Lwv/L' I .D N. V/./ \Qev

Total Page:16

File Type:pdf, Size:1020Kb

Lwv/L' I .D N. V/./ \Qev Sept. 16, 1958 _ . I w, E, ABBOTT ETAL 2,852,460 FUEL-BREEDER FUEL ELEMENT FOR NUCLEAR REACTOR Filed Aug. 6, 1956 w//%////»;:/N \QE n.V////.//////////.Dv Lwv/l'I - ././4//. mm . 1M5.NLA TOT T T0 BY mm»/ /m m _ ATTORNEY , 2,852,460 United States Patent 0 . i Patented Sept. 16, 1958 1 23 power level, and in heterogeneous reactors this has been 2,852,460 ' set by the uranium temperature in the center of the rod._ To avoid this, and yet maintain a high ?ux, fuel elements FUEL-BREEDER FUEL ELEMENT FOR comprising a cluster of relatively small diameter uranium NUCLEAR REACTOR rods have been designed. However, this only aggravates William E. Abbott, East Pittsburgh, Pa., and Ralph fabricational and decontamination costs. Balent, Tarzana, Calif., assignors, by mesne assign An object of our invention, therefore, is to provide an ments, to the United States of America as represented improved fuel-breeder fuel element. .by the United States Atomic Energy Commission Another object is to provide a fuel-breeder fuel ele ment, wherein the fertile and ?ssionable materials are Application August 6, 1956, Serial No. 602,401 separated ‘and there is a minimum of cladding. 5 Claims. (Cl. 204-1931) Another object is to provide such a fuel element which permits fabrication and decontamination economies. Another object is to provide such a fuel element, where Our invention relates to an improved nuclear reactor 15 in a single, relatively large diameter fuel element is the fuel element, and more particularly to an improved fuel equivalent of a cluster of smaller diameter rods. breeder fuel element. Still another object is to provide such a fuel element of For information concerning the theory, construction improved heat transfer characteristics whereby higher and operation of nuclear reactors, reference‘is made to ?ux levels can be safely reached. Glasstone, “Principles of Nuclear Reactor Engineering” 20 Yet another object is to provide such a fuel element of, (D. Van Nostrand); “The Reactor Handbook” (3 improved heat transfer characteristics, wherein the power volumes) available for sale from the Technical Informa level is not limited by the central temperature of .the fuel tion Service, Oak Ridge, Tennessee; U. S. Patents element. , 2,708,656 and 2,714,577 to Fermi et al.; and to “The A further object is to provide such a fuel element where Proceedings of the International Conference on Peaceful 25 in a single coolant may be used for both the ?ssionable Uses of Atomic‘ Energy,” August 8—20, 1955, Geneva, and fertile material. Switzerland, available for sale at the United Nations’ Book These ‘and other objectives of our invention will become Store, New York, New York. apparent to those skilled in the art from the following ‘Unless otherwise speci?ed, conventional, accepted detailed description, the attached claims and the accom nuclear terminology will be used herein. For example,‘ 30 panying drawings. In the drawings, Figure 1 is a cross “?ssionable material” refers to thermal neutron ?ssionable section of our fuel element and Figure 2 is a longitudinal plutonium, uranium-235, and uranium-233, and ‘,‘fertile section of an embodiment for a particular, known reactor. material” refers to thorium and uranium-238, which are In accordance with our present invention, we have pro capable of transmutation to ?ssionable species by neutron vided an improved fuel element comprising a container, capture and beta decay. When uranium, thorium or plu a central core of fertile material in said container, a ?rst tonium is spoken of, this embraces both the metal and re j bonding material surrounding said core, a sheet of ?ssion fractory oxides, such as ThOZ and U02. able material immediately surrounding said ?rst bonding In the development of economically competitive nuclear material, and a second bonding material surrounding power, particular attention is being given to the conver said ?ssionable material, said seconding bonding material sion or breeding of new ?ssionable species. Since the being in contact with said container. supply of uranium is limited, widespread use of nuclear Our fuel element is notably distinct for it provides fabri power requires the conversion of relatively abundant cational and decontamination simplicity through separa thorium to uranium-233 and of uranium-238 to pluto tion of ?ssionable and fertile material, and through mini nium. The resulting uranium-233 and plutonium can mum cladding. Also contributing to fabricational and then be used for the further conversion of fertile material; decontamination simplicity is the use of a single, rela thus, the potential exists for actually ‘increasing the tively large diameter rod in place of a cluster of smaller amount of ?ssionable material while, at the same time, diameter rods. With the ?ssionable material on the out extracting useful power. Furthermore, successful breed side of the rod, the power level is not