Performance Comparison of Absorption Heat Pump And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Transcritical Pressure Organic Rankine Cycle (ORC) Analysis Based on the Integrated-Average Temperature Difference in Evaporators
Applied Thermal Engineering 88 (2015) 2e13 Contents lists available at ScienceDirect Applied Thermal Engineering journal homepage: www.elsevier.com/locate/apthermeng Research paper Transcritical pressure Organic Rankine Cycle (ORC) analysis based on the integrated-average temperature difference in evaporators * Chao Yu, Jinliang Xu , Yasong Sun The Beijing Key Laboratory of Multiphase Flow and Heat Transfer for Low Grade Energy Utilizations, North China Electric Power University, Beijing 102206, PR China article info abstract Article history: Integrated-average temperature difference (DTave) was proposed to connect with exergy destruction (Ieva) Received 24 June 2014 in heat exchangers. Theoretical expressions were developed for DTave and Ieva. Based on transcritical Received in revised form pressure ORCs, evaporators were theoretically studied regarding DTave. An exact linear relationship be- 12 October 2014 tween DT and I was identified. The increased specific heats versus temperatures for organic fluid Accepted 11 November 2014 ave eva protruded its TeQ curve to decrease DT . Meanwhile, the decreased specific heats concaved its TeQ Available online 20 November 2014 ave curve to raise DTave. Organic fluid in the evaporator undergoes a protruded TeQ curve and a concaved T eQ curve, interfaced at the pseudo-critical temperature point. Elongating the specific heat increment Keywords: fi Organic Rankine Cycle section and shortening the speci c heat decrease section improved the cycle performance. Thus, the fi Integrated-average temperature difference system thermal and exergy ef ciencies were increased by increasing critical temperatures for 25 organic Exergy destruction fluids. Wet fluids had larger thermal and exergy efficiencies than dry fluids, due to the fact that wet fluids Thermal match shortened the superheated vapor flow section in condensers. -
Regional Climate Zone Modeling of a Commercial Absorption Heat Pump
Purdue University Purdue e-Pubs International Refrigeration and Air Conditioning School of Mechanical Engineering Conference 2016 Regional Climate Zone Modeling of a Commercial Absorption Heat Pump Hot Water Heater - Part 1: Southern and South Central Climate Zones Patrick Geoghegan Oak Ridge National Laboratory, [email protected] Bo Shen Oak Ridge National Laboratory, [email protected] Christopher Keinath Stone Mountain Technologies, Inc., [email protected] Michael Garrabrant Stone Mountain Technologies, Inc., [email protected] Follow this and additional works at: http://docs.lib.purdue.edu/iracc Geoghegan, Patrick; Shen, Bo; Keinath, Christopher; and Garrabrant, Michael, "Regional Climate Zone Modeling of a Commercial Absorption Heat Pump Hot Water Heater - Part 1: Southern and South Central Climate Zones" (2016). International Refrigeration and Air Conditioning Conference. Paper 1791. http://docs.lib.purdue.edu/iracc/1791 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/ Herrick/Events/orderlit.html 2552, Page 1 Regional Climate Zone Modeling of a Commercial Absorption Heat Pump Hot Water Heater – Part 1: Southern and South Central Climate Zones Patrick Geoghegan1*, Bo Shen1, Chris Keinath2, Michael Garrabrant2 1Oak Ridge National Laboratory 1 Bethel Valley Road Oak Ridge, TN 37831 [email protected] 2Stone Mountain Technologies, Inc. 609 Wesinpar Road Johnson City, TN 37604 *Corresponding Author ABSTRACT Commercial hot water heating accounts for approximately 0.78 Quads of primary energy use with 0.44 Quads of this amount from natural gas fired heaters. -
Rankine Cycle Definitions
