Iron Formations a Global Record of Neoarchaean to Palaeoproterozoic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Timeline of Natural History
Timeline of natural history This timeline of natural history summarizes significant geological and Life timeline Ice Ages biological events from the formation of the 0 — Primates Quater nary Flowers ←Earliest apes Earth to the arrival of modern humans. P Birds h Mammals – Plants Dinosaurs Times are listed in millions of years, or Karo o a n ← Andean Tetrapoda megaanni (Ma). -50 0 — e Arthropods Molluscs r ←Cambrian explosion o ← Cryoge nian Ediacara biota – z ←Earliest animals o ←Earliest plants i Multicellular -1000 — c Contents life ←Sexual reproduction Dating of the Geologic record – P r The earliest Solar System -1500 — o t Precambrian Supereon – e r Eukaryotes Hadean Eon o -2000 — z o Archean Eon i Huron ian – c Eoarchean Era ←Oxygen crisis Paleoarchean Era -2500 — ←Atmospheric oxygen Mesoarchean Era – Photosynthesis Neoarchean Era Pong ola Proterozoic Eon -3000 — A r Paleoproterozoic Era c – h Siderian Period e a Rhyacian Period -3500 — n ←Earliest oxygen Orosirian Period Single-celled – life Statherian Period -4000 — ←Earliest life Mesoproterozoic Era H Calymmian Period a water – d e Ectasian Period a ←Earliest water Stenian Period -4500 — n ←Earth (−4540) (million years ago) Clickable Neoproterozoic Era ( Tonian Period Cryogenian Period Ediacaran Period Phanerozoic Eon Paleozoic Era Cambrian Period Ordovician Period Silurian Period Devonian Period Carboniferous Period Permian Period Mesozoic Era Triassic Period Jurassic Period Cretaceous Period Cenozoic Era Paleogene Period Neogene Period Quaternary Period Etymology of period names References See also External links Dating of the Geologic record The Geologic record is the strata (layers) of rock in the planet's crust and the science of geology is much concerned with the age and origin of all rocks to determine the history and formation of Earth and to understand the forces that have acted upon it. -
Warren and Taylor-2014-In Tog-The Moon-'Author's Personal Copy'.Pdf
This article was originally published in Treatise on Geochemistry, Second Edition published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non- commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial Warren P.H., and Taylor G.J. (2014) The Moon. In: Holland H.D. and Turekian K.K. (eds.) Treatise on Geochemistry, Second Edition, vol. 2, pp. 213-250. Oxford: Elsevier. © 2014 Elsevier Ltd. All rights reserved. Author's personal copy 2.9 The Moon PH Warren, University of California, Los Angeles, CA, USA GJ Taylor, University of Hawai‘i, Honolulu, HI, USA ã 2014 Elsevier Ltd. All rights reserved. This article is a revision of the previous edition article by P. H. Warren, volume 1, pp. 559–599, © 2003, Elsevier Ltd. 2.9.1 Introduction: The Lunar Context 213 2.9.2 The Lunar Geochemical Database 214 2.9.2.1 Artificially Acquired Samples 214 2.9.2.2 Lunar Meteorites 214 2.9.2.3 Remote-Sensing Data 215 2.9.3 Mare Volcanism -
Cleveland-Cliffs Inc Cleveland-Cliffs 1100 Superior Avenue 2004 Annual Report Cleveland, OH 44114-2589 Cleveland-Cliffs Inc Cleveland-Cliffs
Cleveland-Cliffs Inc Cleveland-Cliffs 1100 Superior Avenue 2004 Annual Report Cleveland, OH 44114-2589 www.cleveland-cliffs.com Cleveland-Cliffs Inc • 2004 Annual Report Company Profile Cleveland-Cliffs Inc DIRECTORS Cleveland-Cliffs Inc, headquartered in Cleveland, Ohio, is the largest producer of iron OFFICERS Director ore pellets in North America and sells the majority of its pellets to integrated steel Years With Since Company companies in the United States and Canada. The Company operates six iron 1997 John S. Brinzo (6) ore mines located in Michigan, Minnesota and Eastern Canada. 35 John S. Brinzo, 63 Chairman, President and Chief Executive Offi cer Chairman, President and Chief Executive Offi cer of the Company 1996 Ronald C. Cambre (2,4,6) Cliffs is in its 158th year of service to the steel industry. 