limited by a central ing, in providing a by-product of great value, signi?cantly temperature. Concentrating the ?ssionable material reduces the unit cost of generating nuclear power.v nearer the coolant provides for efficient heat transfer, and Fertile material is generally employed in reactors the same coolant isused for both the fertile and ?ssionable known as “breeder-type” reactors, wherein the breeding is material. The conversion ‘factor is surprisingly quite conducted along with the consumption of ?ssionable ma high; contrary to what might be expected, the ?ssionable terial. The manner and form in which the fertile material material surrounding the fertile material does not act as a is employed is of considerable‘ importance, for low fabri ?lter or neutron sink. With conversion occurring right cation and recovery costs are essential to the economical in the fuel element, new ?ssionable material is created, operation of such reactors. .In the past, fertile material which, in turn, can be used to sustain the chain ?ssion re has been employed in various ways. For example, pluto action. Having such marked advantages, our fuel element nium has been bred from uranium-238 in large, graphite has great promise of contributing to the economical de moderated, air or water-cooled, natural uranium reactors. 60 velopment of nuclear power. Thorium may be used in uranium-thorium alloys and as Referring now to Figure l, fertile material 1, of a blanket material in two-region reactors. In such two thorium or uranium-238, occupies the central core of the region reactors, the thorium has been employed in various element. Bonding agent 2 surrounds and is in contact forms, such as in solid rods, thoriasuspensions and nitrate ' with the core 1 and may be composed of a suitable molten solutions. Where the ?ssionable and fertile materials inorganic medium, such as sodium, sodium-potassium, have been mixed, they must be separated inreprocessing, ‘bismuth, bismuth-tin and fused ?uoride salts, for instance, thereby raising costs. Assembly costs have also been alkali ?uorides. A thin cylinder containing ?ssionable high, due, in many cases, to the use of cladding materials; material 3, such as uranium or plutonium, is in contact little or no cladding is ideal. Physical separation allows with bonding material 2. When uranium is used, it is for easier reprocessing, since most of the ?ssion products 70 preferably highly. enriched (e. g., at least 90%) in a ?s will remain in the fuel. Heat transfer problems have also sionable species, such as U-223 or U-235. Surrounding been severe. Heat removal ability usually de?nes the the ?ssionable material is a second bonding agent 4 of 2,852,460 3 4 composition similar to bonding agent 2. Bonding agent C. Operating data: 4 is in contact with the ?ssionable material and with the ‘Maximum temperature of ?s interior surface of container 5. The container may be sionable material _______ __ 1200° F. composed of any metal of suitable nuclear and metal Maximum temperature of fer lurgical properties, for instance, zirconium or stainless tile material ____________ __ 1800° F. (Th). steel. - The bonding agents provide thermal ‘contact for Number of rods __________ __ 31. ef?cient heat transfer; and they also permit small dimen Power level ______________ __ 20 Mw. sional changes in the solid ‘material due to radiation and thermal cycling, without rupture of the fuel element. While the above example shows the particular suit An example of'our invention'will now beggiven showing ability and adaptability of our invention for the SRE, it its adaptability to a particular reactor. This reactor is is understood that this is only by way of illustration and is not restrictive. the Sodium Reactor “Experiment reactor (SRE), a of our fuel-breeder Employingassembly, suitablethe fundamental modi?cation features. may 1 : i graphite-moderated, sodium cooled reactor which is fully and completely described ‘in a paper delivered by be made for its use in reactors of other design. There-' W. E. Parkins at the Geneva Conference ‘on Peaceful fore, our invention should be limited only as is indicated Uses ‘of Atomic Energy, entitled “The Sodium Reactor by the appended claims. Experiment.” This paper is available for sale. at the Having thus described our invention, we claim: United Nations’ Book Store, New York, New York. 1. A reactor fuel element comprising a thimble, a cen Unless otherwise indicated, the assembly features of our tral rod in said thimble, said thimble and said rod having . fuel rod in the reactor are the same as that shown in the relatively low thermal neutronabsorption cross sections,‘ paper, except that a single fuel rod replaces the seven rod a core of a fertile material selected from the group con fuel cluster in each fuel chamber. sisting of uranium-238 and thorium immediately sur- j _ Figure 2 is a longitudinal cross-section ‘of our fuel ele rounding saidrod, said core‘surrounded by a ?rst thermal; ‘ ment in a fuel channel of the SRE.
