Download This Article PDF Format

Total Page:16

File Type:pdf, Size:1020Kb

Download This Article PDF Format RSC Advances View Article Online REVIEW View Journal | View Issue Recent developments on oximes to improve the blood brain barrier penetration for the treatment of Cite this: RSC Adv., 2020, 10, 4465 organophosphorus poisoning: a review Mohd Nor Faiz Norrrahim,a Mas Amira Idayu Abdul Razak,b Noor Aisyah Ahmad Shah,c Herdawati Kasim,c Wan Yusmawati Wan Yusoff,c Norhana Abdul Halim,c Siti Aminah Mohd Nor,c Siti Hasnawati Jamal,c Keat Khim Ong,ac Wan Md Zin Wan Yunus,d Victor Feizal Knight a and Noor Azilah Mohd Kasim *ac Organophosphorus (OP) compounds are highly toxic synthetic compounds which have been used as pesticides and developed as warfare nerve agents. They represent a threat to both military and civilian populations. OP pesticides affect the nervous system and are thought to have caused at least 5 million deaths since their discovery in the 1930s. At present the treatment of OP nerve agent poisoning commonly involves the use of parenteral oximes. However, the blood brain barrier (BBB) remains Creative Commons Attribution-NonCommercial 3.0 Unported Licence. a challenge in the delivery of oximes to the central nervous system (CNS). This is because almost all macromolecule drugs (including oximes) fail to pass through the BBB to reach the CNS structures. The presence of a permanent cationic charge in oximes has made these compounds inefficient in crossing the BBB. Thus, oximes are unable to reactivate acetylcholinesterase (AChE) in the CNS. Using current structural and mechanistic understanding of the BBB under both physiological and pathological conditions, it becomes possible to design delivery systems for oximes and other drugs that are able to Received 21st October 2019 cross the BBB effectively. This review summarises the recent strategies in the development of oximes Accepted 16th December 2019 which are capable of crossing the BBB to treat OP poisoning. Several new developments using oximes DOI: 10.1039/c9ra08599h are reviewed along with their advantages and disadvantages. This review could be beneficial for future This article is licensed under a rsc.li/rsc-advances directions in the development of oxime and other drug delivery systems into the CNS. Open Access Article. Published on 27 January 2020. Downloaded 10/1/2021 2:18:24 PM. aResearch Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, cDepartment of Chemistry and Biology, Centre for Defence Foundation Studies, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia. E-mail: azilah@upnm. Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala edu.my; Fax: +603-90514291; Tel: +6013-3906789 Lumpur, Malaysia bDepartment of Defence Science, Faculty of Defence Science and Technology, dResearch Centre for Tropicalisation, Universiti Pertahanan Nasional Malaysia, Kem Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia Lumpur, Malaysia Mohd Nor Faiz Norrrahim has Wan Md Zin Wan Yunus is a PhD in Nanotechnology. He is working as a Professor at the working as a post-doctoral National Defence University of fellow at the Research Center for Malaysia. His research interests Chemical Defence, National are materials, chemical Defence University of Malaysia. synthesis, nanomaterials, poly- His research interests are nano- mers, advanced materials, and technology, organic chemistry, biocomposites. materials science, biopolymers and biotechnology. This journal is © The Royal Society of Chemistry 2020 RSC Adv.,2020,10,4465–4489 | 4465 View Article Online RSC Advances Review Introduction on efficacy testing of experimental oximes claimed that the oximes have difficulty in reactivating the AChE located in the 7,9 Organophosphorus (OP) compounds were rst developed as CNS. In addition to this potential lethality of this over- insecticides in the 1930s before being later developed as stimulation, of great concern also is the fact that AChE inhibi- a weapon of war. OP poisoning has been a frequent cause of tion by OPs in the CNS can lead to seizures occurring from an admission of people to hospitals and Intensive Care Units (ICU) excess of ACh-mediated activation of the excitotoxic gluta- in developing countries.1 OP poisoning causes about 3 000 000 matergic pathways which can prolong seizures and thus lead to 17,18 acute intoxications annually, 300 000 of which lead to fatali- brain damage. It has also been suggested that exposure to ties.2 OPs that were developed as chemical warfare nerve agents sub-lethal doses of OP can dramatically impact CNS mediated (CWAs) are all highly toxic and dangerous.3–5 OP nerve agents behavioural attributes such as decreased ability to perform 12 have been used and are most likely to be used in the future by tasks. All the currently available oxime reactivators are terrorists and dictators around the world because of their rela- quaternary oximes. Quaternary pyridinium aldoximes have tively easy synthesis and availability of suitable delivery relatively contained permanent positive