and increased cell death. However, these MGO-induced changes appear to elicit a response from the Hsf-1 system, which is crucial to help cells to cope with cellular stress and to re-establish homeostasis. Citation: Bento CF, Marques F, Fernandes R, Pereira P (2010) Methylglyoxal Alters the Function and Stability of Critical Components of the Protein Quality Control. PLoS ONE 5(9): e13007. doi:10.1371/journal.pone.0013007 Editor: Sue Cotterill, St Georges University of London, United Kingdom Received June 22, 2010; Accepted September 6, 2010; Published September 24, 2010 Copyright: ß 2010 Bento et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This work was supported by the PhD fellowship SFRH/BD/15229/2004 (Carla F. Bento) and the grants POCI/SAU-OBS/57772/2004 and PDTC/SAU-OBS/ 67498/2006 (FCT - Fundacao para a Ciencia e a Tecnologia, Portugal). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. * E-mail: [email protected] Introduction contributes to prevent the accumulation of non-functional, potentially toxic proteins. This proteolytic system is of particular MGO is a highly reactive a-oxoaldehyde that is formed in cells importance in protecting cells against harsh conditions, such as primarily from the triose phosphate intermediates of glycolysis, heat shock, glycation or oxidative stress [9], and is an important dyhydroxyacetone phosphate and glyceraldehyde 3-phosphate [1]. player in the protein quality control system in eukaryotic cells. This by-product of glycolysis induces rapid and non-enzymatic However, when the generation of obsolete proteins exceeds the modification of free amino groups of lysine and arginine residues capacity of the cell to degrade them, there is a progressive of proteins, leading to the generation of advanced glycation end accumulation of damaged proteins, which often become insoluble products (AGEs) [2]. The posttranslational modification of over time and are potentially toxic to cells [9]. Accumulation of proteins by MGO is known to contribute to aging, as well as to damaged proteins, ultimately, occurs when the proteolytic systems a number of diseases, including cancer, diabetes and other and molecular chaperones, which normally prevent aggregation disorders [1]. Indeed, hyperglycaemia triggers enhanced produc- (for example, Hsc70 and Hsp90) [10,11], cannot keep up with the tion of MGO on diabetes [1,3], leading to vascular dysfunction rate of production of misfolded or otherwise damaged proteins. [4], while AGEs exacerbate and accelerate a number of The carboxy terminus of the Hsc70-interacting protein (CHIP) characteristics of many age-related diseases [5,6]. is a key player in protein quality control since it is a molecular link MGO is known to induce aggregation and structural modifi- between chaperones and the UPS. Indeed, CHIP has both a cations in proteins through cross-linking and formation of tetratricopeptide repeat (TPR) motif and a U-box domain [12]. chemical adducts [7,8]. In eukaryotic cells, the proteasome The TPR motif associates with chaperones, such as Hsp40, Hsc70 PLoS ONE | www.plosone.org 1 September 2010 | Volume 5 | Issue 9 | e13007 MGO in Protein Quality Control and Hsp90, while the U-box domain has ubiquitin ligase activity. [1], both characterized by decreased proteasome activity [14,16]. Thus, CHIP has a critical role in protein quality control by However, the putative effect of MGO on the proteasome activity ubiquitinating misfolded or post-translationally modified proteins and on the accumulation of modified proteins remains to be through interaction with molecular chaperones [13]. clarified. It has been suggested that the activity of the proteasome can be To evaluate the effect of MGO in the proteasome activity, we compromised upon aging [14] and diabetes [15]. For example, the used a human retinal pigment epithelium cell line (ARPE-19). This levels of the proteasome activator PA28 are decreased in muscle cell type represents an appropriate model for this study since it has extracts of diabetic rats [16], which might result in accumulation a very active and functional UPS [21,22]. Moreover, the retinal of glycated and toxic proteins, typically observed in diabetic pigment epithelium (RPE) has a high rate of glucose consumption tissues. Furthermore, formation of amyloid-aggregates, which is and its ubiquitin-proteasome system has been shown to be affected usually associated with aging and diabetes, is highly enhanced by during aging and diabetes [5,6,23]. Indeed, formation of AGEs is a MGO and other aldehydes [17] and this is known