Rankine Cycle Reading Problems 11.1 ! 11.7 11.29, 11.36, 11.43, 11.47, 11.52, 11.55, 11.58, 11.74 Definitions • working fluid is alternately vaporized and condensed as it recirculates in a closed cycle • the standard vapour cycle that excludes internal irreversibilities is called the Ideal Rankine Cycle Analyze the Process Device 1st Law Balance Boiler h2 + qH = h3 ) qH = h3 − h2 (in) Turbine h3 = h4 + wT ) wT = h3 − h4 (out) Condenser h4 = h1 + qL ) qL = h4 − h1 (out) Pump h1 + wP = h2 ) wP = h2 − h1 (in) 1 The Rankine efficiency is net work output ηR = heat supplied to the boiler (h − h ) + (h − h ) = 3 4 1 2 (h3 − h2) Effects of Boiler and Condenser Pressure We know the efficiency is proportional to T η / 1 − L TH The question is ! how do we increase efficiency ) TL # and/or TH ". 1. INCREASED BOILER PRESSURE: • an increase in boiler pressure results in a higher TH for the same TL, therefore η ". • but 40 has a lower quality than 4 – wetter steam at the turbine exhaust – results in cavitation of the turbine blades – η # plus " maintenance • quality should be > 80 − 90% at the turbine exhaust 2 2. LOWER TL: • we are generally limited by the T ER (lake, river, etc.) eg. lake @ 15 ◦C + ∆T = 10 ◦C = 25 ◦C | {z } resistance to HT ) Psat = 3:169 kP a. • this is why we have a condenser – the pressure at the exit of the turbine can be less than atmospheric pressure 3. INCREASED TH BY ADDING SUPERHEAT: • the average temperature at which heat is supplied in the boiler can be increased by superheating the steam – dry saturated steam from the boiler is passed through a second bank of smaller bore tubes within the boiler until the steam reaches the required temperature – The value of T H , the mean temperature at which heat is added, increases, while TL remains constant. -
Application of Hybrid PCM Thermal Energy Storages with and Without
applied sciences Article Application of Hybrid PCM Thermal Energy Storages with and without Al Foams in Solar Heating/Cooling and Ground Source Absorption Heat Pump Plant: An Energy and Economic Analysis Renato Lazzarin, Marco Noro , Giulia Righetti and Simone Mancin * Department of Management and Engineering, University of Padova, 36100 Vicenza, Italy; [email protected] (R.L.); [email protected] (M.N.); [email protected] (G.R.) * Correspondence: [email protected]; Tel.: +39-0444998746 Received: 14 February 2019; Accepted: 6 March 2019; Published: 11 March 2019 Abstract: The use of phase change materials (PCM) can be considered an effective way to improve the energy storage capabilities of hybrid water thermal energy storage (TESs) in solar heating and cooling plants. However, due to a few shortcomings, their use is still limited. This paper aims to give a direct estimation of the considerable advantages achievable by means of these hybrid TESs by simulating the annual performance of an existing gymnasium building located in northern Italy. The solar heating/cooling and ground source absorption heat pump plant is simulated using Trnsys. A validated type allows for the simulation of the hybrid water TESs, and also includes the possibility to use aluminum foams to enhance the heat transfer capabilities of the paraffin waxes used as PCM. This paper presents an optimization of the plant design from both energy and economic points of view by considering different cases: all three tanks modeled as sensible (water) storage, or one of the tanks modeled as PCM storage, or as enhanced PCM with metal foam. -
Performance Assessment of Solar Assisted Absorption Heat Pump System with Parabolic Trough Collectors
Available online at www.sciencedirect.com ScienceDirect Energy Procedia 70 ( 2015 ) 529 – 536 International Conference on Solar Heating and Cooling for Buildings and Industry, SHC 2014 Performance assessment of solar assisted absorption heat pump system with parabolic trough collectors Fu Wanga, Huanhuan Fenga, Jun Zhaoa*, Wen Lib, Fengxue Zhangb, Rui Liub aKey Laboratory of Efficient Utilization of Low and Medium Grade Energy, Ministry of Education, Tianjin University, 300072 Tianjin, PR China bVICOT AIR CONDITIONING CO.,LTD, Hongdu Road, Dezhou Economic Development, Shandong province Abstract A solar assisted absorption heat pump (AHP) system was installed in Tianjin University for space heating in winter and heat water supply. The primary heat source for the AHP is supplied from parabolic trough collectors. In this paper, experimental and simulation are presented to give an