<<

How could Penning-Trap Mass Spectrometry be useful to Physics?

Sergey Eliseev Max-Planck-Institute for Heidelberg

MEDEX, Prague, May 31, 2017 OUTLINE Basics of Penning-Trap Mass Spectrometry

PTMS for Neutrino Physics

• Type of neutrinoless double beta-processes

• Determination of Neutrino Mass

• Search for sterile Neutrinos Basics of Penning-Trap Mass Spectrometry 2 M (Z, N) = Z(me + mp ) + Nmn − B(Z, N) / c

• Binding Energies • Separation Energies • Q-values • Decay modes Number Z Number Proton • Half-lives • Shell structure • Deformation • Pairing • Halos • ......

Neutron Number N Field Examples δm/m

Nuclear structure shell closures, shell quenching, regions of physics deformation, drip lines, halos, Sn, Sp, S2n, S2p, -6 -7 δVpn, 10 to 10

Astrophysics rp-process and r-process path, waiting-point nuclear models nuclei, proton threshold energies, astrophysical mass formula reaction rates, star, x-ray burst

Weak interaction CVC hypothesis, CKM matrix unitarity, Ft of 10-8 studies superallowed ß-emitters Metrology, α (h/m , m /m , m /m ), m 10-9 to 10-10 fundamental constants Cs Cs p p e Si

0νββ, 0ν2EC 10-8-10-9 Neutrino physics mmother – mdaughter : sterile neutrinos <10-11 neutrino mass CPT tests mp and mp me- and me+ <10-11 QED in HCI mion, electron binding energy Penning trap (the most accurate mass spectrometer !!! ) strong uniform •Mass Frequency static B-field • Magnetic field of a few Tesla •Homogeniety of B-field: 10-7/cm3 B • T rapping volume: a few microns3 •High temporal stability of B-field

q/m uncertainty of < 10-11 1 q in mass-ratio determination νc = B 2π m Mp Q = Mp – Md = Md∙ ( - 1) Md SHIPTRAP THe-TRAP Max-Planck Institute for Nuclear Physics, JYFLTRAP Heidelberg TRIGATRAP strong uniform ∆B MLLTRAP static B-field < 10-11 h-1 B ∆B < 5 · 10-9 h-1 B B

q/m

1 q ν = B c 2π m strong uniform harmonic electrical 3 eigenmotions in trap magnetic field potential

+ =

2 2 2 2 δν ν c =ν + +ν − +ν z c <10−10 ν long-lived and stable nuclides c δν ν c =ν + +ν − c >10−10 ν short-lived c

Rev. Mod. Phys. 58, 233 (1986). On-line Penning-trap facilities for experiments on exotic nuclides

JYFLTRAP

SHIPTRAP MLLTRAP TITAN TRIGATRAP

CPT LEBIT ISOLTRAP

achievable accuracy of mass measurements short-lived nuclides : δm/m ~ 10-6 - 10-8 long-lived nuclides : δm/m ~ 10-10 Off-line Penning-trap setups for experiments on long-lived nuclides

FSU

achievable accuracy of mass measurements long-lived and stable nuclides : δm/m < 10-10 Off-line Penning-trap setups for experiments on long-lived nuclides

THe-TRAP

PENTATRAP FSU CHIP-TRAP

achievable accuracy of mass measurements long-lived and stable nuclides : δm/m < 10-11 High Precision PTMS

Q = Mmother- Mdaughter of β and ββ transitions

10−8−10−9

type of neutrinos

< 10−11 < 10−11 neutrino mass sterile neutrinos High Precision PTMS

Q = Mmother- Mdaughter of β and ββ transitions

10−8−10−9

type of neutrinos

< 10−11 < 10−11 neutrino mass sterile neutrinos 184 double--capture nuclides Os 190Pt