to impair the trigger for the onset of age-related phenotypes on choroid and UPS, leading to apoptosis [18]. On the other hand, it has been RPE cells [6]. suggested that UPS activity decreases with aging, which may Prior to test the proteasome activity, we observed that further account for the accumulation of modified and toxic incubation of RPE cells with 1 mM or 3 mM MGO for 3 hours proteins in cells, contributing to cell injury and death [14].There is resulted in an intracellular accumulation of MGO of 0.560.12 also increasing evidence showing that molecular chaperones, such and 0.760.14 nmol MGO/mg protein, respectively, which as a-crystallin and Hsp27 [19,20], are themselves major targets of corresponds to a 1.8 and 2.3 fold increase as compared to control MGO-induced modification and aggregation. These and other (Figure 1A). Although the high concentrations used in this work evidences indicate that age- and diabetes-dependent accumulation are not found in the plasma and tissues, we observed that they of MGO is likely to account for impairment of the protein-quality induce an intracellular accumulation of MGO that is consistent control mechanism. However, the effect of MGO in the function with the levels found in tissues of diabetic animals [24]. Moreover, of UPS and on molecular chaperones is still not clear. the obtained intracellular levels of MGO using these concentra- Herein, it is shown that increased levels of MGO lead to tions are similar to those observed in other studies using cell accumulation of ubiquitin conjugates and depletion of free culture systems [25]. ubiquitin in the cell. The accumulation of ubiquitin conjugates is To assess the 20S proteasome activity, ARPE-19 cells were presumably due to both MGO-induced impairment of UPS and treated with MGO and the cell extracts were used to measure the MGO-induced disruption of chaperones. Data presented in this three peptidase activities of the 20S proteasome using fluorogenic work further shows that MGO downregulates Hsc70 and Hsp90 substrates. Data shows that these MGO concentrations decrease and promotes the formation of large aggregates containing Hsp40, the chymotrypsin-like and caspase-like activities of the 20S CHIP and ubiquitin. Consistently, increased levels of MGO lead proteasome, by about 32% and 17%, respectively (Figure
Recommended publications
  • Supplemental Information to Mammadova-Bach Et Al., “Laminin Α1 Orchestrates VEGFA Functions in the Ecosystem of Colorectal Carcinogenesis”
    Supplemental information to Mammadova-Bach et al., “Laminin α1 orchestrates VEGFA functions in the ecosystem of colorectal carcinogenesis” Supplemental material and methods Cloning of the villin-LMα1 vector The plasmid pBS-villin-promoter containing the 3.5 Kb of the murine villin promoter, the first non coding exon, 5.5 kb of the first intron and 15 nucleotides of the second villin exon, was generated by S. Robine (Institut Curie, Paris, France). The EcoRI site in the multi cloning site was destroyed by fill in ligation with T4 polymerase according to the manufacturer`s instructions (New England Biolabs, Ozyme, Saint Quentin en Yvelines, France). Site directed mutagenesis (GeneEditor in vitro Site-Directed Mutagenesis system, Promega, Charbonnières-les-Bains, France) was then used to introduce a BsiWI site before the start codon of the villin coding sequence using the 5’ phosphorylated primer: 5’CCTTCTCCTCTAGGCTCGCGTACGATGACGTCGGACTTGCGG3’. A double strand annealed oligonucleotide, 5’GGCCGGACGCGTGAATTCGTCGACGC3’ and 5’GGCCGCGTCGACGAATTCACGC GTCC3’ containing restriction site for MluI, EcoRI and SalI were inserted in the NotI site (present in the multi cloning site), generating the plasmid pBS-villin-promoter-MES. The SV40 polyA region of the pEGFP plasmid (Clontech, Ozyme, Saint Quentin Yvelines, France) was amplified by PCR using primers 5’GGCGCCTCTAGATCATAATCAGCCATA3’ and 5’GGCGCCCTTAAGATACATTGATGAGTT3’ before subcloning into the pGEMTeasy vector (Promega, Charbonnières-les-Bains, France). After EcoRI digestion, the SV40 polyA fragment was purified with the NucleoSpin Extract II kit (Machery-Nagel, Hoerdt, France) and then subcloned into the EcoRI site of the plasmid pBS-villin-promoter-MES. Site directed mutagenesis was used to introduce a BsiWI site (5’ phosphorylated AGCGCAGGGAGCGGCGGCCGTACGATGCGCGGCAGCGGCACG3’) before the initiation codon and a MluI site (5’ phosphorylated 1 CCCGGGCCTGAGCCCTAAACGCGTGCCAGCCTCTGCCCTTGG3’) after the stop codon in the full length cDNA coding for the mouse LMα1 in the pCIS vector (kindly provided by P.
