“Advanced” Isn't Always Better

Total Page:16

File Type:pdf, Size:1020Kb

“Advanced” Isn't Always Better SERIES TITLE OPTIONAL “Advanced” Isn’t Always Better Assessing the Safety, Security, and Environmental Impacts of Non-Light-Water Nuclear Reactors “Advanced” Isn’t Always Better Assessing the Safety, Security, and Environmental Impacts of Non-Light-Water Nuclear Reactors Edwin Lyman March 2021 © 2021 Union of Concerned Scientists All Rights Reserved Edwin Lyman is the director of nuclear power safety in the UCS Climate and Energy Program. The Union of Concerned Scientists puts rigorous, independent science to work to solve our planet’s most pressing problems. Joining with people across the country, we combine technical analysis and effective advocacy to create innovative, practical solutions for a healthy, safe, and sustainable future. This report is available online (in PDF format) at www.ucsusa.org/resources/ advanced-isnt-always-better and https:// doi.org/10.47923/2021.14000 Designed by: David Gerratt, Acton, MA www.NonprofitDesign.com Cover photo: Argonne National Laboratory/Creative Commons (Flickr) Printed on recycled paper. ii union of concerned scientists [ contents ] vi Figures, Tables, and Boxes vii Acknowledgments executive summary 2 Key Questions for Assessing NLWR Technologies 2 Non-Light Water Reactor Technologies 4 Evaluation Criteria 5 Assessments of NLWR Types 8 Safely Commercializing NLWRs: Timelines and Costs 9 The Future of the LWR 9 Conclusions of the Assessment 11 Recommendations 12 Endnotes chapter 1 13 Nuclear Power: Present and Future 13 Slower Growth, Cost and Safety Concerns 14 Can Non-Light-Water Reactors Revive Nuclear Power’s Prospects? 15 A Note on Terminology 15 The Need to Fully Vet Claims About NLWRs 16 NLWRs: Past and Present 19 A Host of Challenges Even for More Mature NLWR Designs 22 Nuclear Power Growth and Climate Change Mitigation 22 Is Development of NLWRs Essential for Nuclear Power’s Future? chapter 2 24 Nuclear Power Basics 24 Nuclear Chain Reactions in the Reactor Core 25 The Components of Nuclear Fuels 28 Thermal and Fast Reactors “Advanced” Isn’t Always Better iii 29 Fuel Burnup and Refueling 30 Reactor Safety Considerations chapter 3 32 Nuclear Power Sustainability 32 Two Primary Goals for Increasing Sustainability 33 The Challenging and Conflicting Goals of Sustainability 34 High-Level Waste Reduction 39 Uranium Utilization Efficiency chapter 4 43 Nuclear Proliferation and Terrorism Risks of Nuclear Power 44 International Standards for Detecting Diversion of Nuclear Materials and Protecting Them from Theft 46 NLWRs: Enrichment Issues 47 Nuclear Terrorism and Proliferation Concerns of HALEU 49 Reprocessing and NLWRs chapter 5 55 Liquid Sodium–Cooled Fast Reactors 55 History and Current Status 57 Fast Reactors: Cost Considerations 59 Safety 66 Sustainability and Proliferation/Terrorism Risk 66 Sustainability of Once-Through Fast Reactors 67 Time Scale and Costs chapter 6 74 High-Temperature Gas–Cooled Reactors 74 The Technology 75 History and Current Status 77 Safety 81 Sustainability iv union of concerned scientists 83 Proliferation/Terrorism Risk 8 5 Readiness for Commercial Demonstration and Near-Term Deployment chapter 7 89 Molten Salt Reactors 90 History and Current Status 91 Safety 94 Sustainability 102 Proliferation/Terrorism Risk 104 Readiness for Commercial Demonstration and Deployment chapter 8 107 Breed-and-Burn Reactors 107 The Rationale for Breed-and-Burn Reactors 110 Breed-and-Burn Reactor Designs 112 Sustainability 113 Proliferation/Terrorism Risk chapter 9 115 Conclusions and Recommendations 115 Conclusions 116 Recommendations appendix 118 Simple Models of Fast Burner/Breeder Cycles 118 How Long Would It Take to Reduce Transuranics by a Factor of 10 with a Burner Reactor System? 120 How Long Would It Take for a Fast Breeder Reactor to Extract 100 Times As Much Energy from Uranium Ore as an LWR? 122 Uranium Utilization Efficiency of Burner Reactors vs. Breeder Reactors 122 Waste Reduction Factor of a Breeder Reactor 124 Endnotes 126 References “Advanced” Isn’t Always Better v [ figures, tables, and boxes ] figures 119 Figure A.1. Heavy Metal Mass Flow for Startup and Transition Core for a Fast Burner Reactor 119 Figure A-2. Annual Heavy Metal Mass Flow at Equilibrium for a Fast Burner Reactor 121 Figure A-3. Production of Initial Core and First Reload for a Fast Breeder Reactor 121 Figure A-4. Annual Heavy Metal Mass Flow at Equilibrium for a Fast Breeder Reactor tables 4 Table ES-1. Current Status of US NLWR Projects 6 Table ES-2. How NLWRs Compare with LWRs on Safety, Sustainability, and Proliferation Risk 17 Table 1. Past and Present Demonstration Reactors Worldwide boxes 19 Box 1. Stages of Advanced Reactor Development 26 Box 2. Reactor Stability: Controlling the Chain Reaction 37 Box 3. Reprocessing and Recycling: Turning Spent Fuel into Fresh Fuel 38 Box 4. What Level of Transuranic Reduction in Radioactive Waste Would Make a Real Difference? 