130Ba 124Xe 112Sn proton number proton 96Zr 82Se double β-decay nuclides

neutron number − Neutrinoless Double-β Decay

Contribution of Penning Traps:

measurements of Q2β – values with a sub-keV uncertainty

transition T1/2/ y / eV Experiment 136Xe → 136Ba > 5·1025 < 0.09 – 0.24 KamLAND-Zen 76Ge → 76Se > 3.5·1025 < 0.18 – 0.48 GERDA-I + GERDA-II 130Te → 130Xe > 4·1024 < 0.26 – 0.97 CUORICINO + CUORE0 100Mo → 100Ru > 1.1·1024 < 0.33 – 0.62 NEMO-3 82Se → 82Kr > 3.6·1023 < 1 – 2.4 NEMO-3 116Cd → 116Sn > 1.9·1023 < 1 – 1.8 AURORA 48Ca → 48Ti > 5.8·1022 < 3.1 – 15.4 CANDLES 150Nd → 150Sm > 2·1022 < 1.6 – 5.3 NEMO-3 96Zr → 96Mo > 9.2·1021 < 3.6 – 10.4 NEMO-3 A.S. Barabash, arXiv: 1702.06340v1 (2017)

− Neutrinoless Double-β Decay

Contribution of Penning Traps:

measurements of Q2β – values with a sub-keV uncertainty

transition Q / keV δQ / keV Experiment 136Xe → 136Ba 2457.83 0.37 FSU-trap (2007) 76Ge → 76Se 2039.006 0.05 MIT-trap (2001) 130Te → 130Xe 2527.518 0.013 FSU-trap (2009) 100Mo → 100Ru 3034.40 0.17 JYFLTRAP (2008) 82Se → 82Kr 2997.9 0.3 LEBIT-trap (2013) 116Cd → 116Sn 2813.50 0.13 JYFLTRAP (2013) 48Ca → 48Ti 4268.121 0.079 LEBIT-trap (2013) 150Nd → 150Sm 3371.38 0.2 JYFLTRAP (2010) 96Zr → 96Mo 3356.097 0.086 JYFLTRAP (2016) Neutrinoless Double-

R. G. Winter, Phys. Rev. 100 (1955) 142. 1 2 2 Γ2h ~ M0νεε mν M. B. Voloshin, G. V. Mitselmakher, R. A. Eramzhyan, 2 T1/2 1 2 JETP Lett. 35 (1982) 656. (Q − B2h − E γ ) + Γ2h 4 J. Bernabeu, A. De Rujula, C. Jarlskog, Nucl. Phys. B 223 (1983) 15. M. I. Krivoruchenko, F. Simkovic, D. Frekers, A. Faessler, Nucl. Phys. A 859 (2011) 140.

/ ; ≈ y 𝟐𝟐𝟔𝟔 𝟏𝟏 𝟐𝟐 𝑻𝑻 / 𝟏𝟏; 𝟐𝟐𝟐𝟐 𝟎𝟎 𝒎𝒎𝒆𝒆𝒆𝒆 ≈ . 𝟏𝟏 𝟏𝟏 y 𝟐𝟐𝟕𝟕 𝑻𝑻𝟏𝟏 𝟐𝟐 𝟏𝟏 𝟓𝟓𝟓𝟓 𝒎𝒎𝒆𝒆𝒆𝒆 𝟐𝟐 𝟓𝟓 ∙ 𝟏𝟏𝟏𝟏 Neutrinoless Double-Electron Capture

184 double-electron-capture nuclides Os 190Pt 15 nuclides

130Ba 124Xe 112Sn

proton number proton Measurement of Q=Mi-Mf 96 Zr with δQ ~ 100 eV 82Se double β-decay nuclides

neutron number Neutrinoless Double-Electron Capture transition Q / keV δQ / keV Experiment 112Sn → 112Cd 1919.82 0.16 JYFLTRAP (2009) 74Se → 74Ge 1209.240 0.007 FSU-trap (2010) 136Ce → 136Ba 2378.53 0.27 SHIPTRAP (2011) 2378.49 0.35 JYFLTRAP (2011) 184Os → 184W 1453.68 0.58 TRIGATRAP (2012) 190Pt → 190Os 1401.57 0.47 LEBIT-trap (2016) 152Gd → 152Sm 55.70 0.18 164Er → 164Dy 25.07 0.12 180W → 180Hf 143.20 0.27 96Ru → 96Mo 2714.51 0.13 162Er → 162Dy 1846.95 0.3 SHIPTRAP (2011,2012) 168Yb → 168Er 1409.27 0.25 106Cd → 106Pd 2775.39 0.10 156Dy → 156Gd 2005.95 0.10 124Xe → 124Te 2856.73 0.12 130Ba → 130Xe 2623.74 0.29 152Gd → 152Sm 0+ → 0+ transition between nuclear ground states

