Gloss Terms 8Pp A4

Total Page:16

File Type:pdf, Size:1020Kb

Gloss Terms 8Pp A4 Glossary of nuclear terms Glossary of nuclear terms Atomic number (Z) Chain reaction Number of protons in the nucleus of an A process in which one nuclear atom, which also indicates the position of transformation sets up conditions for a that element in the periodic table. similar nuclear transformation in another nearby atom. Thus, when fission occurs in Background radiation uranium-235 atoms, neutrons are The ionising radiation in the environment released, which in turn may produce to which we are all exposed. It comes fission in other uranium-235 atoms. from many sources including outer space, the sun, rocks, soil, buildings, the air we Containment, reactor breathe, the food we eat, and our own The prevention of release, even under the Accelerator bodies. The average annual background conditions of a reactor accident, of A device that accelerates charged radiation dose in Australia is about two unacceptable quantities of radioactive particles or ions to very high speeds. millisieverts (see Dose, effective). material beyond a controlled area. Also, commonly, the containing system itself. Actinides Becquerel (Bq) Elements with 89 or more protons in their Unit of activity equal to one radioactive Contamination nucleus that behave chemically like disintegration per second. Replaces the Uncontained radioactive material which actinium. All are radioactive and many are older unit, the Curie (Ci): 1 Ci = 3.7x1010 has been dispersed into unwanted long lived alpha-emitters. Bq. locations. Activity (of a substance) Beta particle (β) Control rods The number of disintegrations per unit A particle emitted from the nucleus of an Rods, plates or tubes containing time taking place in a radioactive material. atom during radioactive decay. Beta cadmium, hafnium or some other strong The unit of activity is the Becquerel (Bq), particles are electrons with either negative absorber of neutrons. They are used to one disintegration per second. or positive electric charge. High energy control the rate of the nuclear reaction in a Alpha particle (α) beta particles may travel metres in air and reactor. several millimetres into the human body; Coolant A positively charged particle emitted low energy betas are unable to penetrate from the nucleus of an atom during the skin. Most beta particles may be A fluid circulated through a nuclear reactor radioactive decay. Consists of two stopped by a small thickness of a light to remove or transfer heat generated by protons and two neutrons (a helium-4 material such as aluminium or plastic. the fuel elements. Common coolants are nucleus). Although alpha particles are water, air and carbon dioxide. normally highly energetic, they travel only Burnup Core, reactor a few centimetres in air and are stopped Either the percentage of a nuclear fuel by a sheet of paper or the outer layer of that has been ‘fissioned’, sometimes That region of a nuclear reactor in which dead skin. expressed as megawatt days per tonne the fuel is located and where the fission (MWD/t), or the percentage change in chain reaction can take place. The fuel other materials. elements in the core of a reactor contain fissile material. Carbon-14 Criticality A naturally occurring radioactive isotope: half-life approximately 5,730 years. A nuclear reactor is critical when the rate of neutrons produced is equal to the rate of neutrons lost and a self-sustaining chain fission reaction can occur. Critical mass Atom The smallest mass of fissile material that will support a self-sustaining chain A particle of matter that cannot be broken reaction under specified conditions. up by chemical means. Atoms have a nucleus consisting of positively charged Cross-section protons and uncharged neutrons of about A measure of the probability of a particular the same mass. In a neutral atom the nuclear reaction occurring between a positive charges of the protons in the Cerenkov radiation projectile and a target. The probability is nucleus are balanced by the same expressed as an area that the target The emission of light by a charged particle number of negatively charged electrons presents. The unit of measurement is the passing through a transparent non- in motion around the nucleus. barn: 10-28m2. Atomic mass unit (amu) conducting liquid or solid material at a speed greater than the speed of light in Curie (Ci) One-twelfth of the mass of a carbon-12 that material. The high energy beta A measure of radioactivity. Now atom. It is approximately equal to the particles from spent nuclear fuel superseded by the Becquerel: 1 Ci = mass of a single proton or neutron. immersed in water give rise to blue 3.7x1010 Bq. Cerenkov radiation. 