Recommended publications
  • The Electronuclear Conversion of Fertile to Fissile Material
    UCRL-52144 THE ELECTRONUCLEAR CONVERSION OF FERTILE TO FISSILE MATERIAL C. M. Van Atta J. D. Lee H. Heckrotto October 11, 1976 Prepared for U.S. Energy Research & Development Administration under contract No. W-7405-Eng-48 II\M LAWRENCE lUg LIVERMORE k^tf LABORATORY UnrmsilyotCatftxna/lJvofmofe s$ PC DISTRIBUTION OF THIS DOCUMENmmT IS UMUMWTED NOTICE Thii npoit WM prepared w u account of wot* •pomond by UM Uiilttd Stalwi GovcmiMM. Nittim Uw United Stain nor the United Statn Energy tUwardi it Development AdrnWrtrtUon, not «y of thei* employee!, nor any of their contricton, •ubcontrecton, or their employe*!, makti any warranty, expreai « Implied, or muMi any toga) liability oc reeponafctUty for the accuracy, completenni or uMfulntat of uy Information, apperatui, product or proem dlecloead, or repreienl. that tu UM would not *nfrkig» prrrtt*)}MWiwd r%hl». NOTICE Reference to a oompmy or product rum don not imply approval or nconm ndatjon of the product by the Untnrtity of California or the US. Energy Research A Devetopnient Administration to the uchvton of others that may be suitable. Printed In the United Stitei or America Available from National Technical Information Service U.S. Department of Commerce 528S Port Royal Road Springfield, VA 22161 Price: Printed Copy S : Microfiche $2.25 DMimtic P»t» Ranflt PHca *•#» Rtnft MM 001-025 $ 3.50 326-350 10.00 026-050 4.00 351-375 10.50 051-075 4.50 376-400 10.75 076-100 5.00 401-425 11.00 101-125 5.50 426-450 31.75 126-150 6.00 451-475 12.00 151-175 6.75 476-500 12.50 176-200 7.50 501-525 12.75 201-225 7.75 526-550 13.00 526-250 8.00 551-575 13.50 251-275 9.00 576-600 I3.7S 276-300 9.25 601 -up 301-325 9.75 *Ml J2.50 fot «ch iddltlOMl 100 pip tacmitMt from 601 ID 1,000 flfcK IM 54.50 for eicli iMUknal I0O plfe feenmMI om 1,000 p*o.
    [Show full text]
  • Advanced Reactors with Innovative Fuels
    Nuclear Science Advanced Reactors with Innovative Fuels Workshop Proceedings Villigen, Switzerland 21-23 October 1998 NUCLEAR•ENERGY•AGENCY OECD, 1999. Software: 1987-1996, Acrobat is a trademark of ADOBE. All rights reserved. OECD grants you the right to use one copy of this Program for your personal use only. Unauthorised reproduction, lending, hiring, transmission or distribution of any data or software is prohibited. You must treat the Program and associated materials and any elements thereof like any other copyrighted material. All requests should be made to: Head of Publications Service, OECD Publications Service, 2, rue AndrÂe-Pascal, 75775 Paris Cedex 16, France. OECD PROCEEDINGS Proceedings of the Workshop on Advanced Reactors with Innovative Fuels hosted by Villigen, Switzerland 21-23 October 1998 NUCLEAR ENERGY AGENCY ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT Pursuant to Article 1 of the Convention signed in Paris on 14th December 1960, and which came into force on 30th September 1961, the Organisation for Economic Co-operation and Development (OECD) shall promote policies designed: − to achieve the highest sustainable economic growth and employment and a rising standard of living in Member countries, while maintaining financial stability, and thus to contribute to the development of the world economy; − to contribute to sound economic expansion in Member as well as non-member countries in the process of economic development; and − to contribute to the expansion of world trade on a multilateral, non-discriminatory basis in accordance with international obligations. The original Member countries of the OECD are Austria, Belgium, Canada, Denmark, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States.