Q (old)/ keV ∆ (old)/ keV Q (new)/ keV ∆ (new)/ keV 54.6(3.5) -0.2(3.5) 55.7(0.2) 0.9(0.2)

Nuclear Matrix Element sQRPA dQRPA IBM-2 EDF D.-L. Fang et al., J. Kotila et al., T.R. Rodrigez & G. Martinez-Pinedo, PRC 85 (2012) 035503 PRC 89 (2014) 064319 PRC 85 (2012) 044310 7.21-7.59 2.67-3.23 2.44 0.89-1.07

/ = 2; < 0.25 ; > 0.3 > 𝟐𝟐𝟐𝟐 𝑻𝑻𝟏𝟏 𝟐𝟐 𝑀𝑀 𝑚𝑚𝜈𝜈 𝑒𝑒𝑒𝑒 𝛥𝛥 𝑘𝑘𝑘𝑘𝑘𝑘 𝟒𝟒 ∙ 𝟏𝟏𝟏𝟏 𝒚𝒚 156Dy → 156Gd

● full degeneracy

● |M| ≈ 0.3 (IBM-2) J. Kotila et al., PRC 89 (2014) 064319

● mν < 0.25 eV

+ + 27 T1/2 (0 →0 ) > 4∙10 y M. I. Krivoruchenko, F. Simkovic, D. Frekers, A. Faessler, Nucl. Phys. A 859 (2011) 140. Conclusion:

+ + 27 T1/2 (0 →0 ) > 4∙10 y very optimistic

156Dy , 152Gd are not good candidates for a search for 0ν2EC 0ν2EC in radioactive nuclides ? V.I. Tretyak et al., On the possibility to search for 2β decay of initially unstable (α/β radioactive) nuclei, Europhys. Lett. 69 (2005) 41.

150Gd 0+

6 2EC, L L , ∆=15(6) keV α-decay, T1/2= 1.8·10 y 1255.51(2) keV 1 1 0+

Q2EC = 1286.6(6.2) keV Qα = 2726(9) keV 150Sm 0+

146Sm 0+ 0ν2EC in radioactive nuclides ? V.I. Tretyak et al., On the possibility to search for 2β decay of initially unstable (α/β radioactive) nuclei, Europhys. Lett. 69 (2005) 41.

150Gd 0+

6 2EC, L L , ∆=15(6) keV α-decay, T1/2= 1.8·10 y 1255.51(2) keV 1 1 0+

Q2EC = 1286.6(6.2) keV Qα = 2726(9) keV 150Sm 0+

146Sm 0+

Criteria: • production - tens of kg • purity of produced sample

• T1/2 – long enough • decay mode: α-decay to ground state or low energy EC 0ν2EC in radioactive nuclides ? V.I. Tretyak et al., On the possibility to search for 2β decay of initially unstable (α/β radioactive) nuclei, Europhys. Lett. 69 (2005) 41.

150Gd 0+

6 2EC, L L , ∆=15(6) keV α-decay, T1/2= 1.8·10 y 1255.51(2) keV 1 1 0+

Q2EC = 1286.6(6.2) keV Qα = 2726(9) keV 150Sm 0+

146Sm 0+

Criteria: • production - tens of kg ?????????????????????????? • purity of produced sample

• T1/2 – long enough • decay mode: α-decay to ground state or low energy EC High Precision PTMS