4 David H. Gunning, 62 Former Chairman and Chief Executive Offi cer Vice Chairman Newmont Mining Corporation International mining company 32 William R. Calfee, 58 Executive Vice President-Commercial 1999 Ranko Cucuz (2,4,5) Former Chairman and Chief Executive Offi cer 23 Donald J. Gallagher, 52 Hayes Lemmerz International, Inc. Senior Vice President, International supplier of wheels to the auto industry Chief Financial Offi cer and Treasurer 2001 David H. Gunning (6) 4 Randy L. Kummer, 48 Vice Chairman of the Company CORE VALUES Senior Vice President-Human Resources 1986 James D. Ireland, III (1,3,5,6) 32 James A. Trethewey, 60 Managing Director Senior Vice President-Business Development Capital One Partners, Inc. Private equity investment fi rm SAFE PRODUCTION record production with: lack of injuries...good housekeeping and 25 Dana W. -
A Community Effort Towards an Improved Geological Time Scale
A community effort towards an improved geological time scale 1 This manuscript is a preprint of a paper that was submitted for publication in Journal 2 of the Geological Society. Please note that the manuscript is now formally accepted 3 for publication in JGS and has the doi number: 4 5 https://doi.org/10.1144/jgs2020-222 6 7 The final version of this manuscript will be available via the ‘Peer reviewed Publication 8 DOI’ link on the right-hand side of this webpage. Please feel free to contact any of the 9 authors. We welcome feedback on this community effort to produce a framework for 10 future rock record-based subdivision of the pre-Cryogenian geological timescale. 11 1 A community effort towards an improved geological time scale 12 Towards a new geological time scale: A template for improved rock-based subdivision of 13 pre-Cryogenian time 14 15 Graham A. Shields1*, Robin A. Strachan2, Susannah M. Porter3, Galen P. Halverson4, Francis A. 16 Macdonald3, Kenneth A. Plumb5, Carlos J. de Alvarenga6, Dhiraj M. Banerjee7, Andrey Bekker8, 17 Wouter Bleeker9, Alexander Brasier10, Partha P. Chakraborty7, Alan S. Collins11, Kent Condie12, 18 Kaushik Das13, Evans, D.A.D.14, Richard Ernst15, Anthony E. Fallick16, Hartwig Frimmel17, Reinhardt 19 Fuck6, Paul F. Hoffman18, Balz S. Kamber19, Anton Kuznetsov20, Ross Mitchell21, Daniel G. Poiré22, 20 Simon W. Poulton23, Robert Riding24, Mukund Sharma25, Craig Storey2, Eva Stueeken26, Rosalie 21 Tostevin27, Elizabeth Turner28, Shuhai Xiao29, Shuanhong Zhang30, Ying Zhou1, Maoyan Zhu31 22 23 1Department -
A Template for an Improved Rock-Based Subdivision of the Pre-Cryogenian Timescale
Downloaded from http://jgs.lyellcollection.org/ by guest on September 28, 2021 Perspective Journal of the Geological Society Published Online First https://doi.org/10.1144/jgs2020-222 A template for an improved rock-based subdivision of the pre-Cryogenian timescale Graham A. Shields1*, Robin A. Strachan2, Susannah M. Porter3, Galen P. Halverson4, Francis A. Macdonald3, Kenneth A. Plumb5, Carlos J. de Alvarenga6, Dhiraj M. Banerjee7, Andrey Bekker8, Wouter Bleeker9, Alexander Brasier10, Partha P. Chakraborty7, Alan S. Collins11, Kent Condie12, Kaushik Das13, David A. D. Evans14, Richard Ernst15,16, Anthony E. Fallick17, Hartwig Frimmel18, Reinhardt Fuck6, Paul F. Hoffman19,20, Balz S. Kamber21, Anton B. Kuznetsov22, Ross N. Mitchell23, Daniel G. Poiré24, Simon W. Poulton25, Robert Riding26, Mukund Sharma27, Craig Storey2, Eva Stueeken28, Rosalie Tostevin29, Elizabeth Turner30, Shuhai Xiao31, Shuanhong Zhang32, Ying Zhou1 and Maoyan Zhu33 1 Department of Earth Sciences, University College London, London, UK 2 School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth, UK 3 Department of Earth Science, University of California at Santa Barbara, Santa Barbara, CA, USA 4 Department of Earth and Planetary Sciences, McGill University, Montreal, Canada 5 Geoscience Australia (retired), Canberra, Australia 6 Instituto de Geociências, Universidade de Brasília, Brasilia, Brazil 7 Department of Geology, University of Delhi, Delhi, India 8 Department of Earth and Planetary Sciences, University of California, Riverside, -