2 Glossary of nuclear terms Glossary of nuclear terms Dosimeter (or Dosemeter) A device used to measure the radiation dose a person receives over a period of time. Dose limits The maximum radiation dose, excluding doses from background radiation and medical exposures, that a person may Fission receive over a stated period of time. Usually, the division of a International recommended limits, Cyclotron heavy nucleus into two unequal masses adopted by Australia, are that and the emission of neutrons, gamma A machine to accelerate charged particles occupationally exposed workers should radiation, and a great deal of energy. to high energies by the application of not exceed 20mSv per year (averaged electromagnetic forces. The accelerated over five years, no single year to exceed Fission fragments particles may be used to bombard suitable 50mSv), and that members of the public The two atoms initially formed from the target materials to produce radioisotopes. should not receive more than 1mSv per fission of a heavier atom, such as Decay, radioactive year above background radiation. uranium-235 or plutonium-239. The fission fragments resulting from each fission of The spontaneous radioactive Electron uranium-235, for example, are not disintegration of an atomic nucleus The negatively charged particle that is a necessarily the same. Various pairs of resulting in the release of energy in the common constituent of all atoms. atoms can be produced. When initially form of particles (for example, alpha or Electrons surround the positively charged formed, most fission fragments are beta), gamma radiation, or a combination nucleus and determine the chemical radioactive and emit beta particles and of these. properties of the atom. gamma rays and decay into other atoms. Decommissioning Element Fission products In relation to a nuclear reactor, its A chemical substance that cannot be The collective term for the various fission shutdown, dismantling and eventual divided into simpler substances by fragments and their resulting decay products removal. chemical means; all atoms of a given formed after fission of a heavy atom. Deuterium element have the same number of protons. Flux, neutron Also called ‘heavy hydrogen’, deuterium is The number of neutrons that pass through a non-radioactive isotope of hydrogen Enrichment, isotope one square centimetre per second. having one proton and one neutron in the The elevation of the content of a specified nucleus (that is, an atomic mass of two). isotope in a sample of a particular element Fuel cycle, nuclear It occurs in nature in the proportion of one (or compound thereof). To be used as fuel The series of steps involved in supplying fuel atom to 6,500 atoms of normal hydrogen. for power reactors, uranium usually has to for nuclear reactors and managing the waste (normal hydrogen atoms contain one be enriched – the natural isotopic products. It includes the mining, refining and proton and no neutrons). abundance of uranium-235 (~0.71 per enrichment of uranium, fabrication of fuel Dose, absorbed cent) has to be increased to about 3 per elements, their use in a reactor, reprocessing cent. Material at 20 per cent or greater to recover the fissionable material remaining A measure of the amount of energy enrichment is called high enriched in the spent fuel, possible re-enrichment of deposited in a material by ionising uranium (HEU); below 20 per cent is low the fuel material, possible re-fabrication into radiation. The unit is the joule per enriched uranium (LEU). Isotope more fuel, waste processing and long-term kilogram, given the name Gray (Gy). enrichment processes include gas storage. Dose, equivalent centrifugation and gaseous diffusion. Equivalent dose is a measure of the Fertile material biological effect of radiation on a tissue or A material not itself fissionable by thermal organ and takes into account the type of neutrons that can be converted directly or radiation. The unit is the sievert (Sv), but indirectly into a fissile material by neutron doses are usually measured in capture. There are two basic fertile millisieverts (mSv) or microsieverts (μSv). materials, uranium-238 and thorium-232. Dose, effective When these fertile materials capture Effective dose is a measure of the neutrons they are converted into fissile biological effect of radiation on the whole plutonium-239 and uranium-233 respectively. body. It takes into account the equivalent Fuel rod dose and the differing radiosensitivities of Fissile material A single rod of fissionable material body tissues. The unit is the sievert (Sv), Any material capable of undergoing fission encased in cladding. Fuel rods are but doses are usually measured in by thermal (or slow) neutrons. For assembled into fuel elements. millisieverts (mSv) or microsieverts (μSv). example, uranium-235 and plutonium-239 are fissile nuclides. Australian Nuclear Science and Technology Organisation 3 Glossary of nuclear terms Fusion Mass spectrometer The formation of a heavier nucleus from A device that uses magnetic fields, two lighter ones (such as hydrogen electric fields, or both to separate and isotopes) with an attendant release of thus analyse the masses of various energy (as in a fusion reactor or the sun). isotopes in a sample. Gamma radiation (γ) Microsievert (μSv) Gamma radiation is short wavelength One millionth of a sievert.