50 Box 5. The Ups and Downs of US Reprocessing Policy 61 Box 6. Reactivity Effects in Fast Reactors 71 Box 7. The Pyroprocessing Files 95 Box 8. Protactinium and the Thorium Fuel Cycle 99 Box 9. Transatomic Power: A Cautionary Tale vi union of concerned scientists [ acknowledgments ] This report was made possible with the support of the John D. and Catherine T. MacArthur Foundation and UCS members. The author would like to thank the many UCS staff members, past and present, who provided invaluable input into this report: Angela Anderson, Rachel Cleetus, Rob Cowin, Peter Frumhoff, Lisbeth Gronlund, Kathleen Rest, and Steve Clemmer. He would like to thank Steve Fetter, Richard Garwin, Scott Kemp, and Frank von Hippel for reviewing the report and providing useful comments. He is very grateful to Cynthia DeRocco and Bryan Wadsworth for overseeing the report’s production, and to Hannah Poor and Sital Sathia for their invaluable assistance. Finally, he would like to thank Karin Matchett, Marc S. Miller, and Heather Tuttle for their excellent editing and David Gerratt for his deft layout and design. Organizational affiliations are listed for identification purposes only. The opinions expressed herein do not necessarily reflect those of the organizations that funded the work or the individuals who reviewed it. The Union of Concerned Scientists bears sole responsibility for the report’s contents. “Advanced” Isn’t Always Better vii Executive Summary The future of nuclear power is uncertain. Because nuclear the Nuclear Regulatory Commission (NRC) received applica- power is a low-carbon way to generate electricity, there is tions to build more than two dozen new reactors. All were considerable interest in expanding its role to help mitigate evolutionary versions of the light-water reactor (LWR), the the threat of climate change. However, the technology has type that comprises almost all operating reactors in the Unit- fundamental safety and security disadvantages compared ed States and most other countries with nuclear power. Com- with other low-carbon sources. Nuclear reactors and their panies such as Westinghouse, which developed the AP1000, associated facilities for fuel production and waste handling promised these LWR variants could be built more quickly and are vulnerable to catastrophic accidents and sabotage, and cheaply while enhancing safety. But prospective purchasers they can be misused to produce materials for nuclear weapons. cancelled nearly all of those proposals even before ground The nuclear industry, policymakers, and regulators must was broken, and the utilities that started building two AP1000 address these shortcomings fully if the global use of nuclear reactors at the V.C. Summer plant in South Carolina aban- power is to increase without posing unacceptable risks to doned the project after it experienced significant cost over- public health, the environment, and international peace runs and delays. Only one project remains—two AP1000 and security. units at the Alvin W. Vogtle plant in Georgia—but its cost Despite renewed enthusiasm for nuclear power in many has doubled, and construction is taking more than twice quarters, its recent growth has been far slower than antici- as long as originally estimated. pated 10 years ago. No doubt, the March 2011 Fukushima Almost all nuclear power reactors operating and under Daiichi accident in Japan, which resulted in three reactor construction today are LWRs, so called because they use meltdowns and widespread radiological contamination of the ordinary water (H2O) to cool their hot, highly radioactive environment, has contributed to nuclear power’s stagnation. cores. Some observers believe that the LWR, the industry Even more significant has been the high cost of building new workhorse, has inherent flaws that are inhibiting nuclear reactors relative to other sources of electricity—primarily power’s growth. In addition to its high cost and long natural gas but also, increasingly, renewable energy sources construction time, critics point to—among other things— such as wind and solar. The current rate of construction of the LWR’s susceptibility to severe accidents (such as the new nuclear plants around the world barely outpaces the meltdowns at Fukushima), their inefficient use of uranium, retirements of