charges which provides ff systems.6 Warfare and terrorist use of CWAs include the Aum little or no protection against the neurological e ects of OP Shinrikyo terrorist attack in the Tokyo subway in 1995, the exposure in the CNS due to their poor blood brain barrier (BBB) 19,20 1980–1988 Iraq–Iran war where Iraq reportedly used nerve penetration. agents against Iranian troops and later on Kurd civilians and The BBB is a highly selective permeable membrane system the murder of a family member of the North Korea Leader, Kim responsible for maintaining homeostasis by regulating the Jong Nam on February 2017 in Kuala Lumpur.7–9 Despite chemical environment, immune cell transport, and the entry of 21,22 international efforts aimed at regulating and lessening the use toxins into the CNS. The success rate of BBB penetration for 23–25 of these environmentally toxic compounds, more than 100 drugs such as oximes is very low. There are several limita- different OP compounds are still being used intensively as tions imposed by the BBB which includes molecule size, ffl Creative Commons Attribution-NonCommercial 3.0 Unported Licence. pesticides, with only unreliable or sporadic monitoring of the hydrophilicity, polarity, substrate speci city, and active e ux 26–29 environment and workers involved in their use. mechanisms. These properties however, are lacking in most ff OP poisonings involve the inhibition of enzyme acetylcho- oxime structures. Therefore, the development of e ective linesterase (AChE) that physiologically plays an important role measures to counteract the problem of BBB penetration by in neurotransmission.10–12 This will result in the over- oximes in order to treat OP poisoning remains a challenging stimulation of cholinergic receptors by acetylcholine (ACh) issue. Investigations to develop oximes that can penetrate which will occur in the peripheral nervous system, central through the BBB has been reported as one of the current areas 30 nervous system (CNS) and at neuromuscular junctions causing of research interest in the treatment of OP poisonings. To the cholinergic crises, seizures, respiratory arrest, bronchorrhea best of our knowledge, there is lack of papers that discuss on the This article is licensed under a and ultimately lead to fatal consequences.13,14 Current treat- approaches formulated towards BBB penetration of oximes for ment of OP poisonings consists of the administration of OP poisoning treatment. a muscarinic receptor antagonist (e.g. atropine), which coun- Open Access Article. Published on 27 January 2020. Downloaded 10/1/2021 2:18:24 PM. teracts the excessive muscarinic stimulation, and also the Organophosphorus nerve agents administration of an AChE reactivator (pyridinium oximes), which reactivates the physiological function of AChE.3,15,16 The G-series and V-series are the two major classes of OP nerve Successful reactivation of AChE can terminate over- agents.31 Tabun was the rst of the G-series OP nerve agents stimulation of the muscarinic and nicotinic receptors by ACh developed in 1936 by a German scientist named Gerhard and thus prevent further neurotoxicity. However, several reports Schroeder.32 This compound was developed as a pesticide for the chemical manufacturer IG Farbenindustrie. Its lethal Victor Feizal Knight is working Noor Azilah Mohd Kasim is as a Professor at the National working as an Associate Defence University of Malaysia. Professor at the Department of He is also the director of the Defence Science, National Research Center for Chemical Defence University of Malaysia. Defence. His expertise is military Her research interests are medicine and health, and organic chemistry, chemistry, biomedical and chemical materials science and sensors defence. development. 4466 | RSC Adv.,2020,10,4465–4489 This journal is © The Royal Society of Chemistry 2020 View Article Online Review RSC Advances properties lead to its use as a weapon against humans as well as hydrolysis of ACh into choline and acetic acid. However, inhi- for the development of other weaponised OPs. These were the bition of AChE function leads to excessive amount of ACh, G-series nerve agents and the letter ‘G’ referred to agents accumulating at the neuron synapse. This increased amount of developed by the Germans. Later on, by the end of World War II, ACh causes several signs and symptoms of poisoning as German scientists had developed several other OP nerve agents described in the introduction section. The mechanism of such as tabun (GA), soman (GD), sarin (GB) and cyclosarin (GF) toxicity is identical to the one observed in OP exposure.35 which were synthesised in certain quantities that could be used The mechanism of inhibition of AChE by OP nerve agents is as weapons of war. Aer World War II, the V-series of OP nerve shown in Fig. 2(B). This inhibition action involves successive agents, with the initial agent being known as VX was discovered chemical events. The rst is phosphorylation of the active site by Dr Ranajit Ghosh in 1949, a chemist working in England.