Recommended publications
  • The Electronuclear Conversion of Fertile to Fissile Material
    UCRL-52144 THE ELECTRONUCLEAR CONVERSION OF FERTILE TO FISSILE MATERIAL C. M. Van Atta J. D. Lee H. Heckrotto October 11, 1976 Prepared for U.S. Energy Research & Development Administration under contract No. W-7405-Eng-48 II\M LAWRENCE lUg LIVERMORE k^tf LABORATORY UnrmsilyotCatftxna/lJvofmofe s$ PC DISTRIBUTION OF THIS DOCUMENmmT IS UMUMWTED NOTICE Thii npoit WM prepared w u account of wot* •pomond by UM Uiilttd Stalwi GovcmiMM. Nittim Uw United Stain nor the United Statn Energy tUwardi it Development AdrnWrtrtUon, not «y of thei* employee!, nor any of their contricton, •ubcontrecton, or their employe*!, makti any warranty, expreai « Implied, or muMi any toga) liability oc reeponafctUty for the accuracy, completenni or uMfulntat of uy Information, apperatui, product or proem dlecloead, or repreienl. that tu UM would not *nfrkig» prrrtt*)}MWiwd r%hl». NOTICE Reference to a oompmy or product rum don not imply approval or nconm ndatjon of the product by the Untnrtity of California or the US. Energy Research A Devetopnient Administration to the uchvton of others that may be suitable. Printed In the United Stitei or America Available from National Technical Information Service U.S. Department of Commerce 528S Port Royal Road Springfield, VA 22161 Price: Printed Copy S : Microfiche $2.25 DMimtic P»t» Ranflt PHca *•#» Rtnft MM 001-025 $ 3.50 326-350 10.00 026-050 4.00 351-375 10.50 051-075 4.50 376-400 10.75 076-100 5.00 401-425 11.00 101-125 5.50 426-450 31.75 126-150 6.00 451-475 12.00 151-175 6.75 476-500 12.50 176-200 7.50 501-525 12.75 201-225 7.75 526-550 13.00 526-250 8.00 551-575 13.50 251-275 9.00 576-600 I3.7S 276-300 9.25 601 -up 301-325 9.75 *Ml J2.50 fot «ch iddltlOMl 100 pip tacmitMt from 601 ID 1,000 flfcK IM 54.50 for eicli iMUknal I0O plfe feenmMI om 1,000 p*o.
    [Show full text]
  • Advanced Reactors with Innovative Fuels
    Nuclear Science Advanced Reactors with Innovative Fuels Workshop Proceedings Villigen, Switzerland 21-23 October 1998 NUCLEAR•ENERGY•AGENCY OECD, 1999. Software: 1987-1996, Acrobat is a trademark of ADOBE. All rights reserved. OECD grants you the right to use one copy of this Program for your personal use only. Unauthorised reproduction, lending, hiring, transmission or distribution of any data or software is prohibited. You must treat the Program and associated materials and any elements thereof like any other copyrighted material. All requests should be made to: Head of Publications Service, OECD Publications Service, 2, rue AndrÂe-Pascal, 75775 Paris Cedex 16, France. OECD PROCEEDINGS Proceedings of the Workshop on Advanced Reactors with Innovative Fuels hosted by Villigen, Switzerland 21-23 October 1998 NUCLEAR ENERGY AGENCY ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT Pursuant to Article 1 of the Convention signed in Paris on 14th December 1960, and which came into force on 30th September 1961, the Organisation for Economic Co-operation and Development (OECD) shall promote policies designed: − to achieve the highest sustainable economic growth and employment and a rising standard of living in Member countries, while maintaining financial stability, and thus to contribute to the development of the world economy; − to contribute to sound economic expansion in Member as well as non-member countries in the process of economic development; and − to contribute to the expansion of world trade on a multilateral, non-discriminatory basis in accordance with international obligations. The original Member countries of the OECD are Austria, Belgium, Canada, Denmark, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States.