operating plants that reach the ends of and the long-lived nuclear wastes they generate. their lifetimes or are no longer economic. In response, the US Department of Energy’s national In the United States, new nuclear plants have proven laboratories, universities, and numerous private vendors— prohibitively expensive and slow to build, discouraging from large established companies to small startups—are private investment and contributing to public skepticism. pursuing the development of reactors that differ funda- In the 2000s, amid industry hopes of a nuclear renaissance, mentally from LWRs. These non-light-water reactors “Advanced” Isn’t Always Better 1 (NLWRs) are cooled not by water but by other substances, such as liquid sodium, helium gas, or even molten salts.1 Given the urgency of the NLWRs are sometimes referred to as “advanced reac- climate crisis, rigorous tors.” However, that is a misnomer for most designs being pursued today, which largely descend from those proposed evaluation is needed to many decades ago.
Recommended publications
  • Spent Nuclear Fuel Pools in the US
    Spent Nuclear Fuel Pools in the U.S.: Reducing the Deadly Risks of Storage front cover WITH SUPPORT FROM: WITH SUPPORT FROM: By Robert Alvarez 1112 16th St. NW, Suite 600, Washington DC 20036 - www.ips-dc.org May 2011 About the Author Robert Alvarez, an Institute for Policy Studies senior scholar, served as a Senior Policy Advisor to the Secre- tary of Energy during the Clinton administration. Institute for Policy Studies (IPS-DC.org) is a community of public scholars and organizers linking peace, justice, and the environment in the U.S. and globally. We work with social movements to promote true democracy and challenge concentrated wealth, corporate influence, and military power. Project On Government Oversight (POGO.org) was founded in 1981 as an independent nonprofit that investigates and exposes corruption and other misconduct in order to achieve a more effective, accountable, open, and ethical federal government. Institute for Policy Studies 1112 16th St. NW, Suite 600 Washington, DC 20036 http://www.ips-dc.org © 2011 Institute for Policy Studies [email protected] For additional copies of this report, see www.ips-dc.org Table of Contents Summary ...............................................................................................................................1 Introduction ..........................................................................................................................4 Figure 1: Explosion Sequence at Reactor No. 3 ........................................................4 Figure 2: Reactor No. 3
    [Show full text]
  • D:\Governmental Organizations\State\Oregon\LEG\2021\Nuclear\Small Modular Reactors\SB 360\21-03-23
    The Oregon Conservancy Foundation 19140 SE Bakers Ferry Rd., Boring Oregon 97009-9158 P. O. Box 982, Clackamas, Oregon 97015 Email: [email protected] Phone: (503) 637- 6130 Before the Senate Committee on Energy and Environment Testimony of Lloyd K. Marbet Oregon Conservancy Foundation March 23, 2021 Mr. Chair, members of the Committee, and the public, my name is Lloyd K, Marbet and I am the Executive Director of the Oregon Conservancy Foundation (OCF). I am testifying in opposition to SB 360. In 2017 we gave testimony in opposition to SB 990, an early version of Senator Boquist’s reoccurring legislation. What is striking is how relevant this attached testimony still is four years later. (Attachment 1) I also attach a recent Deutsche Welle article that shows how nuclear power worsens the climate crisis, (Attachment 2) along with an Executive Summary of a RethinkX study showing how inaccurate cost estimates for conventional energy generating facilities, including nuclear, are being turned into overpriced stranded assets by the rapidly decreasing costs of solar, wind and battery storage. (Attachment 3) In its testimony, NuScale/Fluor, has given all the bells and whistles of its modular reactor design. Yet these reactor modules will produce the same kind of high level radioactive waste temporarily stored outdoors at the Trojan Nuclear Plant site, in Rainier, Oregon, at a storage facility licensed in 1999, and recently given a license extension to March 31, 2059. When will this waste be taken away, no one knows? Nuclear radiation is not restricted to boundaries of cities or counties. Even with the public relations of NuScale/Fluor representatives, the promises of safety and the so called imperviousness to a multitude of disasters – high level nuclear waste will reside at each NuScale reactor facility with the need for transport and permanent disposal.