Recommended publications
  • Efficacy of Trimedoxime in Mice Poisoned with Dichlorvos, Heptenophos Or Monocrotophos
    CORE Metadata, citation and similar papers at core.ac.uk Provided by FarFar - Repository of the Faculty of Pharmacy, University of Belgrade C Basic & Clinical Pharmacology & Toxicology 2005, 96, 111–117. Printed in Denmark . All rights reserved Copyright C ISSN 1742-7835 Efficacy of Trimedoxime in Mice Poisoned with Dichlorvos, Heptenophos or Monocrotophos Biljana Antonijevic´1, Dubravko Bokonjic´2, Milosˇ P. Stojiljkovic´2, Vesna Kilibarda2, Zoran A. Milovanovic´2, Mirjana Nedeljkovic´1 and Matej Maksimovic´1 1Institute of Toxicological Chemistry, School of Pharmacy, University of Belgrade, Vojvode Stepe 450, and 2National Poison Control Centre, Military Medical Academy, Crnotravska 17; 11000 Belgrade, Serbia and Montenegro (Received June 18, 2004; Accepted September 3, 2004) Abstract: The aim of the study was to examine antidotal potency of trimedoxime in mice poisoned with three direct dimethoxy-substituted organophosphorus inhibitors. In order to assess the protective efficacy of trimedoxime against dichlorvos, heptenophos or monocrotophos, median effective doses and efficacy half-times were calculated. Trimedoxime (24 mg/kg intravenously) was injected 5 min. before 1.3 LD50 intravenously of poisons. Activities of brain, diaphragmal and erythrocyte acetylcholinesterase, as well as of plasma carboxylesterases were determined at different time intervals (10, 40 and 60 min.) after administration of the antidotes. Protective effect of trimedoxime decreased according to the following order: monocrotophos Ͼ heptenophos Ͼ dichlorvos. Administration of the oxime produced a significant reacti- vation of central and peripheral acetylcholinesterase inhibited with dichlorvos and heptenophos, with the exception of erythrocyte acetylcholinesterase inhibited by heptenophos. Surprisingly, trimedoxime did not induce reactivation of mon- ocrotophos-inhibited acetylcholinesterase in any of the tissues tested.