    [Show full text]
  • Abundant Thorium As an Alternative Nuclear Fuel Important Waste Disposal and Weapon Proliferation Advantages
    Energy Policy 60 (2013) 4–12 Contents lists available at SciVerse ScienceDirect Energy Policy journal homepage: www.elsevier.com/locate/enpol Abundant thorium as an alternative nuclear fuel Important waste disposal and weapon proliferation advantages Marvin Baker Schaffer n RAND Corporation, 1776 Main Street, Santa Monica, CA 90407, United States HIGHLIGHTS Thorium is an abundant nuclear fuel that is well suited to three advanced reactor configurations. Important thorium reactor configurations include molten salt, CANDU, and TRISO systems. Thorium has important nuclear waste disposal advantages relative to pressurized water reactors. Thorium as a nuclear fuel has important advantages relative to weapon non-proliferation. article info abstract Article history: It has long been known that thorium-232 is a fertile radioactive material that can produce energy in Received 10 May 2012 nuclear reactors for conversion to electricity. Thorium-232 is well suited to a variety of reactor types Accepted 26 April 2013 including molten fluoride salt designs, heavy water CANDU configurations, and helium-cooled TRISO- Available online 30 May 2013 fueled systems. Keywords:: Among contentious commercial nuclear power issues are the questions of what to do with long-lived Thorium radioactive waste and how to minimize weapon proliferation dangers. The substitution of thorium for Non-proliferation uranium as fuel in nuclear reactors has significant potential for minimizing both problems. Nuclear waste reduction Thorium is three times more abundant in nature than uranium. Whereas uranium has to be imported, there is enough thorium in the United States alone to provide adequate grid power for many centuries. A well-designed thorium reactor could produce electricity less expensively than a next-generation coal- fired plant or a current-generation uranium-fueled nuclear reactor.
    [Show full text]
  • Candu Fuel-Cycle Vision Xa9953247
    CANDU FUEL-CYCLE VISION XA9953247 P.G. BOCZAR Fuel and Fuel Cycle Division, Chalk River Laboratories, Atomic Energy of Canada Limited, Chalk River, Ontario, Canada Abstract The fuel-cycle path chosen by a particular country will depend on a range of local and global factors. The CANDU® reactor provides the fuel-cycle flexibility to enable any country to optimize its fuel-cycle strategy to suit its own needs. AECL has developed the CANFLEX® fuel bundle as the near-term carrier of advanced fuel cycles. A demonstration irradiation of 24 CANFLEX bundles in the Point Lepreau power station, and a full-scale critical heat flux (CHF) test in water are planned in 1998, before commercial implementation of CANFLEX fuelling. CANFLEX fuel provides a reduction in peak linear element ratings, and a significant enhancement in thermalhydraulic performance. Whereas natural uranium fuel provides many advantages, the use of slightly enriched uranium (SEU) in CANDU reactors offers even lower fuel-cycle costs and other benefits, such as uprating capability through flattening the channel power distribution across the core. Recycled uranium (RU) from reprocessing spent PWR fuel is a subset of SEU that has significant economic promise. AECL views the use of SEU/RU in the CANFLEX bundle as the first logical step from natural uranium. High neutron economy enables the use of low-fissile fuel in CANDU reactors, which opens up a spectrum of unique fuel-cycle opportunities that exploit the synergism between CANDU reactors and LWRs. At one end of this spectrum is the use of materials from conventional reprocessing: CANDU reactors can utilize the RU directly without re-enrichment, the plutonium as conventional mixed-oxide (MOX) fuel, and the actinide waste mixed with plutonium in an inert-matrix carrier.