    [Show full text]
  • Abundant Thorium As an Alternative Nuclear Fuel Important Waste Disposal and Weapon Proliferation Advantages
    Energy Policy 60 (2013) 4–12 Contents lists available at SciVerse ScienceDirect Energy Policy journal homepage: www.elsevier.com/locate/enpol Abundant thorium as an alternative nuclear fuel Important waste disposal and weapon proliferation advantages Marvin Baker Schaffer n RAND Corporation, 1776 Main Street, Santa Monica, CA 90407, United States HIGHLIGHTS Thorium is an abundant nuclear fuel that is well suited to three advanced reactor configurations. Important thorium reactor configurations include molten salt, CANDU, and TRISO systems. Thorium has important nuclear waste disposal advantages relative to pressurized water reactors. Thorium as a nuclear fuel has important advantages relative to weapon non-proliferation. article info abstract Article history: It has long been known that thorium-232 is a fertile radioactive material that can produce energy in Received 10 May 2012 nuclear reactors for conversion to electricity. Thorium-232 is well suited to a variety of reactor types Accepted 26 April 2013 including molten fluoride salt designs, heavy water CANDU configurations, and helium-cooled TRISO- Available online 30 May 2013 fueled systems. Keywords:: Among contentious commercial nuclear power issues are the questions of what to do with long-lived Thorium radioactive waste and how to minimize weapon proliferation dangers. The substitution of thorium for Non-proliferation uranium as fuel in nuclear reactors has significant potential for minimizing both problems. Nuclear waste reduction Thorium is three times more abundant in nature than uranium. Whereas uranium has to be imported, there is enough thorium in the United States alone to provide adequate grid power for many centuries. A well-designed thorium reactor could produce electricity less expensively than a next-generation coal- fired plant or a current-generation uranium-fueled nuclear reactor.
    [Show full text]
  • Candu Fuel-Cycle Vision Xa9953247
    CANDU FUEL-CYCLE VISION XA9953247 P.G. BOCZAR Fuel and Fuel Cycle Division, Chalk River Laboratories, Atomic Energy of Canada Limited, Chalk River, Ontario, Canada Abstract The fuel-cycle path chosen by a particular country will depend on a range of local and global factors. The CANDU® reactor provides the fuel-cycle flexibility to enable any country to optimize its fuel-cycle strategy to suit its own needs. AECL has developed the CANFLEX® fuel bundle as the near-term carrier of advanced fuel cycles. A demonstration irradiation of 24 CANFLEX bundles in the Point Lepreau power station, and a full-scale critical heat flux (CHF) test in water are planned in 1998, before commercial implementation of CANFLEX fuelling. CANFLEX fuel provides a reduction in peak linear element ratings, and a significant enhancement in thermalhydraulic performance. Whereas natural uranium fuel provides many advantages, the use of slightly enriched uranium (SEU) in CANDU reactors offers even lower fuel-cycle costs and other benefits, such as uprating capability through flattening the channel power distribution across the core. Recycled uranium (RU) from reprocessing spent PWR fuel is a subset of SEU that has significant economic promise. AECL views the use of SEU/RU in the CANFLEX bundle as the first logical step from natural uranium. High neutron economy enables the use of low-fissile fuel in CANDU reactors, which opens up a spectrum of unique fuel-cycle opportunities that exploit the synergism between CANDU reactors and LWRs. At one end of this spectrum is the use of materials from conventional reprocessing: CANDU reactors can utilize the RU directly without re-enrichment, the plutonium as conventional mixed-oxide (MOX) fuel, and the actinide waste mixed with plutonium in an inert-matrix carrier.