overview assessment of the whole system. The performance of the solar collectors in steady and transient state was investigated, the thermal efficiency curve that characterizing the optical and heat loss of the collectors was carried out with a series of tests. For the whole system, the absorption heat pump performance during operating test was measured and presented. The simulation were performed by TRNSYS using the measured meteorological data and the estimated building load with the specific building type and structure, the daily and monthly operation showed that the solar radiation had significant impact on the ratio of useful energy provided by solar collectors, a high instantaneous solar fraction during the sunshine time while a very low average daily solar fraction was seen from the simulation results, this indicated that a thermal storage is necessary to improve the system performance and lower the auxiliary energy usage. -
Comparison of ORC Turbine and Stirling Engine to Produce Electricity from Gasified Poultry Waste
Sustainability 2014, 6, 5714-5729; doi:10.3390/su6095714 OPEN ACCESS sustainability ISSN 2071-1050 www.mdpi.com/journal/sustainability Article Comparison of ORC Turbine and Stirling Engine to Produce Electricity from Gasified Poultry Waste Franco Cotana 1,†, Antonio Messineo 2,†, Alessandro Petrozzi 1,†,*, Valentina Coccia 1, Gianluca Cavalaglio 1 and Andrea Aquino 1 1 CRB, Centro di Ricerca sulle Biomasse, Via Duranti sn, 06125 Perugia, Italy; E-Mails: [email protected] (F.C.); [email protected] (V.C.); [email protected] (G.C.); [email protected] (A.A.) 2 Università degli Studi di Enna “Kore” Cittadella Universitaria, 94100 Enna, Italy; E-Mail: [email protected] † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-075-585-3806; Fax: +39-075-515-3321. Received: 25 June 2014; in revised form: 5 August 2014 / Accepted: 12 August 2014 / Published: 28 August 2014 Abstract: The Biomass Research Centre, section of CIRIAF, has recently developed a biomass boiler (300 kW thermal powered), fed by the poultry manure collected in a nearby livestock. All the thermal requirements of the livestock will be covered by the heat produced by gas combustion in the gasifier boiler. Within the activities carried out by the research project ENERPOLL (Energy Valorization of Poultry Manure in a Thermal Power Plant), funded by the Italian Ministry of Agriculture and Forestry, this paper aims at studying an upgrade version of the existing thermal plant, investigating and analyzing the possible applications for electricity production recovering the exceeding thermal energy. A comparison of Organic Rankine Cycle turbines and Stirling engines, to produce electricity from gasified poultry waste, is proposed, evaluating technical and economic parameters, considering actual incentives on renewable produced electricity. -
The Double-Effect Regenerative Absorption Heat Pump
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Purdue E-Pubs Purdue University Purdue e-Pubs International Refrigeration and Air Conditioning School of Mechanical Engineering Conference 1986 The ouble-ED ffect Regenerative Absorption Heat Pump: Cycle Description and Experimental Test Results J. Rasson K.Eao M. Wahlig Follow this and additional works at: http://docs.lib.purdue.edu/iracc Rasson, J.; K.Eao; and Wahlig, M., "The oubD le-Effect Regenerative Absorption Heat Pump: Cycle Description and Experimental Test Results" (1986). International Refrigeration and Air Conditioning Conference. Paper 25. http://docs.lib.purdue.edu/iracc/25 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/ Herrick/Events/orderlit.html THE DOUBLE-EFFECT REGENERATIVE ABSORPTION HEAT PUMP: CYCLE DESCRIPTION AND EXPERIMENTAL TEST RESULTS* JOSEPH RASSON, KIM DAO+ and MICHAEL WAHLIG Lawrence Berkeley Laboratory University of California Berkeley, CA 94720 ABSTRACT A double-effect ammonia-water regenerative absorption chiller/heat pump has been designed, built and tested. The heat pump cycle (2R cycle) consists of two subcycles or stages. The second low temperature stage is a conventional single-effect absorption cycle; it is driven by heat rejected from the first higher temperature stage. The first stage is a new type of absorption cycle in which the heat source drives a multi-pressure stage boiler in such a way that the boiling process and the resorption process occur essentially at constant temperatures. -