    [Show full text]
  • The Impact of Partitioning and Transmutation on the Risk Assesment of a Spent Nuclear Fuel
    h/e/-se SE0608415 The Impact of Partitioning and Transmutation on the Risk Assesment of a Spent Nuclear Fuel Naima Amrani and Ahmed Boucenna UFAS University Physics Department Faculty of sciences Setif 19000 ALGERIA I. INTRODUCTION Nuclear power produces steadily a mass of spent fuel which contains a part from the short lived fission products, a significant amount of actinides and fission products with height toxicity and long half-lives. These nuclides constitute the long-term radiotoxic inventory which remains as a hazard far beyond human perception. The reprocessing recycles most of the major actinides (Uranium and Plutonium), while the Minor Actinides (MA) (mainly Neptunium: Np, Americium: Am and Curium: Cm) with half lives up to 2 million years remain with the fission products which are vitrified before being buried in deep repositories. Partitioning of the minor actinides and some of the fission products is an efficient method to reduce the long term radiotoxicity of the residual waste components with a factor proportional to the separation yield. The improved minor actinide nuclides would be recycled into a fuel cycle activities and returned to the reactor inventory of fissile and fertile material for transmutation to short lived isotopes. Progressively the MAs and some long-lived fission product (LLFP) could be burn up out. This option would reduce the long term contamination hazard in the high-level waste and shorten the time interval necessary to keep the actinides containing wastes confined in a deep geologic repository. Partitioning and Transmutation (P&T) is, in principal, capable of reducing the radiotoxicity period, while a number of practical difficult remain to be surmounted.
    [Show full text]
  • Lwv/L' I .D N. V/./ \Qev
    Sept. 16, 1958 _ . I w, E, ABBOTT ETAL 2,852,460 FUEL-BREEDER FUEL ELEMENT FOR NUCLEAR REACTOR Filed Aug. 6, 1956 w//%////»;:/N \QE n.V////.//////////.Dv Lwv/l'I - ././4//. mm . 1M5.NLA TOT T T0 BY mm»/ /m m _ ATTORNEY , 2,852,460 United States Patent 0 . i Patented Sept. 16, 1958 1 23 power level, and in heterogeneous reactors this has been 2,852,460 ' set by the uranium temperature in the center of the rod._ To avoid this, and yet maintain a high ?ux, fuel elements FUEL-BREEDER FUEL ELEMENT FOR comprising a cluster of relatively small diameter uranium NUCLEAR REACTOR rods have been designed. However, this only aggravates William E. Abbott, East Pittsburgh, Pa., and Ralph fabricational and decontamination costs. Balent, Tarzana, Calif., assignors, by mesne assign An object of our invention, therefore, is to provide an ments, to the United States of America as represented improved fuel-breeder fuel element. .by the United States Atomic Energy Commission Another object is to provide a fuel-breeder fuel ele ment, wherein the fertile and ?ssionable materials are Application August 6, 1956, Serial No. 602,401 separated ‘and there is a minimum of cladding. 5 Claims. (Cl. 204-1931) Another object is to provide such a fuel element which permits fabrication and decontamination economies. Another object is to provide such a fuel element, where Our invention relates to an improved nuclear reactor 15 in a single, relatively large diameter fuel element is the fuel element, and more particularly to an improved fuel equivalent of a cluster of smaller diameter rods.
    [Show full text]
  • Nuclear Fuel Cycles Technology Assessment
    Clean Power Quadrennial Technology Review 2015 Chapter 4: Advancing Clean Electric Power Technologies Technology Assessments Advanced Plant Technologies Biopower Carbon Dioxide Capture and Storage Clean Power Value-Added Options Carbon Dioxide Capture for Natural Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle U.S. DEPARTMENT OF Wind Power ENERGY Clean Power Quadrennial Technology Review 2015 Nuclear Fuel Cycles Chapter 4: Technology Assessments Introduction and Background The Nuclear Fuel Cycle (NFC) is defined as the total set of operations required to produce fission energy and manage the associated nuclear materials. It can have different attributes, including the extension of natural resources, or the minimization of waste disposal requirements. The NFC, as depicted in Figure 4.O.1, is comprised of a set of operations that include the extraction of uranium (U) resources from the earth (and possibly from seawater), uranium enrichment and fuel fabrication, use of the fuel in reactors, interim storage of used nuclear fuel, the optional recycle of the used fuel, and the final disposition of used fuel and waste forms from the recycling processes. Thorium (Th) fuel cycles have been proposed also, but have not been commercially implemented). Figure 4.O.1 Schematic of the uranium based Nuclear Fuel Cycle 1 Quadrennial Technology Review 2015 Clean Power TA 4.O: Nuclear Fuel Cycles The nuclear fuel cycle is often grouped into three classical components (front-end, reactor, and back-end): Front End: The focus of the front end of the nuclear fuel cycle is to deliver fabricated fuel to the reactor.