    [Show full text]
  • The Impact of Partitioning and Transmutation on the Risk Assesment of a Spent Nuclear Fuel
    h/e/-se SE0608415 The Impact of Partitioning and Transmutation on the Risk Assesment of a Spent Nuclear Fuel Naima Amrani and Ahmed Boucenna UFAS University Physics Department Faculty of sciences Setif 19000 ALGERIA I. INTRODUCTION Nuclear power produces steadily a mass of spent fuel which contains a part from the short lived fission products, a significant amount of actinides and fission products with height toxicity and long half-lives. These nuclides constitute the long-term radiotoxic inventory which remains as a hazard far beyond human perception. The reprocessing recycles most of the major actinides (Uranium and Plutonium), while the Minor Actinides (MA) (mainly Neptunium: Np, Americium: Am and Curium: Cm) with half lives up to 2 million years remain with the fission products which are vitrified before being buried in deep repositories. Partitioning of the minor actinides and some of the fission products is an efficient method to reduce the long term radiotoxicity of the residual waste components with a factor proportional to the separation yield. The improved minor actinide nuclides would be recycled into a fuel cycle activities and returned to the reactor inventory of fissile and fertile material for transmutation to short lived isotopes. Progressively the MAs and some long-lived fission product (LLFP) could be burn up out. This option would reduce the long term contamination hazard in the high-level waste and shorten the time interval necessary to keep the actinides containing wastes confined in a deep geologic repository. Partitioning and Transmutation (P&T) is, in principal, capable of reducing the radiotoxicity period, while a number of practical difficult remain to be surmounted.
    [Show full text]
  • Nuclear Fuel Cycles Technology Assessment
    Clean Power Quadrennial Technology Review 2015 Chapter 4: Advancing Clean Electric Power Technologies Technology Assessments Advanced Plant Technologies Biopower Carbon Dioxide Capture and Storage Clean Power Value-Added Options Carbon Dioxide Capture for Natural Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle U.S. DEPARTMENT OF Wind Power ENERGY Clean Power Quadrennial Technology Review 2015 Nuclear Fuel Cycles Chapter 4: Technology Assessments Introduction and Background The Nuclear Fuel Cycle (NFC) is defined as the total set of operations required to produce fission energy and manage the associated nuclear materials. It can have different attributes, including the extension of natural resources, or the minimization of waste disposal requirements. The NFC, as depicted in Figure 4.O.1, is comprised of a set of operations that include the extraction of uranium (U) resources from the earth (and possibly from seawater), uranium enrichment and fuel fabrication, use of the fuel in reactors, interim storage of used nuclear fuel, the optional recycle of the used fuel, and the final disposition of used fuel and waste forms from the recycling processes. Thorium (Th) fuel cycles have been proposed also, but have not been commercially implemented). Figure 4.O.1 Schematic of the uranium based Nuclear Fuel Cycle 1 Quadrennial Technology Review 2015 Clean Power TA 4.O: Nuclear Fuel Cycles The nuclear fuel cycle is often grouped into three classical components (front-end, reactor, and back-end): Front End: The focus of the front end of the nuclear fuel cycle is to deliver fabricated fuel to the reactor.