    [Show full text]
  • Acetylcholinesterase: the “Hub” for Neurodegenerative Diseases And
    Review biomolecules Acetylcholinesterase: The “Hub” for NeurodegenerativeReview Diseases and Chemical Weapons Acetylcholinesterase: The “Hub” for Convention Neurodegenerative Diseases and Chemical WeaponsSamir F. de A. Cavalcante Convention 1,2,3,*, Alessandro B. C. Simas 2,*, Marcos C. Barcellos 1, Victor G. M. de Oliveira 1, Roberto B. Sousa 1, Paulo A. de M. Cabral 1 and Kamil Kuča 3,*and Tanos C. C. França 3,4,* Samir F. de A. Cavalcante 1,2,3,* , Alessandro B. C. Simas 2,*, Marcos C. Barcellos 1, Victor1 Institute G. M. ofde Chemical, Oliveira Biological,1, Roberto Radiological B. Sousa and1, Paulo Nuclear A. Defense de M. Cabral (IDQBRN),1, Kamil Brazilian Kuˇca Army3,* and TanosTechnological C. C. França Center3,4,* (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; [email protected] (M.C.B.); [email protected] (V.G.M.d.O.); [email protected] 1 Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army (R.B.S.); [email protected] (P.A.d.M.C.) Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; 2 [email protected] Mors Institute of Research (M.C.B.); on Natural [email protected] Products (IPPN), Federal (V.G.M.d.O.); University of Rio de Janeiro (UFRJ), CCS,[email protected] Bloco H, Rio de Janeiro (R.B.S.); 21941-902, [email protected] Brazil (P.A.d.M.C.) 32 DepartmentWalter Mors of Institute Chemistry, of Research Faculty of on Science, Natural Un Productsiversity (IPPN),
    [Show full text]
  • Medical Aspects of Chemical and Biological Warfare, Index
    Index INDEX A Aircrew uniform, integrated battlefield (AUIB), 373 Air delivery Aberdeen Proving Ground, Maryland, 398, 409–410 history, 28, 31, 34–35, 49–50 See also Edgewood Arsenal, Maryland See also Aerosol; Inhalational injury; specific agent ABG Airplane smoke tanks, 31 See Arterial blood gases (ABG) AIT Abortion See Aeromedical Isolation Team (AIT) septic, in brucellosis, 516 Alarms, 377–383 Abrin, 610, 632 biological agent, 431 Abrus precatorius, 610, 632 history, 23, 53, 60–62, 66–67 AC LOPAIR, E33 Area Scanning, 53 See Hydrogen cyanide (AC) M8A1 Automatic Chemical Agent, 380–381 Acetaminophen, 627 M21 Remote Sensing Chemical Agent (RSCAAL), 381 Acetylcholine (ACh), 132–134, 136, 159, 647 Portable Automatic Chemical Agent, 60–62 Acetylcholinesterase (AChE), 131–132, 134, 182–184 See also Detection Acetylene tetrachloride, 34 Alastrim, 543 Acid hydrolysis, 355 Alexander, Stewart, 103 Action potential, 133 Algal toxins, 457, 609, 617 Activated charcoal, 217, 362–363, 366, 370, 373, 670 Alimentary toxic aleukia (ATA), 659, 667 Adamsite Alkaline hydrolysis, 355 See DM (diphenylaminearsine) Allergic contact sensitivity, 238–239, 249, 314, 316–317 Additives, 122 a -Naphthylthiourea (ANTU), 638 Adenine arabinoside (Ara-A), 553 Alphaviruses, 562 Adenosine triphosphate (ATP), 275, 383, 431 antigenic classification, 564–565 S-Adenosylhomocysteine hydrolase inhibitors, 552 structure and replication, 569–570 Adenoviridae, 575, 683 See also Viral encephalitides; specific virus Adrenaline, 132 Alphavirus virion, 569 Adrenergic nervous system,
    [Show full text]
  • Pretreatment and Prophylaxis Against Nerve Agent Poisoning: Are Undesirable Behavioral Side Effects Unavoidable?