    [Show full text]
  • Cumberland County, North Carolina Emergency Operations Plan
    Cumberland County, North Carolina Emergency Operations Plan July 14, 2017 Prepared By Excelliant Services, Inc. 1201 Lee Branch Lane Birmingham, Al 35242 STATEMENT OF APPROVAL The undersigned approves the Cumberland County Emergency Operations Plan and agrees to the responsibilities assigned to their organization. _______________________________________ _________________ Chairman, County Board of Commissioners Date _______________________________________ _________________ County Manager, Cumberland County Date _______________________________________ _________________ Sheriff, Cumberland County Date _______________________________________ _________________ Assistant County Manager, Cumberland County Date _______________________________________ _________________ Director, Emergency Services, Cumberland County Date _______________________________________ _________________ Director, Emergency Medical Service Date of Cape Fear Valley Health Systems _______________________________________ _________________ Director, Finance Department, Cumberland County Date _______________________________________ _________________ Director, Health Department, Cumberland County Date _______________________________________ _________________ Director, Information Services, Cumberland County Date ______________________________________ _________________ Director, Parks and Recreation Department Date _______________________________________ _________________ Director, Personnel, Cumberland County Date _______________________________________ _________________ Director,
    [Show full text]
  • Plutonium Management in the Medium Term
    Nuclear Science ISBN 92-64-02151-5 Plutonium Management in the Medium Term A Review by the OECD/NEA Working Party on the Physics of Plutonium Fuels and Innovative Fuel Cycles (WPPR) © OECD 2003 NEA4451 NUCLEAR ENERGY AGENCY ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT Pursuant to Article 1 of the Convention signed in Paris on 14th December 1960, and which came into force on 30th September 1961, the Organisation for Economic Co-operation and Development (OECD) shall promote policies designed: − to achieve the highest sustainable economic growth and employment and a rising standard of living in Member countries, while maintaining financial stability, and thus to contribute to the development of the world economy; − to contribute to sound economic expansion in Member as well as non-member countries in the process of economic development; and − to contribute to the expansion of world trade on a multilateral, non-discriminatory basis in accordance with international obligations. The original Member countries of the OECD are Austria, Belgium, Canada, Denmark, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States. The following countries became Members subsequently through accession at the dates indicated hereafter: Japan (28th April 1964), Finland (28th January 1969), Australia (7th June 1971), New Zealand (29th May 1973), Mexico (18th May 1994), the Czech Republic (21st December 1995), Hungary (7th May 1996), Poland (22nd November 1996); Korea (12th December 1996) and the Slovak Republic (14th December 2000). The Commission of the European Communities takes part in the work of the OECD (Article 13 of the OECD Convention).
    [Show full text]
  • Fusion Chain Reaction
    Fusion Chain Reaction In a more generalized sense, a nuclear fusion reaction can be considered a nuclear chain reaction: it occurs under extreme pressure and temperature conditions, which are maintained by the energy released in the fusion process. Critical Mass Although two to three neutrons are produced for every fission, not all of these neutrons are available for continuing the fission reaction. If the conditions are such that the neutrons are lost at a faster rate than they are formed by fission, the chain reaction will not be self-sustaining. At the point where the chain reaction can become self-sustaining, this is referred to as critical mass. In an atomic bomb, a mass of fissile material greater than the critical mass must be assembled instantaneously and held together for about a millionth of a second to permit the chain reaction to propagate before the bomb explodes The amount of a fissionable material's critical mass depends on several factors; the shape of the material, its composition and density, and the level of purity. A sphere has the minimum possible surface area for a given mass, and hence minimizes the leakage of neutrons. By surrounding the fissionable material with a suitable neutron “reflector”, the loss of neutrons can be reduced and the critical mass can be reduced. TYPES OF NUCLEAR MATERIALS (a) Special Nuclear Material consists of uranium-233 or uranium-235, enriched uranium, or plutonium. (b) Source Material is natural uranium or thorium or depleted uranium that is not suitable for use as reactor fuel. (c) Byproduct Material, in general, is nuclear material (other than special nuclear material) that is produced or made radioactive in a nuclear reactor.
