Clinical Aspects of Aconitum Preparations*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Characterization of UDP-Glucose Dehydrogenase Isoforms in the Medicinal Legume Glycyrrhiza Uralensis
Plant Biotechnology 38, 205–218 (2021) DOI: 10.5511/plantbiotechnology.21.0222a Original Paper Characterization of UDP-glucose dehydrogenase isoforms in the medicinal legume Glycyrrhiza uralensis Ayumi Kawasaki, Ayaka Chikugo, Keita Tamura, Hikaru Seki, Toshiya Muranaka* Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan * E-mail: [email protected] Tel: +81-6-6879-7423 Fax: +81-6-6879-7426 Received June 15, 2020; accepted February 22, 2021 (Edited by S. Takahashi) Abstract Uridine 5′-diphosphate (UDP)-glucose dehydrogenase (UGD) produces UDP-glucuronic acid from UDP- glucose as a precursor of plant cell wall polysaccharides. UDP-glucuronic acid is also a sugar donor for the glycosylation of various plant specialized metabolites. Nevertheless, the roles of UGDs in plant specialized metabolism remain poorly understood. Glycyrrhiza species (licorice), which are medicinal legumes, biosynthesize triterpenoid saponins, soyasaponins and glycyrrhizin, commonly glucuronosylated at the C-3 position of the triterpenoid scaffold. Often, several different UGD isoforms are present in plants. To gain insight into potential functional differences among UGD isoforms in triterpenoid saponin biosynthesis in relation to cell wall component biosynthesis, we identified and characterized Glycyrrhiza uralensis UGDs (GuUGDs), which were discovered to comprise five isoforms, four of which (GuUGD1–4) showed UGD activity in vitro. GuUGD1–4 had different biochemical properties, including their affinity for UDP-glucose, catalytic constant, and sensitivity to feedback inhibitors. GuUGD2 had the highest catalytic constant and highest gene expression level among the GuUGDs, suggesting that it is the major isoform contributing to the transition from UDP-glucose to UDP-glucuronic acid in planta. -
Per Leggere L'intero Articolo Sfoglia Il Numero 411 • Novembre-Dicembre
ERBORISTERdomanIA•i ISSN 1127-6320 Bimestrale. Poste Italiane s.p.a. - Spedizione in Abbonamento Postale D.L. 353/2003 (convertito in Legge 27/02/2004 n° 46) art. 1, comma 1, LO/MI La rivista è online 411 Nov/Dic 2018 Ricerca, filiere, progetti europei: punti di incontro Dossier speciale in collaborazione con SIF, Società Italiana di Fitochimica cosmesi bio europa farmacologia storie officinali La digitalizzazione e il L’arte di formulare una Principi attivi vegetali contro Aconito, lo splendido fi ore mercato del naturale domanda di fi nanziamento le malattie tropicali neglette sospeso tra il bene e il male p.16 p.40 p.52 p.88 Cover3_Ante.indd 1 05/12/18 15:40 EDOM-NODOL CURC nov_dic.pdf 1 25/09/18 08:46 411 Erboristeria Domani Nov/Dic 2018 Se la logistica ha grandi radici, il business cresce meglio. Una logistica dinamica dà più slancio alla bellezza. Dossier ricerca, fi liere, progetti europei • ricerca, fi C M Y CM MY CY CMY K Fitoterapia malattie tropicali • Storie offi cinali offi l’aconito Una grande logistica non s’improvvisa. La nostra storia affonda le sue radici nel 1979 quando il Cavaliere Silvano Chiapparoli Con Silvano Chiapparoli Logistica il mondo della cosmesi scopre il bello di velocizzare i processi, migliorare l’efficienza ha un’idea: creare un’azienda di logistica che unisca alla qualità del servizio, il valore di un rapporto umano fatto di ascolto e e ottimizzare i costi. I nostri clienti possono contare sulla tracciabilità di lotti e scadenze, su una preparazione accurata collaborazione. Anno dopo anno, la passione per la logistica ha dato i suoi frutti e oggi la Silvano Chiapparoli vanta cinque sedi e degli ordini e sull’allestimento personalizzato dei pack per la spedizione. -
Review Paper Current Status of the Occurrence and Reaction Root-Knot