    1 Pretreatment and prophylaxis against nerve agent poisoning: Are undesirable behavioral side effects unavoidable? Trond Myhrer, Pål Aas Norwegian Defence Research Establishment (FFI), Protection and Societal Security Division, Kjeller, Norway Running title: Pretreatment and side effects Correspondence: Pål Aas Norwegian Defence Research Establishment (FFI) Protection and Societal Security Division P O Box 25 NO-2027 Kjeller, Norway Phone: +47 63 80 78 43 Fax: +47 63 80 75 09 E-mail: [email protected] 2 Abstract The threat of chemical warfare agents like nerve agents requires life saving measures of medical pretreatment combined with treatment after exposure. Pretreatment (pyridostigmine) may cause some side effects in a small number of individuals. A comprehensive research on animals has been performed to clarify effects on behavior. The results from these studies are far from unambiguous, since pyridostigmine may produce adverse effects on behavior in animals in relatively high doses, but not in a consistent way. Other animal studies have examined the potential of drugs like physostigmine, galantamine, benactyzine, trihexyphenidyl, and procyclidine, but they all produce marked behavioral impairment at doses sufficient to contribute to protection against a convulsant dose of soman. Attempts have also been made to develop a combination of drugs capable of assuring full protection (prophylaxis) against nerve agents. However, common to all combinations is that they at anticonvulsant doses cause behavioral deficits. Therefore, the use of limited pretreatment doses may be performed without marked side effects followed by post-exposure therapy with a combination of drugs. Keywords: Nerve agents; Pharmacological protection; Enzymatic protection; Behavioral side effects 3 1. Introduction Organophosphates called nerve agents are considered to be the most toxic among all chemical weapons.
    [Show full text]
  • On the Universality of Oxime Hlö-7 – Antidote for Case of the Nerve Agent Poisoning
    Mil. Med. Sci. Lett. (Voj. Zdrav. Listy) 2011, vol. 80, p. 80-84 ISSN 0372-7025 DOI: 10.31482/mmsl.2011.012 ORIGINAL ARTICLE ON THE UNIVERSALITY OF OXIME HLö-7 – ANTIDOTE FOR CASE OF THE NERVE AGENT POISONING Kamil Kuca 1,2 , Kamil Musilek 2,3 , Jana Karasova 2,4 , Daniel Jun 2, Ondrej Soukup 1,2 , Miroslav Pohanka 1,2 , Kallol Kumar Ghosh 5, Martina Hrabinova 1 1 Center of Advanced Studies, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic 2 University Hospital, Hradec Kralove, Czech Republic 3 University of Hradec Kralove, Faculty of Science, Department of Chemistry, Hradec Kralove, Czech Republic 4 Department of Public Health, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic 5 School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur (C.G.), India Received 12 th April 2011. Revised 29 th May 2011. Published 10 th June 2011. Summary Searching for the universal oxime, which could be able to reactivate acetylcholinesterase inhibited by various nerve agents is still topic of high interest. In this contribution, oxime HLö-7, that was thoroughly discussed in the last decade, is evaluated . Its universality was tested in vitro using the rat brain homogenate as a source of the cholinesterases. The main members of the nerve agent family (tabun, sarin, soman, cyclosarin and VX) were used for this purpose. As shown, oxime HLö-7 was able to reactivate cholinesterases inhibited by all tested nerve agents with the exception of tabun. Hence, it could not be designated as the broad-spectrum reactivator.