    [Show full text]
  • 小型飛翔体/海外 [Format 2] Technical Catalog Category
    小型飛翔体/海外 [Format 2] Technical Catalog Category Airborne contamination sensor Title Depth Evaluation of Entrained Products (DEEP) Proposed by Create Technologies Ltd & Costain Group PLC 1.DEEP is a sensor analysis software for analysing contamination. DEEP can distinguish between surface contamination and internal / absorbed contamination. The software measures contamination depth by analysing distortions in the gamma spectrum. The method can be applied to data gathered using any spectrometer. Because DEEP provides a means of discriminating surface contamination from other radiation sources, DEEP can be used to provide an estimate of surface contamination without physical sampling. DEEP is a real-time method which enables the user to generate a large number of rapid contamination assessments- this data is complementary to physical samples, providing a sound basis for extrapolation from point samples. It also helps identify anomalies enabling targeted sampling startegies. DEEP is compatible with small airborne spectrometer/ processor combinations, such as that proposed by the ARM-U project – please refer to the ARM-U proposal for more details of the air vehicle. Figure 1: DEEP system core components are small, light, low power and can be integrated via USB, serial or Ethernet interfaces. 小型飛翔体/海外 Figure 2: DEEP prototype software 2.Past experience (plants in Japan, overseas plant, applications in other industries, etc) Create technologies is a specialist R&D firm with a focus on imaging and sensing in the nuclear industry. Createc has developed and delivered several novel nuclear technologies, including the N-Visage gamma camera system. Costainis a leading UK construction and civil engineering firm with almost 150 years of history.
    [Show full text]
  • Nuclear Energy: Fission and Fusion
    CHAPTER 5 NUCLEAR ENERGY: FISSION AND FUSION Many of the technologies that will help us to meet the new air quality standards in America can also help to address climate change. President Bill Clinton 1 Two distinct processes involving the nuclei of atoms can be harnessed, in principle, for energy production: fission—the splitting of a nucleus—and fusion—the joining together of two nuclei. For any given mass or volume of fuel, nuclear processes generate more energy than can be produced through any other fuel-based approach. Another attractive feature of these energy-producing reactions is that they do not produce greenhouse gases (GHG) or other forms of air pollution directly. In the case of nuclear fission—a mature though controversial energy technology—electricity is generated from the energy released when heavy nuclei break apart. In the case of nuclear fusion, much work remains in the quest to sustain the fusion reactions and then to design and build practical fusion power plants. Fusion’s fuel is abundant, namely, light atoms such as the isotopes of hydrogen, and essentially limitless. The most optimistic timetable for fusion development is half a century, because of the extraordinary scientific and engineering challenges involved, but fusion’s benefits are so globally attractive that fusion R&D is an important component of today’s energy R&D portfolio internationally. Fission power currently provides about 17 percent of the world’s electric power. As of December 1996, 442 nuclear power reactors were operating in 30 countries, and 36 more plants were under construction. If fossil plants were used to produce the amount of electricity generated by these nuclear plants, more than an additional 300 million metric tons of carbon would be emitted each year.