Q = Mmother- Mdaughter of β and ββ transitions

10−8−10−9

type of neutrinos

< 10−11 < 10−11 neutrino mass sterile neutrinos Determination of neutrino mass with a sub-eV uncertainty : β-decay : Electron capture 163 163 𝒆𝒆 Ho 𝒆𝒆+ Dy + 3H 3𝒎𝒎He𝝂𝝂 + + + Q 𝒎𝒎𝝂𝝂 − 163Dy + + + − 𝑒𝑒 → ∗ 𝜈𝜈𝑒𝑒 → 𝑒𝑒 𝜈𝜈𝑒𝑒 β < 2.0 eV < 225 eV Current limit: (95% C.L.) Current limit: → 𝜈𝜈𝑒𝑒 𝑄𝑄𝐸𝐸𝐸𝐸 𝑚𝑚𝜈𝜈𝑒𝑒 𝑚𝑚𝜈𝜈𝑒𝑒

NuMECS

2/13 Determination of neutrino mass with a sub-eV uncertainty : β-decay : Electron capture

𝒎𝒎𝝂𝝂𝒆𝒆 𝒎𝒎𝝂𝝂𝒆𝒆

Uncertainty which has been achieved until now: δQ (tritium decay) ≈ 70 meV δQ (EC in 163Ho) ≈ 30 eV FSU-trap SHIPTRAP at GSI

Required uncertainty in Q-value determination with Penning traps: δQ (tritium decay) ≈ a few meV δQ (EC in 163Ho) ≈ 1 eV THe-trap at MPIK PENTATRAP at MPIK High Precision PTMS

Q = Mmother- Mdaughter of β and ββ transitions

10−8−10−9

type of neutrinos

< 10−11 < 10−11 neutrino mass sterile neutrinos sterile neutrinos Light Sterile Neutrinos: A White Paper K.N. Abazajian et al., arXiv: 1204.5379 (2012) A White Paper on keV Sterile Neutrino Dark Matter R. Adhikari et al., arXiv: 1602.04816 (2017)

“Majority of the SM extensions predict the existence of sterile neutrinos”

• SNs do not couple to Z, W gauge bosons

• SNs and active neutrinos interact via mixing (U4) • SNs can have any mass • SNs with mass 0.5 keV to 50 keV – DM candidates sterile neutrinos Light Sterile Neutrinos: A White Paper K.N. Abazajian et al., arXiv: 1204.5379 (2012) A White Paper on keV Sterile Neutrino Dark Matter R. Adhikari et al., arXiv: 1602.04816 (2017)

“Majority of the SM extensions predict the existence of sterile neutrinos”

• SNs do not couple to Z, W gauge bosons

• SNs and active neutrinos interact via mixing (U4) • SNs can have any mass • SNs with mass 0.5 keV to 50 keV – DM candidates DM sterile neutrinos: 0.5 to 50 keV Tritium Electron Capture R. Adhikari et al., arXiv: 1602.04816 (2017)

KATRIN Experiment ECHo Experiment (ECHo-1M) • Sensitivity: < 2∙10-7 • Sensitivity: < 10-6 2 2 0.5 keV < M < 10 keV 0.6 keV < Ms < 2 keV 𝑈𝑈s𝑒𝑒푒 𝑈𝑈𝑒𝑒푒

• Ms < 10 keV • Ms < 2.8 keV DM sterile neutrinos: 0.5 to 50 keV Electron-Capture Experiments P. Filianin et al. J. Phys. G: Nucl. Part. Phys. 41 (2014) 095004 range of max. half-life Q / keV Bi / keV Bj / keV sensitivity / keV 163 Ho 4570 y 2.555(16) M1: 2.0468(5) N1: 0.4163(5) 0.6 - 2 235 Np 396 d 124.2(9) K: 115.6061(16) L1: 21.7574(3) 20 - 115 157 Tb 71 y 60.04(30) K: 50.2391(5) L1: 8.3756(5) 8 - 50 202 Pb 52 ky 46(14) L1: 15.3467(4) M1: 3.7041(4) 4 - 15 205 Pb 13 My 50.6(5) L1: 15.3467(4) M1: 3.7041(4) 4 - 15 179 Ta 1.82 y 105.6(4) K: 65.3508(6) L1: 11.2707(4) 10 - 65 193 Pt 50 y 56.63(30) L1: 13.4185(3) M1: 3.137(17) 3 - 13 measurements of Q-values with uncertainties δQ < 1eV are reqiured

measurement programme for PENTATRAP High Precision PTMS

Q = Mmother- Mdaughter of β and ββ transitions

10−8−10−9

type of neutrinos

< 10−11 < 10−11 neutrino mass sterile neutrinos Thank you for your attention ! SHIPTRAP