    [Show full text]
  • In Vitro Evaluation of Neutral Aryloximes As Reactivators for Electrophorus Eel Acetylcholinesterase Inhibited by Paraoxon
    biomolecules Article In Vitro Evaluation of Neutral Aryloximes as Reactivators for Electrophorus eel Acetylcholinesterase Inhibited by Paraoxon Daniel A. S. Kitagawa 1,2 , Samir F. de A. Cavalcante 2,3,4,5,* , Reuel L. de Paula 2,6 , Rafael B. Rodrigues 2, Leandro B. Bernardo 2, Munique C. J. da Silva 2 , Thiago N. da Silva 4, Wellington V. dos Santos 7,8, José M. Granjeiro 6, Joyce S. F. D. de Almeida 1 , Marcos C. Barcellos 2, Ana Beatriz de A. Correa 2 , Tanos C. C. França 1,5 , Kamil Kuˇca 5,* and Alessandro B. C. Simas 3,* 1 Laboratory of Molecular Modelling Applied to Chemical and Biological Defense (LMACBD), Military Institute of Engineering (IME), Praça General Tibúrcio 80, Rio de Janeiro 22290-270, Brazil 2 Brazilian Army Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil 3 Walter Mors Institute of Research on Natural Products (IPPN), Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, Rio de Janeiro 21941-902, Brazil 4 Castelo Branco University (UCB), School of Pharmacy, Avenida Santa Cruz 1631, Rio de Janeiro 21710-255, Brazil 5 Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic 6 National Institute of Metrology, Standardization and Industrial Quality (INMETRO), Avenida Nossa Senhora das Graças 50, Duque de Caxias 25250-020, Brazil 7 Emergency and Rescue Department (DSE), Rio de Janeiro State Fire Department (CBMERJ), Praça São Salvador 4, Rio de Janeiro 22231-170, Brazil 8 School of Biomedicine, University Universus Veritas (UNIVERITAS), Rua Marquês de Abrantes 55, Rio de Janeiro 22230-060, Brazil * Correspondence: [email protected] (S.F.d.A.C.); [email protected] (K.K.); [email protected] (A.B.C.S.) Received: 9 September 2019; Accepted: 4 October 2019; Published: 8 October 2019 Abstract: Casualties caused by organophosphorus pesticides are a burden for health systems in developing and poor countries.
    [Show full text]
  • In Vitro Ability of Currently Available Oximes to Reactivate Organophosphate Pesticide-Inhibited Human Acetylcholinesterase and Butyrylcholinesterase
    Int. J. Mol. Sci. 2011, 12, 2077-2087; doi:10.3390/ijms12032077 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article In Vitro Ability of Currently Available Oximes to Reactivate Organophosphate Pesticide-Inhibited Human Acetylcholinesterase and Butyrylcholinesterase Daniel Jun 1,2,3,*, Lucie Musilova 4,5, Kamil Musilek 6 and Kamil Kuca 1,* 1 Center of Advanced Studies, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, Hradec Kralove, 500 01, Czech Republic 2 Department of Water Resources and Environmental Modeling, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamycka 129, Praha 6—Suchdol, 16521, Czech Republic 3 University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove, 50005, Czech Republic 4 Hospital Pharmacy, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove, 500 05, Czech Republic; E-Mail: [email protected] 5 Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Heyrovskeho 1203, Hradec Kralove, 50005, Czech Republic 6 Department of Toxicology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, Hradec Kralove, 50001, Czech Republic; E-Mail: [email protected] * Authors to whom correspondence should be addressed; E-Mails: [email protected] (D.J.); [email protected] (K.K.); Tel.: +420-973-255-193; Fax: +420-495-518-094. Received: 11 February 2011 / Accepted: 9 March 2011 / Published: 23 March 2011 Abstract: We have in vitro tested the ability of common, commercially available, cholinesterase reactivators (pralidoxime, obidoxime, methoxime, trimedoxime and HI-6) to reactivate human acetylcholinesterase (AChE), inhibited by five structurally different organophosphate pesticides and inhibitors (paraoxon, dichlorvos, DFP, leptophos-oxon and methamidophos).