    [Show full text]
  • The Nuclear Safeguards Regulations 20
    Draft Regulations laid before Parliament under sections 113(2)(a) and (aa) of the Energy Act 2013 and section 2(5) of the Nuclear Safeguards Act 2018, for approval by resolution of each House of Parliament. DRAFT STATUTORY INSTRUMENTS 20-- No. ENERGY The Nuclear Safeguards Regulations 20-- Made - - - - *** Coming into force - - *** The Secretary of State, in exercise of the powers conferred by sections 74(3), 75, 76, 76A(1)(a) and (b), 76A(2), 76A(3), 76A(6), 113(7), of and paragraphs 2 to 16 of Schedule 2 to the Energy Act 2013(a) and by sections 2(1) and (3) of the Nuclear Safeguards Act 2018, makes the following Regulations: In accordance with section 113(2)(a) and (aa) of the Energy Act and with section 2(5) of the Nuclear Safeguards Act 2018, a draft of these Regulations has been laid before Parliament and approved by a resolution of each House of Parliament. CHAPTER I INTRODUCTION Citation and commencement 1.—(1) These Regulations may be cited as the Nuclear Safeguards Regulations 20--. (2) Subject to paragraph (3), these Regulations come into force on **** 20--. (3) Regulations [ ] come into force on [ ]. Interpretation 2. In these Regulations— “Additional Protocol” means the Protocol dated [ ], entered into between the United Kingdom and the Agency which is additional to the Agreement with the Agency; “adjustment” means an entry made in an accounting record or a report, which is required by these Regulations, and which shows a shipper/receiver difference or material unaccounted for; “Agency” means the International Atomic Energy Agency; (a) 2013 c.32.
    [Show full text]
  • The World Nuclear Industry Status Report 2009 with Particular Emphasis on Economic Issues
    The World Nuclear Industry Status Report 2009 With Particular Emphasis on Economic Issues By Mycle Schneider Independent Consultant, Mycle Schneider Consulting, Paris (France) Project Coordinator Steve Thomas Professor for Energy Policy, Greenwich University (UK) Antony Froggatt Independent Consultant, London (UK) Doug Koplow Director of Earth Track, Cambridge (USA) Modeling and Additional Graphic Design Julie Hazemann Director of EnerWebWatch, Paris (France) Paris, August 2009 Commissioned by German Federal Ministry of Environment, Nature Conservation and Reactor Safety (Contract n° UM0901290) About the Authors Mycle Schneider is an independent international consultant on energy and nuclear policy based in Paris. He founded the Energy Information Agency WISE-Paris in 1983 and directed it until 2003. Since 1997 he has provided information and consulting services to the Belgian Energy Minister, the French and German Environment Ministries, the International Atomic Energy Agency, Greenpeace, the International Physicians for the Prevention of Nuclear War, the Worldwide Fund for Nature, the European Commission, the European Parliament's Scientific and Technological Option Assessment Panel and its General Directorate for Research, the Oxford Research Group, and the French Institute for Radiation Protection and Nuclear Safety. Since 2004 he has been in charge of the Environment and Energy Strategies lecture series for the International MSc in Project Management for Environmental and Energy Engineering Program at the French Ecole des Mines in Nantes. In 1997, along with Japan's Jinzaburo Takagi, he received the Right Livelihood Award, also known as the ―Alternative Nobel Prize‖. Antony Froggatt works as independent European energy consultant based in London. Since 1997 Antony has worked as a freelance researcher and writer on energy and nuclear policy issues in the EU and neighboring states.