INTERNATIONAL CHRONOSTRATIGRAPHIC CHART International Commission on Stratigraphy V 2019/05
INTERNATIONAL CHRONOSTRATIGRAPHIC CHART www.stratigraphy.org International Commission on Stratigraphy v 2019/05 numerical numerical numerical numerical Series / Epoch Stage / Age Series / Epoch Stage / Age Series / Epoch Stage / Age GSSP GSSP GSSP GSSP EonothemErathem / Eon System / Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) EonothemErathem / Eon System/ Era / Period age (Ma) Eonothem / EonErathem / Era System / Period GSSA age (Ma) present ~ 145.0 358.9 ±0.4 541.0 ±1.0 U/L Meghalayan 0.0042 Holocene M Northgrippian 0.0082 Tithonian Ediacaran L/E Greenlandian 152.1 ±0.9 ~ 635 Upper 0.0117 Famennian Neo- 0.126 Upper Kimmeridgian Cryogenian Middle 157.3 ±1.0 Upper proterozoic ~ 720 Pleistocene 0.773 372.2 ±1.6 Calabrian Oxfordian Tonian 1.80 163.5 ±1.0 Frasnian 1000 Callovian Quaternary 166.1 ±1.2 Gelasian 2.58 382.7 ±1.6 Stenian Bathonian 168.3 ±1.3 Piacenzian Middle Bajocian Givetian 1200 Pliocene 3.600 170.3 ±1.4 387.7 ±0.8 Meso- Zanclean Aalenian Middle proterozoic Ectasian 5.333 174.1 ±1.0 Eifelian 1400 Messinian Jurassic 393.3 ±1.2 Calymmian 7.246 Toarcian Devonian Tortonian 182.7 ±0.7 Emsian 1600 11.63 Pliensbachian Statherian Lower 407.6 ±2.6 Serravallian 13.82 190.8 ±1.0 Lower 1800 Miocene Pragian 410.8 ±2.8 Proterozoic Neogene Sinemurian Langhian 15.97 Orosirian 199.3 ±0.3 Lochkovian Paleo- Burdigalian Hettangian proterozoic 2050 20.44 201.3 ±0.2 419.2 ±3.2 Rhyacian Aquitanian Rhaetian Pridoli 23.03 ~ 208.5 423.0 ±2.3 2300 Ludfordian 425.6 ±0.9 Siderian Cenozoic Chattian Mesozoic Ludlow 27.82 Gorstian -
GEOLOGIC TIME SCALE V
GSA GEOLOGIC TIME SCALE v. 4.0 CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST HIST. ANOM. (Ma) ANOM. CHRON. CHRO HOLOCENE 1 C1 QUATER- 0.01 30 C30 66.0 541 CALABRIAN NARY PLEISTOCENE* 1.8 31 C31 MAASTRICHTIAN 252 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 Lopin- 254 32 C32 72.1 635 2A C2A PIACENZIAN WUCHIAPINGIAN PLIOCENE 3.6 gian 33 260 260 3 ZANCLEAN CAPITANIAN NEOPRO- 5 C3 CAMPANIAN Guada- 265 750 CRYOGENIAN 5.3 80 C33 WORDIAN TEROZOIC 3A MESSINIAN LATE lupian 269 C3A 83.6 ROADIAN 272 850 7.2 SANTONIAN 4 KUNGURIAN C4 86.3 279 TONIAN CONIACIAN 280 4A Cisura- C4A TORTONIAN 90 89.8 1000 1000 PERMIAN ARTINSKIAN 10 5 TURONIAN lian C5 93.9 290 SAKMARIAN STENIAN 11.6 CENOMANIAN 296 SERRAVALLIAN 34 C34 ASSELIAN 299 5A 100 100 300 GZHELIAN 1200 C5A 13.8 LATE 304 KASIMOVIAN 307 1250 MESOPRO- 15 LANGHIAN ECTASIAN 5B C5B ALBIAN MIDDLE MOSCOVIAN 16.0 TEROZOIC 5C C5C 110 VANIAN 315 PENNSYL- 1400 EARLY 5D C5D MIOCENE 113 320 BASHKIRIAN 323 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 1500 CALYMMIAN 6 C6 APTIAN LATE 20 120 331 6A C6A 20.4 EARLY 1600 M0r 126 6B C6B AQUITANIAN M1 340 MIDDLE VISEAN MISSIS- M3 BARREMIAN SIPPIAN STATHERIAN C6C 23.0 6C 130 M5 CRETACEOUS 131 347 1750 HAUTERIVIAN 7 C7 CARBONIFEROUS EARLY TOURNAISIAN 1800 M10 134 25 7A C7A 359 8 C8 CHATTIAN VALANGINIAN M12 360 140 M14 139 FAMENNIAN OROSIRIAN 9 C9 M16 28.1 M18 BERRIASIAN 2000 PROTEROZOIC 10 C10 LATE -
PREFACE the Front Cover Is an Illustration Depicting Part of the Milling Operation at the Tilden Mine in Marquette County and Was Drawn by Darrell D
PREFACE The front cover is an illustration depicting part of the milling operation at the Tilden Mine in Marquette County and was drawn by Darrell D. Hodge, Jr. of the Division of Geology staff. This open pit iron ore mine is owned by the Tilden Mining Company and is operated by the Cleveland-Cliffs Iron Company. The Tilden started production in 1974 and is one of Michigan's large producers of iron ore pellets. Michigan is an important producer of many different types of minerals and mineral products. Some of these commodities are in great demand and are shipped all over the United States and abroad, while others are mined and processed for local use. State of Michigan