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2009/0023706 A1 Albuquerque Et Al
    US 20090023706A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0023706 A1 Albuquerque et al. (43) Pub. Date: Jan. 22, 2009 (54) METHOD OF TREATING Related U.S. Application Data ORGANOPHOSPHOROUS POISONING (63) Continuation-in-part of application No. 1 1/575.945, filed on May 23, 2007, filed as application No. PCT/ (75) Inventors: Edson X. Albuquerque, Baltimore, US05/33789 on Sep. 23, 2005. MD (US); Michael Adler, Bel Air, (60) Provisional application No. 60/613,121, filed on Sep. MD (US); Edna F.R. Pereira, 24, 2004. Baltimore, MD (US) Publication Classification (51) Int. Cl. Correspondence Address: A6II 3/55 2006.O1 EVANS & MOLINELLI, PLLC (52) U.S. Cl ( .01) S14/215 U.S. POST OFFICE BOX 7024 Oa - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - FAIRFAX STATION, VA 22039 (US) (57) ABSTRACT The present invention is directed to various methods for treat (73) Assignee: University of Maryland ing organophosphorus poisoning in an animal that is at risk of Baltimore, Baltimore, MD (US) exposure to an organophosphorus compound or preventing organophosphorus poisoning in an animal that has been exposed to an organophosphorus compound, by administer (21) Appl. No.: 12/199,250 ingatherapeutically effective amount of galantamine or a salt thereof, or a biologically active analog, derivative, fragment (22) Filed: Aug. 27, 2008 or variant thereof. A Soman, 1.5xLD50 B. Sarin, 1.5xLD50 C Soman, 1.5xLD50 25 Atropine, 10 mg/kg Atropine, 10 mg/kg Galantamine, 5 mg/kg O Galantamine, 8 mg/kg Y. P. ... First O. 1 10 O. 1 10 1 10 100 Galantamine, mg/kg Galantamine, mg/kg Atropine, mg/kg Patent Application Publication Jan.
    [Show full text]
  • Efficacious Oxime for Organophosphorus Poisoning: a Minireview
    Nurulain Tropical Journal of Pharmaceutical Research June 2011; 10 (3): 341-349 © Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria. All rights reserved . Available online at http://www.tjpr.org DOI: 10.4314/tjpr.v10i3.10 Review Article Efficacious Oxime for Organophosphorus Poisoning: A Minireview Syed M Nurulain Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, AlAin, United Arab Emirate Abstract Oximes are well known as acetylcholinesterase reactivators and are used in organophosphorus poisoning to reactivate inhibited acetylcholinesterase. Therapeutically available oximes, namely, pralidoxime (2-PAM), obidoxime, trimedoxime and Hagedorn oxime (HI-6), have no broad-spectrum activity against structurally different kinds of organophosphorus anticholinesterases. The widely used oxime, 2-PAM, is least effective. The focus of the review is to find an oxime that is broad spectrum and superior to the presently available oximes for the treatment of organophosphorus poisoning. Numerous oxime-based reactivators have been synthesized - in laboratories in Croatia, United States of America, Israel and most recently in Czech Republic. Some experimental oximes synthesized in Czech Republic and named as K-series of oximes have been found promising. Among them, K-27 and K-48 have higher or comparable efficacy to all available oximes though it is not effective against all organophosphorus (OP) nerve agents. They are also efficacious in pretreatment protocol for OP anticholinesterases. K-27 oxime is a promising candidate to replace therapeutically available oximes with respect to insecticide/pesticide organophosphorus poisoning. K27 and K48 may be candidates to replace the only approved pretreatment drug, pyridostigmine, in military combat medicine for OP nerve agent.
    [Show full text]
  • C:\Documents and Settings\Doktorová\Plocha\JAB
    Journal of J Appl Biomed 8:35–40, 2010 DOI 10.2478/v10136-009-0005-9 APPLIED ISSN 1214-0287 BIOMEDICINE ORIGINAL ARTICLE In vitro screening of blood-brain barrier penetration of clinically used acetylcholinesterase reactivators Jana Žďárová Karasová1, Petr Stodůlka2, Kamil Kuča1, 2 1Department of Toxicology, 2Center of Advanced Studies, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic Received 23rd June 2009. Revised 10th September 2009. Published online 8th December 2009. Summary In this in vitro study, using the HPLC method, we determined the ability of acetylcholinesterase (AChE) reactivators, used clinically, to penetrate the blood-brain barrier (BBB). We evaluated pralidoxime, HI-6, obidoxime, trimedoxime and methoxime – reactivators varying in the position of the oxime group on the pyridinium ring and linker connecting the pyridinium rings. Our results indicated that pralidoxime, a monoquaternary AChE reactivator, was the oxime with the most penetration. Molecular weight seems to be the most important factor for passive transport through the BBB. From the structural perspective, the connecting linker also plays a key role in the ability of the reactivators to penetrate the CNS. In this case, the simple and short linker is favorable for permeation of these compounds. The location of the oxime group on the pyridine ring may also influence passive transport into the brain; the best position of the oxime group seems to be position four. Key words: blood-brain barrier; CNS penetration; HI-6; obidoxime; HPLC; oxime INTRODUCTION on the pyridinium ring and in the linker connecting the pyridinium rings (Kuča et al. 2006). Some mono- The basis of the current standard treatment of and also bisquaternary pyridinium oximes are more or organophosphate (OP) poisoning is the administration less frequently used in clinical practice.
