Penning-Trap Mass Spectrometry Neutrino Physics?
Total Page:16
File Type:pdf, Size:1020Kb
How could Penning-Trap Mass Spectrometry be useful to Neutrino Physics? Sergey Eliseev Max-Planck-Institute for Nuclear Physics Heidelberg MEDEX, Prague, May 31, 2017 OUTLINE Basics of Penning-Trap Mass Spectrometry PTMS for Neutrino Physics • Type of Neutrinos neutrinoless double beta-processes • Determination of Neutrino Mass • Search for sterile Neutrinos Basics of Penning-Trap Mass Spectrometry 2 M (Z, N) = Z(me + mp ) + Nmn − B(Z, N) / c • Binding Energies • Separation Energies • Q-values • Decay modes Proton Number Z Number Proton • Half-lives • Shell structure • Deformation • Pairing • Halos • Nucleosynthesis ................ Neutron Number N Field Examples δm/m Nuclear structure shell closures, shell quenching, regions of physics deformation, drip lines, halos, Sn, Sp, S2n, S2p, -6 -7 δVpn, island of stability 10 to 10 Astrophysics rp-process and r-process path, waiting-point nuclear models nuclei, proton threshold energies, astrophysical mass formula reaction rates, neutron star, x-ray burst Weak interaction CVC hypothesis, CKM matrix unitarity, Ft of 10-8 studies superallowed ß-emitters Metrology, α (h/m , m /m , m /m ), m 10-9 to 10-10 fundamental constants Cs Cs p p e Si 0νββ, 0ν2EC 10-8-10-9 Neutrino physics mmother – mdaughter : sterile neutrinos <10-11 neutrino mass CPT tests mp and mp me- and me+ <10-11 QED in HCI mion, electron binding energy Penning trap (the most accurate mass spectrometer !!! ) strong uniform •Mass Frequency static B-field • Magnetic field of a few Tesla •Homogeniety of B-field: 10-7/cm3 B • T rapping volume: a few microns3 •High temporal stability of B-field q/m uncertainty of < 10-11 1 q in mass-ratio determination νc = B 2π m Mp Q = Mp – Md = Md∙ ( - 1) Md SHIPTRAP THe-TRAP Max-Planck Institute for Nuclear Physics, JYFLTRAP Heidelberg TRIGATRAP strong uniform ∆B MLLTRAP static B-field < 10-11 h-1 B ∆B < 5 · 10-9 h-1 B B q/m 1 q ν = B c 2π m strong uniform harmonic electrical 3 eigenmotions in trap magnetic field potential + = 2 2 2 2 δν ν c =ν + +ν − +ν z c <10−10 ν long-lived and stable nuclides c δν ν c =ν + +ν − c >10−10 ν short-lived nuclides c Rev. Mod. Phys. 58, 233 (1986). On-line Penning-trap facilities for experiments on exotic nuclides JYFLTRAP SHIPTRAP MLLTRAP TITAN TRIGATRAP CPT LEBIT ISOLTRAP achievable accuracy of mass measurements short-lived nuclides : δm/m ~ 10-6 - 10-8 long-lived nuclides : δm/m ~ 10-10 Off-line Penning-trap setups for experiments on long-lived nuclides FSU achievable accuracy of mass measurements long-lived and stable nuclides : δm/m < 10-10 Off-line Penning-trap setups for experiments on long-lived nuclides THe-TRAP PENTATRAP FSU CHIP-TRAP achievable accuracy of mass measurements long-lived and stable nuclides : δm/m < 10-11 High Precision PTMS Q = Mmother- Mdaughter of β and ββ transitions 10−8−10−9 type of neutrinos < 10−11 < 10−11 neutrino mass sterile neutrinos High Precision