    [Show full text]
  • (Ubl-Ptms): Small Peptides with Huge Impact in Liver Fibrosis
    cells Review Ubiquitin-Like Post-Translational Modifications (Ubl-PTMs): Small Peptides with Huge Impact in Liver Fibrosis 1 1, 1, Sofia Lachiondo-Ortega , Maria Mercado-Gómez y, Marina Serrano-Maciá y , Fernando Lopitz-Otsoa 2, Tanya B Salas-Villalobos 3, Marta Varela-Rey 1, Teresa C. Delgado 1,* and María Luz Martínez-Chantar 1 1 Liver Disease Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Spain; [email protected] (S.L.-O.); [email protected] (M.M.-G.); [email protected] (M.S.-M.); [email protected] (M.V.-R.); [email protected] (M.L.M.-C.) 2 Liver Metabolism Lab, CIC bioGUNE, 48160 Derio, Spain; fl[email protected] 3 Department of Biochemistry and Molecular Medicine, School of Medicine, Autonomous University of Nuevo León, Monterrey, Nuevo León 66450, Mexico; [email protected] * Correspondence: [email protected]; Tel.: +34-944-061318; Fax: +34-944-061301 These authors contributed equally to this work. y Received: 6 November 2019; Accepted: 1 December 2019; Published: 4 December 2019 Abstract: Liver fibrosis is characterized by the excessive deposition of extracellular matrix proteins including collagen that occurs in most types of chronic liver disease. Even though our knowledge of the cellular and molecular mechanisms of liver fibrosis has deeply improved in the last years, therapeutic approaches for liver fibrosis remain limited. Profiling and characterization of the post-translational modifications (PTMs) of proteins, and more specifically NEDDylation and SUMOylation ubiquitin-like (Ubls) modifications, can provide a better understanding of the liver fibrosis pathology as well as novel and more effective therapeutic approaches.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Strand Breaks for P53 Exon 6 and 8 Among Different Time Course of Folate Depletion Or Repletion in the Rectosigmoid Mucosa
    SUPPLEMENTAL FIGURE COLON p53 EXONIC STRAND BREAKS DURING FOLATE DEPLETION-REPLETION INTERVENTION Supplemental Figure Legend Strand breaks for p53 exon 6 and 8 among different time course of folate depletion or repletion in the rectosigmoid mucosa. The input of DNA was controlled by GAPDH. The data is shown as ΔCt after normalized to GAPDH. The higher ΔCt the more strand breaks. The P value is shown in the figure. SUPPLEMENT S1 Genes that were significantly UPREGULATED after folate intervention (by unadjusted paired t-test), list is sorted by P value Gene Symbol Nucleotide P VALUE Description OLFM4 NM_006418 0.0000 Homo sapiens differentially expressed in hematopoietic lineages (GW112) mRNA. FMR1NB NM_152578 0.0000 Homo sapiens hypothetical protein FLJ25736 (FLJ25736) mRNA. IFI6 NM_002038 0.0001 Homo sapiens interferon alpha-inducible protein (clone IFI-6-16) (G1P3) transcript variant 1 mRNA. Homo sapiens UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 15 GALNTL5 NM_145292 0.0001 (GALNT15) mRNA. STIM2 NM_020860 0.0001 Homo sapiens stromal interaction molecule 2 (STIM2) mRNA. ZNF645 NM_152577 0.0002 Homo sapiens hypothetical protein FLJ25735 (FLJ25735) mRNA. ATP12A NM_001676 0.0002 Homo sapiens ATPase H+/K+ transporting nongastric alpha polypeptide (ATP12A) mRNA. U1SNRNPBP NM_007020 0.0003 Homo sapiens U1-snRNP binding protein homolog (U1SNRNPBP) transcript variant 1 mRNA. RNF125 NM_017831 0.0004 Homo sapiens ring finger protein 125 (RNF125) mRNA. FMNL1 NM_005892 0.0004 Homo sapiens formin-like (FMNL) mRNA. ISG15 NM_005101 0.0005 Homo sapiens interferon alpha-inducible protein (clone IFI-15K) (G1P2) mRNA. SLC6A14 NM_007231 0.0005 Homo sapiens solute carrier family 6 (neurotransmitter transporter) member 14 (SLC6A14) mRNA.