    [Show full text]
  • Antioxidant Markers in Guinea Pig Exposed to Obidoxime and HI-6 Acetylcholinesterase Oxime Reactivators Containing Oxime Moiety
    Vol. 7(31), pp. 2252-2257, 22 August, 2013 DOI 10.5897/AJPP12.438 African Journal of Pharmacy and ISSN 1996-0816 ©2013 Academic Journals http://www.academicjournals.org/AJPP Pharmacology Full Length Research Paper Antioxidant markers in guinea pig exposed to obidoxime and HI-6 acetylcholinesterase oxime reactivators containing oxime moiety Lucie Drtinova and Miroslav Pohanka* Faculty of Military Health Sciences, University of Defense, Trebesska 1575, 50001, Hradec Kralove, Czech Republic. Accepted 10 August, 2012 Obidoxime and asoxime (HI-6) are considered to be the most important acetylcholinesterase (AChE) reactivators applicable for treatment of poisoning by nerve agents. Unfortunately, toxicology of the oximes is not well known. For this reason, we decided to investigate the pertinent adverse effects on guinea pigs which are close to humans in toxicological point of view. HI-6 and obidoxime were administered intramuscularly in 5% of the median lethal dose. The animals were sacrificed 15, 30, 60, 120, and 240 min after exposure, and the brain, liver, spleen and kidneys were collected. Ferric reducing antioxidant power (FRAP), thiobarbituric acid reactive substances (TBARS), glutathione S-transferase (GST) and glutathione reductase (GR) were measured. Results indicated that obidoxime acted on oxidative stress than HI-6. We found evidence of low molecular weight antioxidants depletion after obidoxime administration. On the other hand, TBARS assay showed significant decrease in brain and little increase in spleen and liver. The effect of HI-6 was more striking than the effect of obidoxime. There was a sign of higher metabolism and production of antioxidants in liver because GR was significantly increased after HI-6 exposure, and it is another sign of ongoing oxidative stress.
    [Show full text]
  • Nerve Agents
    J R Army Med Corps 2002; 148: 344-357 J R Army Med Corps: first published as 10.1136/jramc-148-04-04 on 1 December 2002. Downloaded from Nerve Agents Introduction persistent. It is regarded as presenting little The nerve agents (NA) are a group of vapour hazard to people exposed to it. In the particularly toxic chemical warfare agents. pure state nerve agents are colourless and They were developed just before and during mobile liquids. In an impure state, nerve World War II. Although chemically related to agents may be encountered as yellowish to the organophosphorus insecticides, their brown liquids. Some nerve agents have a clinical presentation and medical faint fruity odour. management may differ. The principal nerve In general, nerve agents are moderately agents are: GA (tabun), GB (sarin), GD soluble in water with slow hydrolysis, highly (soman), GF (cyclosarin) and VX soluble in lipids, and are rapidly inactivated (methylphosphonothioic acid). In some by strong alkalis and chlorinating countries the "V" agents are known as "A" compounds. agents. Detection Physical and Chemical Nerve agents may be detected by a variety of Properties means. Single and three colour detector Nerve agents are organophosphorus esters. papers are available for individual issue to The "G" agents tend to be non-persistent detect liquid nerve agent. Area detectors and whereas the "V" agents are persistent. Some monitors of various sensitivities are available agents may be thickened in order to increase (Figures 9,10,11). Highly sensitive and their persistence, and therefore the total specific water testing kits are also available. amount penetrating intact skin.
    [Show full text]