1 Review Paper 2 3 Current status of the occurrence and reaction 4 root-knot nematodes in the main botanical 5 families of medicinal plants 76 8 .ABSTRACT 9 Medicinal plants are described such as those produce substances capable of provoking reactions in the human body leading to the cure of diseases. Like as cultivated species, medicinal plants can be attacked by various pests and diseases, affecting the qualitative and quantitative characteristics of their curative properties, as well as productivity. Phytonematodes are one of the main factors limiting the productivity of cultivated plants. In medicinal species this pathogens group has caused damage in the sanity of the plants interfering in the quality of the compounds produced. Among them, due to the high parasitism degree, the species of the genus Meloidogyne, popularly known as root-knot nematodes. Among the management strategies of these phytopathogens, biological and cultural controls have low efficiency reports. Likewise, chemical control is not indicated due to its high cost, besides, its high toxicity and risk of environmental pollution. Therefore, the most effective control method is the use of resistant plant species or cultivars. Once these species are identified, they can be used as antagonists or incorporated into the soil, aiming to decrease the nematode population in infested areas. The use of resistant medicinal species allows little or no reproduction of Meloidogyne spp., providing effective control in the field. Other advantages are the reduction of production costs, and the protection of the environment against pollution caused by chemical waste. 10 11 Keywords: Meloidogyne incognita; Meloidogyne javanica; Meloidogyne enterolobii; 12 Phytonematodes; Parasitism; Resistance sources; Gall; Traditional medicine; Herbal 13 medicines 14 15 16 1. -
(12) Patent Application Publication (10) Pub. No.: US 2009/0104295 A1 Kohno (43) Pub
US 20090104295A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0104295 A1 Kohno (43) Pub. Date: Apr. 23, 2009 (54) AGENT FOR HAIR GROWTH Publication Classification (76) Inventor: Kenji Kohno, Kanagawa (JP) (51) A6IRInt. Cl. 36/48 (2006.01) Correspondence Address: (52) U.S. Cl. ........................................................ 424/757 THE WEBB LAW FIRM, P.C. (57) ABSTRACT 700 KOPPERS BUILDING, 436 SEVENTH AVENUE growth,The whichA. SN, has excellents 1S hairl offer growth a IN effects butE. notfor S1de PITTSBURGH, PA 15219 (US) effects. The agent for hair growth of the present invention is (21) Appl. No.: 12AO63611 characterized by comprising a processed semi-mature Soy ppl. No.: 9 bean and/or a processed semi-mature soybean extracts and at 1-1. least one Substance selected from the group consisting of a (22)22) PCT Fled:1. Jun.un. 30,5U, 2006 processed Polygoni Multiflori Radix, processed Polygoni (86) PCT NO.: PCT/UP2006/31314.6 Multiflori Radix eXtracts, a processed Cynanchum bungei Decne or processed Cynanchum bungei Decne extracts, pref S371 (c)(1), erably further comprising Longan seed and/or Longan seed (2), (4) Date: Feb. 12, 2008 extracts as active ingredients. This agent for hair growth has no side effects when used externally or internally, it can (30) Foreign Application Priority Data notably improve hair growth within a short period of time; ranging from 6 to 12 weeks, can return hair to its normal hair Aug. 12, 2005 (JP) ................................. 2005-261312 colour (for example from white to black) and can improve the Feb. 1, 2006 (JP) ................................. 2006-024532 gloss of hair. -
Journal of Clinical and Diagnostic Research
JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH How to cite this article : PAUDEL R, PALAIAN S, RAVI SHANKAR P, PAUDEL B, , BHATTARAI S. ACONITE POISONING: A CLINICAL REVIEW OF THE FIRST FOUR CASES FROM NEPAL Journal of Clinical and Diagnostic Research [serial online] 2008 February [cited: 2008 February 4]; 2:651-655. Available from http://www.jcdr.net/back_issues.asp?issn=0973-709x&year=2008&month= February &volume=2&issue=1&page=651-655 &id=137 PAUDEL R et al.: Aconite Poisoning: A Clinical Review Of The First Four Cases From Nepal CASE REPORT Aconite Poisoning: A Clinical Review Of The First Four Cases From Nepal PAUDEL R1, PALAIAN S2,3, RAVI SHANKAR P3, PAUDEL B1, BHATTARAI S1 ABSTRACT Aconite tubers are one of the most toxic plant products. They are taken as medication, and are occasionally confused with some other similar plants which are commonly used as medications. This manuscript describes four cases of aconite poisoning that were managed in the Manipal Teaching Hospital. The patients presented with classical symptoms of aconite poisoning such as perioral paraesthesia, generalized burning sensation, and cardiac manifestations such as hypotension and ventricular tachycardia. Since Aconite is a dangerous life threatening herb, one should be aware of this poison. We report four patients who presented with aconite poisoning after mistakenly ingesting aconite, thinking it to be related to medicinal plants. Keywords: Aconite poisoning, Cardiotoxicity, Nepal 1. Department of Medicine, Manipal Teaching Hospital public. The annual incidence of aconitine / Manipal College of Medical Sciences, Pokhara, Nepal poisoning showed a marked decrease from 0.49 to 2 Department of Hospital and Clinical Pharmacy 3. -