    [Show full text]
  • Ubiquitin Modifications
    npg Cell Research (2016) 26:399-422. REVIEW www.nature.com/cr Ubiquitin modifications Kirby N Swatek1, David Komander1 1Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK Protein ubiquitination is a dynamic multifaceted post-translational modification involved in nearly all aspects of eukaryotic biology. Once attached to a substrate, the 76-amino acid protein ubiquitin is subjected to further modi- fications, creating a multitude of distinct signals with distinct cellular outcomes, referred to as the ‘ubiquitin code’. Ubiquitin can be ubiquitinated on seven lysine (Lys) residues or on the N-terminus, leading to polyubiquitin chains that can encompass complex topologies. Alternatively or in addition, ubiquitin Lys residues can be modified by ubiq- uitin-like molecules (such as SUMO or NEDD8). Finally, ubiquitin can also be acetylated on Lys, or phosphorylated on Ser, Thr or Tyr residues, and each modification has the potential to dramatically alter the signaling outcome. While the number of distinctly modified ubiquitin species in cells is mind-boggling, much progress has been made to characterize the roles of distinct ubiquitin modifications, and many enzymes and receptors have been identified that create, recognize or remove these ubiquitin modifications. We here provide an overview of the various ubiquitin modifications present in cells, and highlight recent progress on ubiquitin chain biology. We then discuss the recent findings in the field of ubiquitin acetylation and phosphorylation, with a focus on Ser65-phosphorylation and its role in mitophagy and Parkin activation. Keywords: ubiquitin; proteasomal degradation; phosphorylation; post-translational modification; Parkin Cell Research (2016) 26:399-422.
    [Show full text]
  • The Linear Ubiquitin Assembly Complex (LUBAC) Is Essential for NLRP3 Inflammasome Activation
    Article The linear ubiquitin assembly complex (LUBAC) is essential for NLRP3 inflammasome activation Mary A. Rodgers,1 James W. Bowman,1 Hiroaki Fujita,2 Nicole Orazio,1 Mude Shi,1 Qiming Liang,1 Rina Amatya,1 Thomas J. Kelly,1 Kazuhiro Iwai,2 Jenny Ting,3 and Jae U. Jung1 1Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 2Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan 3Department of Microbiology-Immunology, Lineberger Comprehensive Cancer Center, Center for Translational Immunology and Institute for Inflammatory Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 Linear ubiquitination is a newly discovered posttranslational modification that is currently restricted to a small number of known protein substrates. The linear ubiquitination assem- bly complex (LUBAC), consisting of HOIL-1L, HOIP, and Sharpin, has been reported to activate NF-B–mediated transcription in response to receptor signaling by ligating linear ubiquitin chains to Nemo and Rip1. Despite recent advances, the detailed roles of LUBAC in immune cells remain elusive. We demonstrate a novel HOIL-1L function as an essential regulator of the activation of the NLRP3/ASC inflammasome in primary bone marrow– derived macrophages (BMDMs) independently of NF-B activation. Mechanistically, HOIL- 1L is required for assembly of the NLRP3/ASC inflammasome and the linear ubiquitination of ASC, which we identify as a novel LUBAC substrate. Consequently, we find that HOIL- 1L/ mice have reduced IL-1 secretion in response to in vivo NLRP3 stimulation and survive lethal challenge with LPS.
    [Show full text]
  • Identification of Ubiquitin Variants That Inhibit the E2 Ubiquitin Conjugating Enzyme, Ube2k
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.28.446107; this version posted May 28, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Identification of ubiquitin variants that inhibit the E2 ubiquitin conjugating enzyme, Ube2k Middleton, A.J.1 *, Teyra, J.2, Zhu, J.1, Sidhu, S.S.2, Day, C.L.1 1 Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand 2 The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3E1, Canada *Author for correspondence Department of Biochemistry School of Biomedical Sciences University of Otago Dunedin 9054 New Zealand Tel: +64 3 479 7870 email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.05.28.446107; this version posted May 28, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Summary Transfer of ubiquitin to substrate proteins regulates most processes in eukaryotic cells. E2 enzymes are a central component of the ubiquitin machinery, and generally determine the type of ubiquitin signal generated and thus the ultimate fate of substrate proteins. The E2, Ube2k, specifically builds degradative ubiquitin chains on diverse substrates.