    [Show full text]
  • Per-10 Basic Information Relating to Uranium
    PER-10 1 BASIC INFORMATION RELATING TO URANIUM-ENRICHMENT CALCULATIONS AND FUEL REQUIREMENTS FOR NUCLEAR POWER REACTORS by K.T. Brown m 3 ATOMIC ENERGY BOARD Pelindaba PRETORIA Republic of South Africa February 1977 :::: : =:::""""""::::::;::: i:::""""""" :::::::::i:::::::::::::::H:::""»"""::::::::::::::::: BASIC INFORMATION RELATING TO URANIUM-ENRICHMENT CALCULATIONS AND FUEL REQUIREMENTS FOR NUCLEAR POWER REACTORS hy K.T. Brown POSTAL ADDRESS: Atomic Energy Board Private Bag X256 PRETORIA 0001 PELINDABA Fi-ln liai v 1977 ISBN U 86Ü6U 654 9 Pago Page SAMEVATTING 2 ABSTRACT 2 3. REACTOR FUEL REQUIREMENTS 5 1. INTRODUCTION 3 3.1 Reactor Types 5 2. URANIUM ENRICHMENT 3 3.1.1 Pressurised-water roactor 5 2.1 Definitions 3 3.1.2 Boiling-water reactor 5 2.1.1 Natural uranium 3 3.1.3 CANDU-PHW 6 2.1.2 Fissile 3 3.1.4 High-temperature gas-cooled reactor 6 2.1.3 Fertile 3 2.1.5 Liquid-metal-cooled fast breeder reactor ... .6 2.1.4 Enrichment 3 3.2 Nuclear Fuel Cycles 6 2.1.5 Product 3 3.3 Typical Fuel Requirements 6 2.1.6 Feed 3 3.3.1 Pressurised-wator reactor 7 2.1.7 Tails, or waste 3 3.3.2 Boiling-water reactor 8 2.1.8 Cascade 3 3.3.3 CANDU-PHW 9 2.1.9 Separative work 4 3.3.4 High-temperature gas-cooled reactor 9 2.1.10 Separative-work unit 4 3.3.5 Liquid-metal-cooled fast breeder reactor ... 10 2.2 Enrichment Parameters 4 3.3.6 Comparative data 10 2.3 Optimum Tails Assay 5 4.
    [Show full text]
  • Arxiv:2003.07462V2 [Cond-Mat.Mtrl-Sci] 8 Jun 2020
    The Structure of Molten FLiNaK Benjamin A. Frandsena,∗, Stella D. Nickersonb, Austin D. Clarkb, Andrew Solanob, Raju Barala, Jonathan Williamsb, J¨orgNeuefeindc, Matthew Memmottb aDepartment of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, USA. bDepartment of Chemical Engineering, Brigham Young University, Provo, Utah 84602, USA. cNeutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA. Abstract The structure of the molten salt (LiF)0:465(NaF)0:115(KF)0:42 (FLiNaK), a potential coolant for molten salt nuclear reactors, has been studied by ab initio molecular dynamics simulations and neutron total scattering experiments. We find that the salt retains well-defined short-range structural correlations out to approximately 9 A˚ at typical reactor operating temperatures. The experimentally determined pair distribution function can be described with quantitative accuracy by the molecular dynamics simulations. These results indicate that the essential ionic interactions are properly captured by the simulations, providing a launching point for future studies of FLiNaK and other molten salts for nuclear reactor applications.1 Keywords: molten salt reactor, FLiNaK, total scattering, pair distribution function, molecular dynamics Molten salt reactors (MSRs) are a promising nuclear reactor concept in which fuel and/or fertile material are dissolved directly into a halide salt coolant. This has significant benefits over traditional light water reactors (LWRs) that are in operation today, including the capability of producing medical radioisotopes and electricity simultane- ously in large amounts [1] and the possibility of reactor designs that prevent proliferation of weaponizable material, eliminate the risk of meltdown events, and avoid producing long-lived transuranic nuclear waste [2, 3].
    [Show full text]
  • How “When They See Us” and “Chernobyl” Make Us Look These New True-Story Series Manage to Make Depressing, Traumatic Material Not Merely Watchable but Mesmerizing
    How “When They See Us” and “Chernobyl” Make Us Look These new true-story series manage to make depressing, traumatic material not merely watchable but mesmerizing. By Emily Nussbaum The New Yorker, June 17, 2019 https://www.newyorker.com/magazine/2019/06/24/how- when-they-see-us-and-chernobyl-make-us-look In the third episode of “When They See Us,” Ava DuVernay’s bleak, beautiful drama about the Central Park Five, Linda McCray (Marsha Stephanie Blake) visits her son Antron in a juvenile-detention center. “I feel like everybody in the world hate me, Mom,” Antron (Caleel Harris) tells her. “I know it feels like that,” she says, then adds, fiercely, “But I love you enough to make up for everybody.” As music rises, Linda tells her son that she is always with him: “You cry, I cry. You mad, I’m mad. You scared, I’m scared. You free, I’m free.” The camera cuts to autumn leaves—and to the day of Antron’s release from prison, seven years later, as the child actor is replaced by a handsome adult, embracing his mother. “Hi, baby,” Linda says. It’s an elegant, affecting sequence—at once grand and simple, movingly performed— which captures the central ethos of the show. “When They See Us,” on Netflix, is a harrowing story about a hideous injustice: the railroading of a group of five black and Latino boys for the beating and rape of Trisha Meili, who was attacked while jogging in Central Park, in 1989. The show portrays a racist justice system and an equally hellish penal system, as well as media that amplified the lies that put the boys in prison.