Drugs Acting on Nervous System
v DrugsActing on NervousSystem Hyoscyamus Synonym: Hyoscyamus herb, henbane B.S: It consists of dried leaves & flowering tops of the plant Hyoscyamus niger, family Solanaceae. It should contain not less than 0.05% of total alkaloids calculated as hyoscyamine. C.C: It contains alkaloids hyoscyamine, hyoscine ( scopolamine) & atropine. Uses: It is used to counteract gripping due to purgatives & also to relieve spasms of the urinary tract. It is also sedative & used to check salivary secretions. It is an antispasmodic & anti- asthamatic. Substitutes: Egyptian henbane. Datura Synonym: Datura herb B.S: It consists of dried leaves & flowering tops of the plant Datura metel variety fastuosa Safford, family Solanaceae. It should contain not less than 0.5% of total alkaloids calculated as hyoscyamine. C.C: It contains alkaloids ,hyoscine ( scopolamine) . Only small quantities of hyoscyamine& atropine are present. Uses: The drug is parasympathetic depressant. It is used in the treatment of asthma & cough. It is also an antispa smodic & a CNS depressant. Chemical test (Vitali-Morin Reaction) 1.Tropane alkaloid is treated with fuming nitric acid, followed by evaporation to dryness & addition of methanolic KoH solution to an acetone solution of nitrated residue. Violet coloration takes place due to tropane derivative. 2.On addition of silver nitrate soln to soln of hyoscine hydrobromide, yellowish white ppt is formed, which is insoluble in nitric acid, but soluble in dilute ammonia. Belladonna herb Synonym: Belladonna leaf, Deadly night shade B.S: It consists of dried leaves or the leaves & other aerial parts of the plant Atropa belladonna or Atropa acuminata or mixture of both the species collected when the plant are in flowering stage, family Solanaceae. -
Next-Generation Sequencing Identification and Characterization
Next-generation sequencing identification and characterization of microsatellite markers in Aconitum austrokoreense Koidz., an endemic and endangered medicinal plant of Korea Y.-E. Yun, J.-N. Yu, G.H. Nam, S.-A. Ryu, S. Kim, K. Oh and C.E. Lim National Institute of Biological Resources, Environmental Research Complex, Incheon, Korea Corresponding author: C.E. Lim E-mail: [email protected] Genet. Mol. Res. 14 (2): 4812-4817 (2015) Received June 11, 2014 Accepted October 29, 2014 Published May 11, 2015 DOI http://dx.doi.org/10.4238/2015.May.11.13 ABSTRACT. We used next-generation sequencing to develop 9 novel microsatellite markers in Aconitum austrokoreense, an endemic and endangered medicinal plant in Korea. Owing to its very limited distribution, over-harvesting for traditional medicinal purposes, and habitat loss, the natural populations are dramatically declining in Korea. All novel microsatellite markers were successfully genotyped using 64 samples from two populations (Mt. Choejeong, Gyeongsangbuk- do and Ungseokbong, Gyeongsangnam-do) of Gyeongsang Province. The number of alleles ranged from 2 to 7 per locus in each population. Observed and expected heterozygosities ranged from 0.031 to 0.938 and from 0.031 to 0.697, respectively. The novel markers will be valuable tools for assessing the genetic diversity of A. austrokoreense and for germplasm conservation of this endangered species. Key words: Aconitum austrokoreense; Microsatellite marker; Endemic and endangered medicinal plant, Next-generation sequencing; Genetic diversity Genetics and Molecular Research 14 (2): 4812-4817 (2015) ©FUNPEC-RP www.funpecrp.com.br Novel microsatellite markers in A. austrokoreense 4813 INTRODUCTION Aconitum austrokoreense Koidz. -
Determination of Aconitine in Body Fluids by Lc/Ms/Ms