    [Show full text]
  • FAIM Opposes Stress-Induced Loss of Viability and Blocks the Formation of Protein Aggregates
    bioRxiv preprint doi: https://doi.org/10.1101/569988; this version posted March 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title FAIM opposes stress-induced loss of viability and blocks the formation of protein aggregates Authors: Hiroaki Kaku*, Thomas L. Rothstein* Affiliations: Center for Immunobiology, Western Michigan University Homer Stryker MD School of Medicine, 1000 Oakland Drive, Kalamazoo, MI 49008. Tel: (269) 337-4380; e-mail: [email protected]; [email protected] Abstract A number of proteinopathies are associated with accumulation of misfolded proteins, which form pathological insoluble deposits. It is hypothesized that molecules capable of blocking formation of such protein aggregates might avert disease onset or delay disease progression. Here we report that Fas Apoptosis Inhibitory Molecule (FAIM) counteracts stress-induced loss of viability. We found that levels of ubiquitinated protein aggregates produced by cellular stress are much greater in FAIM-deficient cells and tissues. Moreover, in an in vitro cell-free system, FAIM specifically and directly prevents pathological protein aggregates without participation by other cellular elements, in particular the proteasomal and autophagic systems. Although this activity is similar to the function of heat shock proteins (HSPs), FAIM, which is highly conserved throughout evolution, bears no homology to any other protein, including HSPs. These results identify a new actor that protects cells against stress-induced loss of viability by preventing protein aggregates. bioRxiv preprint doi: https://doi.org/10.1101/569988; this version posted March 6, 2019.
    [Show full text]
  • The Ubiquitin-Like Modifier FAT10 in Cancer Development
    Erschienen in: The International Journal of Biochemistry & Cell Biology ; 79 (2016). - S. 451-461 https://dx.doi.org/10.1016/j.biocel.2016.07.001 The ubiquitin-like modifier FAT10 in cancer development a a,b,∗ Annette Aichem , Marcus Groettrup a Biotechnology Institute Thurgau at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland b Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany a b s t r a c t During the last years it has emerged that the ubiquitin-like modifier FAT10 is directly involved in cancer development. FAT10 expression is highly up-regulated by pro-inflammatory cytokines IFN-␥ and TNF-␣ in all cell types and tissues and it was also found to be up-regulated in many cancer types such as glioma, colorectal, liver or gastric cancer. While pro-inflammatory cytokines within the tumor microenvironment probably contribute to FAT10 overexpression, an increasing body of evidence argues that pro-malignant capacities of FAT10 itself largely underlie its broad and intense overexpression in tumor tissues. FAT10 thereby regulates pathways involved in cancer development such as the NF-␬B- or Wnt-signaling. More- over, FAT10 directly interacts with and influences downstream targets such as MAD2, p53 or ␤-catenin, leading to enhanced survival, proliferation, invasion and metastasis formation of cancer cells but also of non-malignant cells. In this review we will provide an overview of the regulation of FAT10 expression as well as its function in carcinogenesis. Contents 1. Introduction . 452 2. The ubiquitin-like modifier FAT10, a protein of the immune system . 452 2.1.
    [Show full text]
  • Supporting Information
    Supporting Information Bermejo-Alvarez et al. 10.1073/pnas.0913843107 SI Material and Methods lysis buffer was extracted with phenol/chloroform treatment and In Vitro Embryo Production. Selected cumulus–oocyte complexes finally suspended in 16 μL of milliQ water. Eight microliters of each (COCs) obtained from ovaries collected at slaughter were ma- sample were used to perform embryo sexing by PCR as described in tured for 24 h in TCM-199, supplemented with 10% (vol/vol) FCS ref. 1. After embryo sexing, the individually stored poly(A) RNA (FCS) and 10 ng/mL epidermal growth factor at 39 °C under an from 10 (in vitro) or 5 (in vivo) embryos of the same sex or par- atmosphere of 5% CO2 in air with maximum humidity. In vitro thenotes were pooled and RNA extraction continued. Immediately fertilization was performed with X- or Y-sorted sperm from three after extraction, the RT reaction was carried out following the different bulls or unsorted semen from one of the bulls (Bull 1) as manufacturer's instructions (Bioline, Ecogen) using poly(T) primer, described in ref. 1. Matured COCs were inseminated with 12.5 μL random primers, and MMLV reverse transcriptase enzyme in a of frozen-thawed, percoll-separated sperm added to 25-μL total volume of 40 μL to prime the RT reaction and to produce droplets under mineral oil (15–20 oocytes per droplet) at a final cDNA. Tubes were heated to 70 °C for 5 min to denature the sec- concentration of 1 × 106 spermatozoa/mL. Gametes were co- ondary RNA structure and then the RT mix was completed with the incubated at 39 °C under an atmosphere of 5% CO2 in air with addition of 100 units of reverse transcriptase.