Department of Natural Resources In 1974, Michigan led the entire U.S. in the production of Geology Division peat, iodine, calcium-magnesium chloride, magnesium compounds, marl and industrial sand. Second place for Preprint from the 1974 U.S. production was maintained for iron ore, bromine BUREAU OF MINES MINERALS YEARBOOK and gypsum. The total amount of sand and gravel produced placed Michigan in third place nationally. The Mineral Industry of Michigan The Mineral Industry of Michigan, 1974, was written and published by the U.S. Bureau of Mines as a chapter of their 1974 Minerals Yearbook, and by agreement is .additionally offered as a publication of the Division of Geology of the Michigan Department of Natural Resources as Annual Statistical Summary 23. A companion publication by the Division of Geology is the Annual Directory. The current edition is Michigan Bureau of Mines Mineral Producers, 1976. -
Taconite Iron Ore NESHAP Economic Impact Analysis EPA-452/R-03-015 August 2003
Taconite Iron Ore NESHAP Economic Impact Analysis EPA-452/R-03-015 August 2003 Taconite Iron Ore NESHAP Economic Impact Analysis By: Katherine Heller Brooks M. Depro Jui-Chen Yang Laurel Clayton RTI International* Health, Social, and Economics Research Research Triangle Park, North Carolina 27709 Prepared for: John L. Sorrels U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Innovative Strategies and Economics Group (ISEG) (C339-01) Research Triangle Park, NC 27711 Contract No. 68-D-99-024 *RTI International is a trade name of Research Triangle Institute. CONTENTS Section Page Executive Summary...................................................ES-1 1 Introduction .................................................... 1-1 2 Industry Profile .................................................. 2-1 2.1 The Supply Side ........................................... 2-3 2.1.1 Taconite Pellet Production Processes, Inputs and Outputs .... 2-3 2.1.1.1 Mining of Crude Ore .......................... 2-3 2.1.1.2 Beneficiation ................................. 2-5 2.1.1.3 Agglomeration ............................... 2-8 2.1.2 Types of Products .................................... 2-8 2.1.3 Major By-Products, Co-Products, and Input Substitution Possibilities ....................................... 2-10 2.1.4 Costs of Production and Worker Productivity ............. 2-11 2.1.4.1 Costs of Production .......................... 2-11 2.1.4.2 Variations in Worker Productivity by Establishment Size ........................... 2-12 2.2 The Demand Side......................................... 2-13 2.2.1 Uses and Consumers ................................ 2-13 2.2.1.1 Uses ...................................... 2-13 2.2.1.2 Consumer Characteristics ...................... 2-15 2.2.2 Product Characteristics .............................. 2-15 2.2.3 Substitution Possibilities in Consumption ................ 2-15 2.3 Industry Organization ...................................... 2-17 2.3.1 Taconite Manufacturing Facility Characteristics .......... -
The Nain Anorthosite Project, Labrador: Field
THE NAIN ANORTHOSITE PROJECT, LABRADOR: FIELD REPORT 1971 S. A. MORSE I EDITOR R. V. PITS I ULAK CONTRIBUTION NO. 9 GEOLOGY DEPARTMENT UNIVERSITY OF MASSACHUSETTS AMHERST, MASSACHUSETTS L THE NAIN ANORTHOSITE PROJECT, LABRADOR: FIElD REPORT 1971 S. A. Morse, Editor Final Report under NSF Grants GA-21386 and GA-27134 to Franklin and Marshall College: "Evolution of Anorthosite and Related Crustal Rocks in Coastal Labrador", and "Facility for Crustal Studies in Coastal Labrador." S. A. Morse, Principal Investigator (now at U.Mass/Amherst) Dirk de Waard, Syracuse Associate Investigators E. P. Wheeler 2nd, Cornell Other contributors: Research Assistants: J. H. Berg, U. Mass/Amherst C. D. Brauer, Vassar G. A. Plananaky, Harvard F. Finley, Syracuse C. C. Rubins, Syracuse T. H. Folkomer, Franklin & Marshall B.G.J. Upton, Edinburgh D. Russell, Syracuse Charles Woodward, Syracuse J. A. Speer, Virginia Polytechnic Contribution No. 9 Amherst, Massachusetts Geology Department December, 1971 Uni~ersity of Massachusetts L I - CONTENTS INTRODUCTION •••••••••.