[ A APPLICATIONPPLICATION NOTENOTE ] DETERMINATION OF ACONITINE IN BODY FLUIDS BY LC/MS/MS Justus Beike1, Lara Frommherz1, Michelle Wood2, Bernd Brinkmann1 and Helga Köhler1 1 Institute of Legal Medicine, University Hospital Münster, Röntgenstrasse, Münster, Germany 2 Clinical Applications Group, Waters Corporation, Simonsway, Manchester M22 5PP, UK. INTRODUCTION The method was fully validated for the determination of aconitine from whole blood samples and applied in two cases of fatal poisoning. Plants of the genus Aconitum L (family of Ranunculaceae) are known to be among the most toxic plants of the Northern Hemisphere and are widespread across Europe, Northern Asia and North America. Two plants from this genus are of particular importance: the blue-blooded Aconitum napellus L. (monkshood) which is cultivated as an ornamental plant in Europe and the yellow-blooded Aconitum vulparia Reich. (wolfsbane) which is commonly used in Asian herbal medicine1 (Figure 1). Many of the traditional Asian medicine preparations utilise both the aconite tubers and their processed products for their pharmaceutical properties, which include anti-inflammatory, analgesic and cardio- Figure 1: Aconitum napellus (monkshood) (A) and tonic effects2-4. These effects can be attributed to the presence of Aconitum vulparia (wolfsbane) (B). the alkaloids; the principal alkaloids are aconitine, mesaconitine, hypaconitine and jesaconitine. The use of the alkaloids as a homicidal agent has been known for METHODS AND INSTRUMENTATION more than 2000 years. Although intoxications by aconitine are rare in the Western Hemisphere, in traditional Chinese medicine, the Sample preparation use of aconite-based preparations is common and poisoning has Biological samples were prepared for LC/MS/MS by means of a been frequently reported. -
12.2% 122,000 135M Top 1% 154 4,800
We are IntechOpen, the world’s leading publisher of Open Access books Built by scientists, for scientists 4,800 122,000 135M Open access books available International authors and editors Downloads Our authors are among the 154 TOP 1% 12.2% Countries delivered to most cited scientists Contributors from top 500 universities Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI) Interested in publishing with us? Contact [email protected] Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com Chapter Traditional Chinese Medicine: From Aqueous Extracts to Therapeutic Formulae Jinfan Wang, Astrid Sasse and Helen Sheridan Abstract Traditional Chinese medicine (TCM) is one of the most established systems of medicine in the world. The therapeutic formulae used in TCM are frequently derived from aqueous decoctions of single plants or complex multicomponent formulae. There are aspects of plant cultivation and preparation of decoction pieces that are unique to TCM. These include Daodi cultivation, which is associated with high quality medicinal plant material that is grown in a defined geographical area, and Paozhi processing where the decoction pieces can be treated with excipients and are processed, which may fundamentally change the nature of the chemical metabolites. Therefore, a single plant part, processed in a variety of different ways, can each create a unique medicine. The quality of TCM materials, their safety and therapeutic efficacy are of critical importance. The application of metabolomic and chemometric techniques to these complex and multicomponent medicines is of interest to understand the interrelationships between composition, synergy and therapeutic activity. -
De Novo RNA Sequencing and Expression Analysis of Aconitum Carmichaelii to Analyze Key Genes Involved in the Biosynthesis of Diterpene Alkaloids
molecules Article De Novo RNA Sequencing and Expression Analysis of Aconitum carmichaelii to Analyze Key Genes Involved in the Biosynthesis of Diterpene Alkaloids Megha Rai 1, Amit Rai 1,* ID , Noriaki Kawano 2, Kayo Yoshimatsu 2, Hiroki Takahashi 3, Hideyuki Suzuki 4, Nobuo Kawahara 2, Kazuki Saito 1 ID and Mami Yamazaki 1,* ID 1 Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan; [email protected] (M.R.); [email protected] (K.S.) 2 Tsukuba Division, Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba 305-0843, Japan; [email protected] (N.K.); [email protected] (K.Y.); [email protected] (N.K.) 3 Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan; [email protected] 4 Kazusa DNA Research Institute, Chiba 292-0818, Japan; [email protected] * Correspondence: [email protected] (A.R.); [email