    [Show full text]
  • Cumberland County, North Carolina Emergency Operations Plan
    Cumberland County, North Carolina Emergency Operations Plan July 14, 2017 Prepared By Excelliant Services, Inc. 1201 Lee Branch Lane Birmingham, Al 35242 STATEMENT OF APPROVAL The undersigned approves the Cumberland County Emergency Operations Plan and agrees to the responsibilities assigned to their organization. _______________________________________ _________________ Chairman, County Board of Commissioners Date _______________________________________ _________________ County Manager, Cumberland County Date _______________________________________ _________________ Sheriff, Cumberland County Date _______________________________________ _________________ Assistant County Manager, Cumberland County Date _______________________________________ _________________ Director, Emergency Services, Cumberland County Date _______________________________________ _________________ Director, Emergency Medical Service Date of Cape Fear Valley Health Systems _______________________________________ _________________ Director, Finance Department, Cumberland County Date _______________________________________ _________________ Director, Health Department, Cumberland County Date _______________________________________ _________________ Director, Information Services, Cumberland County Date ______________________________________ _________________ Director, Parks and Recreation Department Date _______________________________________ _________________ Director, Personnel, Cumberland County Date _______________________________________ _________________ Director,
    [Show full text]
  • Plutonium Management in the Medium Term
    Nuclear Science ISBN 92-64-02151-5 Plutonium Management in the Medium Term A Review by the OECD/NEA Working Party on the Physics of Plutonium Fuels and Innovative Fuel Cycles (WPPR) © OECD 2003 NEA4451 NUCLEAR ENERGY AGENCY ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT Pursuant to Article 1 of the Convention signed in Paris on 14th December 1960, and which came into force on 30th September 1961, the Organisation for Economic Co-operation and Development (OECD) shall promote policies designed: − to achieve the highest sustainable economic growth and employment and a rising standard of living in Member countries, while maintaining financial stability, and thus to contribute to the development of the world economy; − to contribute to sound economic expansion in Member as well as non-member countries in the process of economic development; and − to contribute to the expansion of world trade on a multilateral, non-discriminatory basis in accordance with international obligations. The original Member countries of the OECD are Austria, Belgium, Canada, Denmark, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States. The following countries became Members subsequently through accession at the dates indicated hereafter: Japan (28th April 1964), Finland (28th January 1969), Australia (7th June 1971), New Zealand (29th May 1973), Mexico (18th May 1994), the Czech Republic (21st December 1995), Hungary (7th May 1996), Poland (22nd November 1996); Korea (12th December 1996) and the Slovak Republic (14th December 2000). The Commission of the European Communities takes part in the work of the OECD (Article 13 of the OECD Convention).
    [Show full text]
  • Fusion Chain Reaction
    Fusion Chain Reaction In a more generalized sense, a nuclear fusion reaction can be considered a nuclear chain reaction: it occurs under extreme pressure and temperature conditions, which are maintained by the energy released in the fusion process. Critical Mass Although two to three neutrons are produced for every fission, not all of these neutrons are available for continuing the fission reaction. If the conditions are such that the neutrons are lost at a faster rate than they are formed by fission, the chain reaction will not be self-sustaining. At the point where the chain reaction can become self-sustaining, this is referred to as critical mass. In an atomic bomb, a mass of fissile material greater than the critical mass must be assembled instantaneously and held together for about a millionth of a second to permit the chain reaction to propagate before the bomb explodes The amount of a fissionable material's critical mass depends on several factors; the shape of the material, its composition and density, and the level of purity. A sphere has the minimum possible surface area for a given mass, and hence minimizes the leakage of neutrons. By surrounding the fissionable material with a suitable neutron “reflector”, the loss of neutrons can be reduced and the critical mass can be reduced. TYPES OF NUCLEAR MATERIALS (a) Special Nuclear Material consists of uranium-233 or uranium-235, enriched uranium, or plutonium. (b) Source Material is natural uranium or thorium or depleted uranium that is not suitable for use as reactor fuel. (c) Byproduct Material, in general, is nuclear material (other than special nuclear material) that is produced or made radioactive in a nuclear reactor.
    [Show full text]
  • Foia/Pa-2014-0073
    Chapter 6 RECOMMENDATIONS Post-fission radioactive waste is highly toxic for extremely long periods of time--at least thousands, perhaps hundreds of thousands, or even a million years. Large quantities of HL waste are being temporarily and imperfectly stored in tanks at plutonium production facilities, and large amounts of spent fuel are being discharged periodically from commercial power reactors into increas­ ingly crowded storage pools. Whether optimists or pessimists, as we look to the future, we share an expectation that national security and energy supply, and the complex of institutions supporting those vital imperatives, will surely result in the creation of rapidly growing volumes of radioactive waste in the United States. There is an unqerstandable tendency to shrink from this grim reality. An optimist may deny there is a serious problem because time and money will provide technology for a variety of solutions. A pessimist may deny there is a solution because--sometime, somewhere--man-made or natural cataclysms will inevitably breach any technological containment, and toxic radioactive waste will then spill or seep into the biosphere. The morality of the U.S. predicament is arguable. Our survival as a nation seems to rest heavily on our nuclear arsenal, and the survival and well-being of our own and other ~societies depend on adequate energy. But is it moral to produce any toxic material with a half-life of 24,000 years? And is it right to continue activities which generate radioactive waste when a safe method for oermanent disposal has not been fully demonstrated? 6-2 When viewed in such apocalyptic terms, the radioactive waste problem tends to befuddle the mind, polarize the public, and stale- mate the government.