PTMS Q = Mmother- Mdaughter of β and ββ transitions 10−8−10−9 type of neutrinos < 10−11 < 10−11 neutrino mass sterile neutrinos 184 double-electron-capture nuclides Os 190Pt 130Ba 124Xe 112Sn proton number proton 96Zr 82Se double β-decay nuclides neutron number − Neutrinoless Double-β Decay Contribution of Penning Traps: measurements of Q2β – values with a sub-keV uncertainty transition T1/2/ y <mν >/ eV Experiment 136Xe → 136Ba > 5·1025 < 0.09 – 0.24 KamLAND-Zen 76Ge → 76Se > 3.5·1025 < 0.18 – 0.48 GERDA-I + GERDA-II 130Te → 130Xe > 4·1024 < 0.26 – 0.97 CUORICINO + CUORE0 100Mo → 100Ru > 1.1·1024 < 0.33 – 0.62 NEMO-3 82Se → 82Kr > 3.6·1023 < 1 – 2.4 NEMO-3 116Cd → 116Sn > 1.9·1023 < 1 – 1.8 AURORA 48Ca → 48Ti > 5.8·1022 < 3.1 – 15.4 CANDLES 150Nd → 150Sm > 2·1022 < 1.6 – 5.3 NEMO-3 96Zr → 96Mo > 9.2·1021 < 3.6 – 10.4 NEMO-3 A.S. Barabash, arXiv: 1702.06340v1 (2017) − Neutrinoless Double-β Decay Contribution of Penning Traps: measurements of Q2β – values with a sub-keV uncertainty transition Q / keV δQ / keV Experiment 136Xe → 136Ba 2457.83 0.37 FSU-trap (2007) 76Ge → 76Se 2039.006 0.05 MIT-trap (2001) 130Te → 130Xe 2527.518 0.013 FSU-trap (2009) 100Mo → 100Ru 3034.40 0.17 JYFLTRAP (2008) 82Se → 82Kr 2997.9 0.3 LEBIT-trap (2013) 116Cd → 116Sn 2813.50 0.13 JYFLTRAP (2013) 48Ca → 48Ti 4268.121 0.079 LEBIT-trap (2013) 150Nd → 150Sm 3371.38 0.2 JYFLTRAP (2010) 96Zr → 96Mo 3356.097 0.086 JYFLTRAP (2016) Neutrinoless Double-Electron Capture R. G. Winter, Phys. Rev. 100 (1955) 142. 1 2 2 Γ2h ~ M0νεε mν M. B. Voloshin, G. V. Mitselmakher, R. A. Eramzhyan, 2 T1/2 1 2 JETP Lett. 35 (1982) 656. (Q − B2h − E γ ) + Γ2h 4 J. Bernabeu, A. De Rujula, C. Jarlskog, Nucl. Phys. B 223 (1983) 15. M. I. Krivoruchenko, F. Simkovic, D. Frekers, A. Faessler, Nucl. Phys. A 859 (2011) 140. / ; ≈ y / ; ≈ . y ∙ Neutrinoless Double-Electron Capture 184 double-electron-capture nuclides Os 190Pt 15 nuclides 130Ba 124Xe 112Sn proton number proton Measurement of Q=Mi-Mf 96 Zr with δQ ~ 100 eV 82Se double β-decay nuclides neutron number Neutrinoless Double-Electron Capture transition Q / keV δQ / keV Experiment 112Sn → 112Cd 1919.82 0.16 JYFLTRAP (2009) 74Se → 74Ge 1209.240 0.007 FSU-trap (2010) 136Ce → 136Ba 2378.53 0.27 SHIPTRAP (2011) 2378.49 0.35 JYFLTRAP (2011) 184Os → 184W 1453.68 0.58 TRIGATRAP (2012) 190Pt → 190Os 1401.57 0.47 LEBIT-trap (2016) 152Gd → 152Sm 55.70 0.18 164Er → 164Dy 25.07 0.12 180W → 180Hf 143.20 0.27 96Ru → 96Mo 2714.51 0.13 162Er → 162Dy 1846.95 0.3 SHIPTRAP (2011,2012) 168Yb → 168Er 1409.27 0.25 106Cd → 106Pd 2775.39 0.10 156Dy → 156Gd 2005.95 0.10 124Xe → 124Te 2856.73 0.12 130Ba → 130Xe 2623.74 0.29 152Gd → 152Sm 0+ → 0+ transition between nuclear ground states Q (old)/ keV ∆ (old)/ keV Q (new)/ keV ∆ (new)/ keV 54.6(3.5) -0.2(3.5) 55.7(0.2) 0.9(0.2) Nuclear Matrix Element sQRPA dQRPA IBM-2 EDF D.