    [Show full text]
  • Foia/Pa-2014-0073
    Chapter 6 RECOMMENDATIONS Post-fission radioactive waste is highly toxic for extremely long periods of time--at least thousands, perhaps hundreds of thousands, or even a million years. Large quantities of HL waste are being temporarily and imperfectly stored in tanks at plutonium production facilities, and large amounts of spent fuel are being discharged periodically from commercial power reactors into increas­ ingly crowded storage pools. Whether optimists or pessimists, as we look to the future, we share an expectation that national security and energy supply, and the complex of institutions supporting those vital imperatives, will surely result in the creation of rapidly growing volumes of radioactive waste in the United States. There is an unqerstandable tendency to shrink from this grim reality. An optimist may deny there is a serious problem because time and money will provide technology for a variety of solutions. A pessimist may deny there is a solution because--sometime, somewhere--man-made or natural cataclysms will inevitably breach any technological containment, and toxic radioactive waste will then spill or seep into the biosphere. The morality of the U.S. predicament is arguable. Our survival as a nation seems to rest heavily on our nuclear arsenal, and the survival and well-being of our own and other ~societies depend on adequate energy. But is it moral to produce any toxic material with a half-life of 24,000 years? And is it right to continue activities which generate radioactive waste when a safe method for oermanent disposal has not been fully demonstrated? 6-2 When viewed in such apocalyptic terms, the radioactive waste problem tends to befuddle the mind, polarize the public, and stale- mate the government.
    [Show full text]
  • MASS FLOWS for Lmfbrs FUELED with VARIOUS TYPES of PLUTONIUM and FERTILE MATERIAL
    PNL-3249 UC-78 3 3679 00054 4074 MASS FLOWS FOR LMFBRs FUELED WITH VARIOUS TYPES OF PLUTONIUM AND FERTILE MATERIAL U. P. Jenquin December 1979 Prepared for the U.S. Department of Energy under Contract EY-76-C-06-1830 Pacific Northwest Laboratory Richland, Washington 99352 CONTENTS ACKNOWLEDGMENT • v INTRODUCTION 1 SUMMARY 3 REACTOR DESCRIPTION . 4 CALCULATION MODEL 6 CROSS SECTIONS 6 REACTIVITY AND BURNUP 7 RESUL TS 9 ENRICHMENT 9 MASS FLOW • 11 BREEDING RATIO . 13 CONCLUS IONS 15 REFERENCES 17 APPENDIX A - MASS-FLOW DATA A.l iii ACKNOWLEDGMENT Appreciation is expressed to D. R. Marr of the Hanford Engineering Devel­ opment Laboratory (HEDL) for making the computer codes and cross sections available. v INTRODUCTION Under the current policy of operating light water reactors on a once­ through cycle until the breeder reactor is introduced, breeder reactors must obtain their plutonium initially from the spent U0 2 fuel. This report pre­ sents results of neutronics analyses performed to determine fueling require­ ments and mass flows for a typical 1200 megawatt electric (MWe) liquid metal fast breeder reactor (LMFBR). This information could be used in future anal­ yses of requirements for particular generating scenarios. In performing the analyses, three plutonium compositions were considered to fuel the reactor. The composition depended on the amount of irradiation either a U02 or Pu02-Th0 2 fuel had received in a light water reactor (LWR). Uranium and thorium fertile materials were considered. Calculations were per­ formed to determine the cross sections, reactivity, and burnup for each fuel­ fertile material configuration. Based on these calculations, the mass flows, plutonium enrichment requirements, and breeding ratios for each configuration were determined.
    [Show full text]