    [Show full text]
  • MASS FLOWS for Lmfbrs FUELED with VARIOUS TYPES of PLUTONIUM and FERTILE MATERIAL
    PNL-3249 UC-78 3 3679 00054 4074 MASS FLOWS FOR LMFBRs FUELED WITH VARIOUS TYPES OF PLUTONIUM AND FERTILE MATERIAL U. P. Jenquin December 1979 Prepared for the U.S. Department of Energy under Contract EY-76-C-06-1830 Pacific Northwest Laboratory Richland, Washington 99352 CONTENTS ACKNOWLEDGMENT • v INTRODUCTION 1 SUMMARY 3 REACTOR DESCRIPTION . 4 CALCULATION MODEL 6 CROSS SECTIONS 6 REACTIVITY AND BURNUP 7 RESUL TS 9 ENRICHMENT 9 MASS FLOW • 11 BREEDING RATIO . 13 CONCLUS IONS 15 REFERENCES 17 APPENDIX A - MASS-FLOW DATA A.l iii ACKNOWLEDGMENT Appreciation is expressed to D. R. Marr of the Hanford Engineering Devel­ opment Laboratory (HEDL) for making the computer codes and cross sections available. v INTRODUCTION Under the current policy of operating light water reactors on a once­ through cycle until the breeder reactor is introduced, breeder reactors must obtain their plutonium initially from the spent U0 2 fuel. This report pre­ sents results of neutronics analyses performed to determine fueling require­ ments and mass flows for a typical 1200 megawatt electric (MWe) liquid metal fast breeder reactor (LMFBR). This information could be used in future anal­ yses of requirements for particular generating scenarios. In performing the analyses, three plutonium compositions were considered to fuel the reactor. The composition depended on the amount of irradiation either a U02 or Pu02-Th0 2 fuel had received in a light water reactor (LWR). Uranium and thorium fertile materials were considered. Calculations were per­ formed to determine the cross sections, reactivity, and burnup for each fuel­ fertile material configuration. Based on these calculations, the mass flows, plutonium enrichment requirements, and breeding ratios for each configuration were determined.
    [Show full text]
  • Plutonium Fuel in Thermal Reactors; And
    NUCLEAR ENERGY AGENCY AN ASSESSMENT NUCLEAR ENERGY AGENCY PLUTONIUM RIB AN ASSESSMENT REPORT BY AN EXPERT GROUP ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT Pursuant to article 1 of the Convention signed in Paris on 14th December 1960, and which came into force on 30th September 1961, the Organisation for Economic Co-operation and Development (OECD) shall promote policies designed: - to achieve the highest sustainable economic growth and employment and a rising standard of living in Member countries, while maintaining financial stability, and thus to contribute to the development of the world economy; - to contribute to sound economic expansion in Member as well as non-member countries in the process of economic development; and - to contribute to the expansion of world trade on a multilateral, non-discriminatory basis in accordance with international obligations. The original Member countries of the OECD are Austria, Belgium, Canada, Denmark, France, the Federal Republic of Germany, Greece, Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States. The following countries became Members subsequently through accession at the dates indicated hereafter: Japan (28th April 1964), Finland (28th January 1969), Australia (7th June 1971) and New Zealand (29th May 1973). The Socialist Federal Republic of Yugoslavia takes part in some of the work of the OECD (agreement of 28th October 1961). The OECD Nuclear Energy Agency (NEA) was established on 1st February 1958 under the name of the OEEC European Nuclear Energy Agency. It received its present designation on 20th April 1972, when Japan became its first non-European full Member.
    [Show full text]