•••••.•••••••••• ......................... 1 GEOLOGIC~ REPORT. • • • • • • • . • • . • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 9 General Statement ••••••• 9 Collateral Studies •• 12 Eastern Con tact Zone . .....................................•.... 15 Country rocks of the anorthosite massif and anorthosite contacts in the Ford Harbour Region (de Waard) ••••••••••••••••••••• 15 Intrusive contact relations in the outer is lands (Wlleele r) .................................... -
U-Pb and Sm-Nd Data of the Rhyacian and Statherian Orthogneisses From
View9797 metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Cadernos Espinosanos (E-Journal) DOI: 10.5327/Z1519-874X201400030007 Revista do Instituto de Geociências - USP Geol. USP, Sér. cient., São Paulo, v. 14, n. 3, p. 9-110, Setembro 2014 U-Pb and Sm-Nd data of the Rhyacian and Statherian Orthogneisses from Rio Piranhas-Seridó and Jaguaribeano Terranes, Borborema Province, Northeast of Brazil U-Pb e Sm-Nd em Ortognaisses Riacianos e Estaterianos nos Terrenos Rio Piranhas-Seridó e Jaguaribeano, Província Borborema, Brasil Jaziel Martins Sá1, Laécio Cunha de Sousa1, Jean Michel Legrand1, Antonio Carlos Galindo1,2, Heitor Neves Maia1, Rafael Rabelo Fillippi2 1Departamento de Geologia, Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte - UFRN, Avenida Senador Salgado Filho s/n, Caixa Postal 156, Campus Universitário, CEP 5098-90, Natal, RN, BR ([email protected]; [email protected]; [email protected]; [email protected]; [email protected]) 2Pós-graduação em Geodinâmica e Geofísica, Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, BR ([email protected]) Received on January 20th, 2014; accepted on August 4th, 2014 Abstract The Portalegre shear zone separates the Rio Piranhas-Seridó and the Jaguaribeano geological terranes in the Northern Domain of the Borborema Province. Banded gneisses of the Caicó and the Jaguaretama Complexes represent the basements of these terranes. U-Pb analyses yielded ages of 2,193 ± 16 Ma for the Jaguaretama Complex, which is similar to those obtained for the Caicó Complex. -
A Journal of the Lake Superior Region
Upper Country: A Journal of the Lake Superior Region Vol. 3 2015 Upper Country: A Journal of the Lake Superior Region Vol. 3 2015 Upper Country: A Journal of the Lake Superior Region EDITOR: Gabe Logan, Ph.D. PRODUCTION AND DESIGN: Kimberly Mason and James Shefchik ARTICLE REVIEW BOARD: Gabe Logan, Ph. D. Robert Archibald, Ph. D. Russell Magnaghi, Ph. D. Kathryn Johnson, M.A. PHOTOGRAPHY CREDITS Front cover photograph by Gabe Logan AVAILABILITY Upper Country: A Journal of the Lake Superior Region, can be viewed on Northern Michigan University's Center for Upper Peninsula Studies web site: www.nmu.edu/upstudies. Send comments to [email protected] for screening and posting; or mail written comments and submit manuscripts to Upper Country, c/o The Center for Upper Peninsula Studies, 1401 Presque Isle Avenue, Room 208 Cohodas, Marquette, MI 49855. COPYRIGHT Copyright © Northern Michigan University. All rights reserved. Photocopying of excerpts for review purposes granted by the copyright holder. Responsibility for the contents herein is that of the authors. AUTHOR GUIDELINES Please address submissions in print form to Upper Country, c/o The Center for Upper Peninsula Studies, Northern Michigan University, 1401 Presque Isle Avenue, Room 208 Cohodas, Marquette, MI, USA 49855. Original papers welcomed. Short photo-essays considered; image format information available upon request. Images with misleading manipulation will not be considered for acceptance. Concurrent submissions accepted. All papers reviewed by the Article Review Board. Copyright is assigned to the Journal's copyright holder upon acceptance. Format should follow the MLA/APA/Chicago Manual guidelines. Length, 6000 words maximum.