PENTATRAP

Q-value of the EC in 163Ho Q = M(163Ho) - M(163Dy) for -project Spokesperson: L. Gastaldo , KIP, Heidelberg cryogenic microcalorimetry

~ 250 (40) eV a few a of uncertainty tenan with Direct (Penning - trap)measurement of eV was demanded Q - value

~ 250 (40) eV QHo= 2833(30stat)(15sys) eV

S. Eliseev et al. Phys. Rev. Lett. 115 (2015) 062501 PENTATRAP δQ ~ 1 eV (δQ/m < 10-11)

determination of neutrino mass with sub-eV uncertainty PENTATRAP

Ion beamline

mass-separator

EBIT ion source 100 ions/s; 187Re50+

mass-spectrometer 0 Main Features: 1 q 1 q U ν = ⋅ ⋅ B ν z = ⋅ c 2π m 2π m d 2

stability & homogeneity of B-field stability & harmonicity of U-well

highly charged ions cryogenic traps and detection electronics (4 K)

five traps

FT-ICR fequency-measurement technique

stabilization of environment

Status of PENTATRAP

• Production of highly charged ions (187Re50+, Xe25+, Ar8+) • Transport of HCIs to Penning-trap mass spectrometer • Trapping of HCIs for up to 30 min. • Measurement of the axial-motion frequency Status of PENTATRAP

Improvement of the Experiment Performence (1) next year

Q-value of β-decay of 187Re with ~ 1 eV uncertainty

(2) 2019-2020

Q-value of electron capture in 163Ho with ~ 1 eV uncertainty DM sterile neutrinos: 0.5 to 50 keV Tritium Beta Decay Experiments R. Adhikari et al., arXiv: 1602.04816 (2017) Troitsk Experiment

KATRIN Experiment • Sensitivity: < 2∙10-7 0.5 keV < M < 102 keV 𝑈𝑈s𝑒𝑒푒

• Ms < 10 keV DM sterile neutrinos: 0.5 to 50 keV Electron-Capture Experiments R. Adhikari et al., arXiv: 1602.04816 (2017) ECHo Experiment (163Ho, Phase ECHo-1M)

N M

10-8 10-7 10-6 10-5 10-4 10-3 mixing angle • Sensitivity: < 10-6 • Ms < 2.8 keV 0.6 keV < M < 22 keV 𝑈𝑈s 𝑒𝑒푒 DM sterile neutrinos: 0.5 to 50 keV Electron-Capture Experiments P. Filianin et al. J. Phys. G: Nucl. Part. Phys. 41 (2014) 095004 range of max. nuclide half-life Q / keV Bi / keV Bj / keV sensitivity / keV 163 Ho 4570 y 2.555(16) M1: 2.0468(5) N1: 0.4163(5) 0.6 - 2 235 Np 396 d 124.2(9) K: 115.6061(16) L1: 21.7574(3) 20 - 115 157 Tb 71 y 60.04(30) K: 50.2391(5) L1: 8.3756(5) 8 - 50 202 Pb 52 ky 46(14) L1: 15.3467(4) M1: 3.7041(4) 4 - 15 205 Pb 13 My 50.6(5) L1: 15.3467(4) M1: 3.7041(4) 4 - 15 179 Ta 1.82 y 105.6(4) K: 65.3508(6) L1: 11.2707(4) 10 - 65 193 Pt 50 y 56.63(30) L1: 13.4185(3) M1: 3.137(17) 3 - 13 measurements of Q-values with uncertainties δQ < 1eV are reqiured

measurement programme for PENTATRAP