protected] (M.Y.); Tel.: +81-043-226-2933 (M.Y.) Received: 16 November 2017; Accepted: 1 December 2017; Published: 5 December 2017 Abstract: Aconitum carmichaelii is an important medicinal herb used widely in China, Japan, India, Korea, and other Asian countries. While extensive research on the characterization of metabolic extracts of A. carmichaelii has shown accumulation of numerous bioactive metabolites including aconitine and aconitine-type diterpene alkaloids, its biosynthetic pathway remains largely unknown. Biosynthesis of these secondary metabolites is tightly controlled and mostly occurs in a tissue-specific manner; therefore, transcriptome analysis across multiple tissues is an attractive method to identify the molecular components involved for further functional characterization. -
Medicinal Plant Conservation
MEDICINAL Medicinal Plant PLANT SPECIALIST GROUP Conservation Silphion Volume 11 Newsletter of the Medicinal Plant Specialist Group of the IUCN Species Survival Commission Chaired by Danna J. Leaman Chair’s note . 2 Sustainable sourcing of Arnica montana in the International Standard for Sustainable Wild Col- Apuseni Mountains (Romania): A field project lection of Medicinal and Aromatic Plants – Wolfgang Kathe . 27 (ISSC-MAP) – Danna Leaman . 4 Rhodiola rosea L., from wild collection to field production – Bertalan Galambosi . 31 Regional File Conservation data sheet Ginseng – Dagmar Iracambi Medicinal Plants Project in Minas Gerais Lange . 35 (Brazil) and the International Standard for Sus- tainable Wild Collection of Medicinal and Aro- Conferences and Meetings matic Plants (ISSC-MAP) – Eleanor Coming up – Natalie Hofbauer. 38 Gallia & Karen Franz . 6 CITES News – Uwe Schippmann . 38 Conservation aspects of Aconitum species in the Himalayas with special reference to Uttaran- Recent Events chal (India) – Niranjan Chandra Shah . 9 Conservation Assessment and Management Prior- Promoting the cultivation of medicinal plants in itisation (CAMP) for wild medicinal plants of Uttaranchal, India – Ghayur Alam & Petra North-East India – D.K. Ved, G.A. Kinhal, K. van de Kop . 15 Ravikumar, R. Vijaya Sankar & K. Haridasan . 40 Taxon File Notices of Publication . 45 Trade in East African Aloes – Sara Oldfield . 19 Towards a standardization of biological sustain- List of Members. 48 ability: Wildcrafting Rhatany (Krameria lap- pacea) in Peru – Maximilian -
Setting up of Herbal Gardens in Schools Under Prmotional Scheme of National Medicinal Plants Board (Nmpb), Government of India ======
SETTING UP OF HERBAL GARDENS IN SCHOOLS UNDER PRMOTIONAL SCHEME OF NATIONAL MEDICINAL PLANTS BOARD (NMPB), GOVERNMENT OF INDIA ============================================================ (I) Background :- Realising the resurgence of Indian traditional medicines across the world and corresponding increase in demand of medicinal plants, the Department of AYUSH, Ministry of Health & Family Welfare have set up a Medicinal Plants Board in November, 2000 under the Chairmanship of Union Health & Family Welfare Minister for overall development of this sector. The Board is responsible for co-ordination of all matters relating to medicinal plants, including drawing up policies and strategies for in-situ conservation, ex-situ/in-situ cultivation, proper harvesting, research and development, processing and marketing of raw material etc. in order to protect, sustain and develop this sector. The Board has been implementing Promotional and Commercial schemes and providing Central Assistance for such purposes. (II) Objective : In order to sensitize the students about conservation of the rich biodiversity and in particular the role of medicinal plants in providing a holistic health care both in traditional and modern systems of medicine, it is proposed to provide financial assistance for setting up herbal gardens in schools under the promotional scheme of the Board on a pilot basis. (III) Coverage : As decided in the 13th Standing Finance Committee (SFC) meeting held on 6/7/05, it is proposed to take 10 schools each in 50 districts initially. The project seeks to cover schools up to senior secondary/intermediate/10+2 level with preference being given to Kendriya Vidyalayas and Noarvodaya Vidyalayas. Based on the response and experience of implementation the project will be extended to other districts.