    [Show full text]
  • The Cockayne Syndrome Group a and B Proteins Are Part of a Ubiquitin–Proteasome Degradation Complex Regulating Cell Division
    The Cockayne syndrome group A and B proteins are part of a ubiquitin–proteasome degradation complex regulating cell division Elena Paccosia,1, Federico Costanzob,1, Michele Costantinoa, Alessio Balzeranoa, Laura Monteonofrioc, Silvia Sodduc, Giorgio Pranterad, Stefano Brancorsinie, Jean-Marc Eglyb,f,2, and Luca Proietti-De-Santisa,2 aUnit of Molecular Genetics of Aging, Department of Ecology and Biology, University of Tuscia, 01100 Viterbo, Italy; bDepartment of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Equipe Labellisée Ligue contre le Cancer (IGBMC), CNRS/INSERM/University of Strasbourg, BP163, Illkirch Cedex, 67404 Strasbourg, France; cUnit of Cellular Networks and Molecular Therapeutic Targets, Istituto di ricovero e cura a carattere scientifico (IRCCS) Regina Elena National Cancer Institute, 00144 Rome, Italy; dEpigenetics and Developmental Genetics Laboratory, Department of Ecology and Biology, University of Tuscia, 01100 Viterbo, Italy; eUnit of Molecular Pathology, Department of Experimental Medicine, section of Terni, University of Perugia, 06100 Perugia, Italy; and fDepartment of Toxicology, College of Medicine, National Taiwan University, 10051 Taipei City, Taiwan Edited by Philip C. Hanawalt, Stanford University, Stanford, CA, and approved October 14, 2020 (received for review April 14, 2020) Cytokinesis is monitored by a molecular machinery that promotes degradation of ATF3, a DNA binding protein that transcriptionally the degradation of the intercellular bridge, a transient protein represses a large number of genes upon cellular stress. Moreover, structure connecting the two daughter cells. Here, we found that recent work underlines a connection between UV stress response CSA and CSB, primarily defined as DNA repair factors, are located at and the fate of RNA polymerase, the latter accordingly subjected to the midbody, a transient structure in the middle of the intercellular an ubiquitination process signaling its further degradation (20–22).
    [Show full text]
  • Autocrine IFN Signaling Inducing Profibrotic Fibroblast Responses by a Synthetic TLR3 Ligand Mitigates
    Downloaded from http://www.jimmunol.org/ by guest on September 28, 2021 Inducing is online at: average * The Journal of Immunology published online 16 August 2013 from submission to initial decision 4 weeks from acceptance to publication http://www.jimmunol.org/content/early/2013/08/16/jimmun ol.1300376 A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Autocrine IFN Signaling Feng Fang, Kohtaro Ooka, Xiaoyong Sun, Ruchi Shah, Swati Bhattacharyya, Jun Wei and John Varga J Immunol Submit online. Every submission reviewed by practicing scientists ? is published twice each month by http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://www.jimmunol.org/content/suppl/2013/08/20/jimmunol.130037 6.DC1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 28, 2021. Published August 16, 2013, doi:10.4049/jimmunol.1300376 The Journal of Immunology A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Inducing Autocrine IFN Signaling Feng Fang,* Kohtaro Ooka,* Xiaoyong Sun,† Ruchi Shah,* Swati Bhattacharyya,* Jun Wei,* and John Varga* Activation of TLR3 by exogenous microbial ligands or endogenous injury-associated ligands leads to production of type I IFN.
    [Show full text]