    [Show full text]
  • Molten Salts As Blanket Fluids in Controlled Fusion Reactors [Disc 6]
    r1 0 R N L-TM-4047 MOLTEN SALTS AS BLANKET FLUIDS IN CONTROLLED FUSION REACTORS W. R. Grimes Stanley Cantor .:, .:, .- t. This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. om-TM- 4047 Contract No. W-7405-eng-26 REACTOR CHENISTRY DIVISION MOLTEN SALTS AS BLANKET FLUIDS IN CONTROLLED FUSION REACTORS W. R. Grimes and Stanley Cantor DECEMBER 1972 OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37830 operated by UNION CARBIDE CORPORATION for the 1J.S. ATOMIC ENERGY COMMISSION This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, com- pleteness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. i iii CONTENTS Page Abstract ............................. 1 Introduction ........................... 2 Behavior of Li2BeFq in a Eypothetical CTR ............3 Effects of Strong Magnetic Fields .............5 Effects on Chemical Stability .............5 Effects on Fluid Dynamics ...............7 Production of Tritium ..................
    [Show full text]
  • Re-Examining the Role of Nuclear Fusion in a Renewables-Based Energy Mix
    Re-examining the Role of Nuclear Fusion in a Renewables-Based Energy Mix T. E. G. Nicholasa,∗, T. P. Davisb, F. Federicia, J. E. Lelandc, B. S. Patela, C. Vincentd, S. H. Warda a York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD, UK b Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH c Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3GJ, UK d Centre for Advanced Instrumentation, Department of Physics, Durham University, Durham DH1 3LS, UK Abstract Fusion energy is often regarded as a long-term solution to the world's energy needs. However, even after solving the critical research challenges, engineer- ing and materials science will still impose significant constraints on the char- acteristics of a fusion power plant. Meanwhile, the global energy grid must transition to low-carbon sources by 2050 to prevent the worst effects of climate change. We review three factors affecting fusion's future trajectory: (1) the sig- nificant drop in the price of renewable energy, (2) the intermittency of renewable sources and implications for future energy grids, and (3) the recent proposition of intermediate-level nuclear waste as a product of fusion. Within the scenario assumed by our premises, we find that while there remains a clear motivation to develop fusion power plants, this motivation is likely weakened by the time they become available. We also conclude that most current fusion reactor designs do not take these factors into account and, to increase market penetration, fu- sion research should consider relaxed nuclear waste design criteria, raw material availability constraints and load-following designs with pulsed operation.
    [Show full text]
  • DOE EA-2146 Final Environmental Assessment for the MARVEL
    DOE/EA-2146 Final Environmental Assessment for the Microreactor Applications Research, Validation, and Evaluation (MARVEL) Project at Idaho National Laboratory June 2021 DOE/ID-2146 Final Environmental Assessment for the Microreactor Applications Research, Validation, and Evaluation (MARVEL) Project at Idaho National Laboratory June 2021 Prepared for the U.S. Department of Energy DOE Idaho Operations Office i i CONTENTS 1. INTRODUCTION .............................................................................................................................. 1 1.1 Background .............................................................................................................................. 1 1.2 Purpose and Need ..................................................................................................................... 1 2. ALTERNATIVES .............................................................................................................................. 2 2.1 Proposed Action - Microreactor Applications Research, Validation and Evaluation (MARVEL) Project .................................................................................................................. 3 2.1.1 Reactor Structure System ............................................................................................ 5 2.1.2 Secondary Containment Structure .............................................................................. 5 2.1.3 Core System ...............................................................................................................
    [Show full text]