Rankine Cycle
MECH341: Thermodynamics of Engineering System Week 13 Chapter 10 Vapor & Combined Power Cycles The Carnot vapor cycle The Carnot cycle is the most efficient cycle operating between two specified temperature limits but it is not a suitable model for power cycles. Because: • Process 1-2 Limiting the heat transfer processes to two-phase systems severely limits the maximum temperature that can be used in the cycle (374°C for water) • Process 2-3 The turbine cannot handle steam with a high moisture content because of the impingement of liquid droplets on the turbine blades causing erosion and wear. • Process 4-1 It is not practical to design a compressor that handles two phases. The cycle in (b) is not suitable since it requires isentropic compression to extremely high pressures and isothermal heat transfer at variable pressures. 1-2 isothermal heat addition in a boiler 2-3 isentropic expansion in a turbine 3-4 isothermal heat rejection in a condenser 4-1 isentropic compression in a compressor T-s diagram of two Carnot vapor cycles. 1 Rankine cycle: The ideal cycle for vapor power cycles •Many of the impracticalities associated with the Carnot cycle can be eliminated by superheating the steam in the boiler and condensing it completely in the condenser. •The cycle that results is the Rankine cycle, which is the ideal cycle for vapor power plants. The ideal Rankine cycle does not involve any internal irreversibilities. Notes: • Only slight change in water temp through pump • The steam generator consists of boiler (two-phase heat transfer) and superheater • Turbine outlet is high-quality steam • Condenser is cooled by water (eg. -
Chapter 7 Vapor and Gas Power Systems
Chapter 7 Vapor and Gas Power Systems In this chapter, we will study the basic components of common industrial power and refrigeration systems. These systems are essentially thermodyanmic cycles in which a working fluid is alternatively vaporized and condensed as it flows through a set of four processes and returns to its initial state. We will use the first and second laws of thermodynamics to analyze the performance of ower and refrigeration cycles. 7.1 Rankine Cycle We can use a Rankine cycle to convert a fossil-fuel, nuclear, or solar power source into net electrical power. Figure 7.1-1a shows the components of a Rankine cycle and Figure 7.1-1b identifies the states of the Rankine cycle on a Ts diagram. Wt Turbine 1 2 Fuel QC air QH Rankine cycle Boiler 4 Condenser 3 Wp Pump Figure 7.1-1a The ideal Rankine cycle Figure 7.1-1b The path of an ideal Rankine cycle1 1 Moran, M. J. and Shapiro H. N., Fundamentals of Engineering Thermodynamics, Wiley, 2008, pg. 395 7-1 In the ideal Rankine cycle, the working fluid undergoes four reversible processes: Process 1-2: Isentropic expansion of the working fluid from the turbine from saturated vapor at state 1 or superheated vapor at state 1’ to the condenser pressure. Process 2-3: Heat transfer from the working fluid as it flows at constant pressure through the condenser with saturated liquid at state 3. Process 3-4: Isentropic compression in the pump to state 4 in the compressed liquid region. Process 4-1: Heat transfer to the working fluid as it flows at constant pressure through the boiler to complete the cycle. -
Simulation and Performance Analysis of an Ammonia-Water Absorption Heat Pump Based on the Generator-Absorber Heat Exchange (GAX) Cycle
Simulation and Performance Analysis of an Ammonia-Water Absorption Heat Pump Based on the Generator-Absorber Heat Exchange (GAX) Cycle G. Grossman" R. C. DeVault F. A. Creswick"" "Technion-Israel Institute of Technology **Martin Marietta Energy Systems, 1nc.-Retired submitted to ASHRAE Symposium Chicago, Illinois January 28 - February 1 , 1995 Prepared by the OAK RIDGE NATIONAL LABORATORY managed by MARTIN MARIETTA ENERGY SYSTEMS, INC. Oak Ridge, Tennessee 3783 1-2008 for the U. S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-840R2 1400 "The submilled manuscript has been authored by a contractor of the U.S. government under Contract No. DE-ACOS- 840R21400. Accordingty, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S.Government purposes." DISCLAIMER This report was .prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. -