-L. Fang et al., J. Kotila et al., T.R. Rodrigez & G. Martinez-Pinedo, PRC 85 (2012) 035503 PRC 89 (2014) 064319 PRC 85 (2012) 044310 7.21-7.59 2.67-3.23 2.44 0.89-1.07 / = 2; < 0.25 ; > 0.3 > ∙ 156Dy → 156Gd ● full degeneracy ● |M| ≈ 0.3 (IBM-2) J. Kotila et al., PRC 89 (2014) 064319 ● mν < 0.25 eV + + 27 T1/2 (0 →0 ) > 4∙10 y M. I. Krivoruchenko, F. Simkovic, D. Frekers, A. Faessler, Nucl. Phys. A 859 (2011) 140. Conclusion: + + 27 T1/2 (0 →0 ) > 4∙10 y very optimistic 156Dy , 152Gd are not good candidates for a search for 0ν2EC 0ν2EC in radioactive nuclides ? V.I. Tretyak et al., On the possibility to search for 2β decay of initially unstable (α/β radioactive) nuclei, Europhys. Lett. 69 (2005) 41. 150Gd 0+ 6 2EC, L L , ∆=15(6) keV α-decay, T1/2= 1.8·10 y 1255.51(2) keV 1 1 0+ Q2EC = 1286.6(6.2) keV Qα = 2726(9) keV 150Sm 0+ 146Sm 0+ 0ν2EC in radioactive nuclides ? V.I. Tretyak et al., On the possibility to search for 2β decay of initially unstable (α/β radioactive) nuclei, Europhys. Lett. 69 (2005) 41. 150Gd 0+ 6 2EC, L L , ∆=15(6) keV α-decay, T1/2= 1.8·10 y 1255.51(2) keV 1 1 0+ Q2EC = 1286.6(6.2) keV Qα = 2726(9) keV 150Sm 0+ 146Sm 0+ Criteria: • production - tens of kg • purity of produced sample • T1/2 – long enough • decay mode: α-decay to ground state or low energy EC 0ν2EC in radioactive nuclides ? V.I. Tretyak et al., On the possibility to search for 2β decay of initially unstable (α/β radioactive) nuclei, Europhys. Lett. 69 (2005) 41. 150Gd 0+ 6 2EC, L L , ∆=15(6) keV α-decay, T1/2= 1.8·10 y 1255.51(2) keV 1 1 0+ Q2EC = 1286.6(6.2) keV Qα = 2726(9) keV 150Sm 0+ 146Sm 0+ Criteria: • production - tens of kg ?????????????????????????? • purity of produced sample • T1/2 – long enough • decay mode: α-decay to ground state or low energy EC High Precision PTMS Q = Mmother- Mdaughter of β and ββ transitions 10−8−10−9 type of neutrinos < 10−11 < 10−11 neutrino mass sterile neutrinos Determination of neutrino mass with a sub-eV uncertainty : β-decay : Electron capture 163 163 Ho + Dy + 3H 3He + + + Q − 163Dy + + + − → ∗ → β < 2.0 eV < 225 eV Current limit: (95% C.L.) Current limit: → NuMECS 2/13 Determination of neutrino mass with a sub-eV uncertainty : β-decay : Electron capture Uncertainty which has been achieved until now: δQ (tritium decay) ≈ 70 meV δQ (EC in 163Ho) ≈ 30 eV FSU-trap SHIPTRAP at GSI Required uncertainty in Q-value determination with Penning traps: δQ (tritium decay) ≈ a few meV δQ (EC in 163Ho) ≈ 1 eV THe-trap at MPIK PENTATRAP at MPIK High Precision PTMS Q = Mmother- Mdaughter of β and ββ transitions 10−8−10−9 type of neutrinos < 10−11 < 10−11 neutrino mass sterile neutrinos sterile neutrinos Light Sterile Neutrinos: A White Paper K.N. Abazajian et al., arXiv: 1204.5379 (2012) A White Paper on keV Sterile Neutrino Dark Matter R. Adhikari et al., arXiv: 1602.04816 (2017) “Majority of the SM extensions predict the existence of sterile neutrinos” • SNs do not couple to Z, W gauge bosons • SNs and active neutrinos interact via mixing (U4) • SNs can have any mass • SNs with mass 0.5 keV to 50 keV – DM candidates sterile neutrinos Light Sterile Neutrinos: A White Paper K.N.