Comparison Between Existing Rankine Cycle Refrigeration Systems and Hygroscopic Cycle Technology (HCT) †
Comparison between existing Rankine Cycle refrigeration systems and Hygroscopic Cycle Technology (HCT) † Francisco Javier Rubio Serrano 1, Fernando Soto Pérez 2 *, Antonio J. Gutiérrez Trashorras 3, Guillermo Ausin Abad 4 1IMASA, Ingeniería y Proyectos, S.A., Carpinteros 12, 28670 Villaviciosa de Odón, Madrid, Spain, [email protected] 2IMASA, Ingeniería y Proyectos, S.A., Palacio Valdés 1, 33002, Oviedo, Asturias, Spain, [email protected] 3 Energy Department, Escuela Politécnica de Ingeniería, Edificio de Energía, Universidad de Oviedo, 33203 Gijón, Asturias, Spain, [email protected] 4 Energy Department, Escuela Politécnica de Ingeniería, Edificio de Energía, Universidad de Oviedo, 33203 Gijón, Asturias, Spain, [email protected] * Corresponding Author e-mail: [email protected] ; Tel.: +34-696-467-104 † Presented at IRCSEEME, Universidad de Oviedo, Mieres del Camino, Asturias, España, 2018. Abstract: The objective of this paper is to review the different cooling systems that can be used in a Rankine cycle, especially the new technology called HCT (Hygroscopic Cycle Technology), that is based on the physical and chemical principles of absorption machines to increase the Rankine cycle net electrical efficiency and improve the cooling conditions. This technology allows an efficient and economical condensation of exhaust steam at the outlet of the steam turbine and significant decreases the water consumption. Advantages and high potential of HCT for power plants are analysed, comparing it with the current refrigeration systems. Also performances, investment and operation costs for each of the systems, are studied. Keywords: Refrigeration, Evaporative, Condenser, Hygroscopic, Absorber, Performance, Water, Dry-cooling, Rankine, Power. 1 1. Introduction Development of industries and increasing of population have produced a huge Energy demand. -
Development of Ammonia-Water Hybrid Absorption- Compression
Manuscript ID: 1869 DOI: 10.18462/iir.icr.2019.1869 Development of Ammonia-Water Hybrid Absorption- Compression Heat Pumps Marcel Ulrich AHRENS, Armin HAFNER and Trygve Magne EIKEVIK Norwegian University of Science and Technology - NTNU, Kolbjørn Hejes vei 1B, 7491 Trondheim, Norway, [email protected] ABSTRACT In this paper, investigations on the development of industrial high temperature heat pumps are carried out based on the analysis of the current available components. Ammonia-water hybrid heat pumps combine technologies of an absorption and compression heat pump with a mixture of ammonia and water as refrigerant. The functionality of this process was already been proven in the industrial sector using standard components. In this study, currently available components are investigated for utilization in a hybrid heat pump test facility able to operate at elevated high side pressures to achieve exit temperatures on the secondary fluid side of 140 °C to 180 °C. Critical components are identified and discussed based on defined process requirements. Subsequently, an overview of available components enabling process parameters with a high side pressure of up to 60 bar are presented and necessary adjustments for the use in the planned test facility are discussed. Keywords: Industrial High Temperature Heat Pump, Hybrid Absorption-Compression Heat Pump, Ammonia-Water Mixture. 1. INTRODUCTION Conti et al. (2016) have stated an increasing energy demand in the industrial sector in recent years with a clear trend for the future. In addition, in various industrial processes large amounts of low grade waste heat are not exploited due to the lack of waste heat utilization.