Penning-Trap Mass Spectrometry Neutrino Physics?

Penning-Trap Mass Spectrometry Neutrino Physics?

How could Penning-Trap Mass Spectrometry be useful to Neutrino Physics? Sergey Eliseev Max-Planck-Institute for Nuclear Physics Heidelberg MEDEX, Prague, May 31, 2017 OUTLINE Basics of Penning-Trap Mass Spectrometry PTMS for Neutrino Physics • Type of Neutrinos neutrinoless double beta-processes • Determination of Neutrino Mass • Search for sterile Neutrinos Basics of Penning-Trap Mass Spectrometry 2 M (Z, N) = Z(me + mp ) + Nmn − B(Z, N) / c • Binding Energies • Separation Energies • Q-values • Decay modes Proton Number Z Number Proton • Half-lives • Shell structure • Deformation • Pairing • Halos • Nucleosynthesis ................ Neutron Number N Field Examples δm/m Nuclear structure shell closures, shell quenching, regions of physics deformation, drip lines, halos, Sn, Sp, S2n, S2p, -6 -7 δVpn, island of stability 10 to 10 Astrophysics rp-process and r-process path, waiting-point nuclear models nuclei, proton threshold energies, astrophysical mass formula reaction rates, neutron star, x-ray burst Weak interaction CVC hypothesis, CKM matrix unitarity, Ft of 10-8 studies superallowed ß-emitters Metrology, α (h/m , m /m , m /m ), m 10-9 to 10-10 fundamental constants Cs Cs p p e Si 0νββ, 0ν2EC 10-8-10-9 Neutrino physics mmother – mdaughter : sterile neutrinos <10-11 neutrino mass CPT tests mp and mp me- and me+ <10-11 QED in HCI mion, electron binding energy Penning trap (the most accurate mass spectrometer !!! ) strong uniform •Mass Frequency static B-field • Magnetic field of a few Tesla •Homogeniety of B-field: 10-7/cm3 B • T rapping volume: a few microns3 •High temporal stability of B-field q/m uncertainty of < 10-11 1 q in mass-ratio determination νc = B 2π m Mp Q = Mp – Md = Md∙ ( - 1) Md SHIPTRAP THe-TRAP Max-Planck Institute for Nuclear Physics, JYFLTRAP Heidelberg TRIGATRAP strong uniform ∆B MLLTRAP static B-field < 10-11 h-1 B ∆B < 5 · 10-9 h-1 B B q/m 1 q ν = B c 2π m strong uniform harmonic electrical 3 eigenmotions in trap magnetic field potential + = 2 2 2 2 δν ν c =ν + +ν − +ν z c <10−10 ν long-lived and stable nuclides c δν ν c =ν + +ν − c >10−10 ν short-lived nuclides c Rev. Mod. Phys. 58, 233 (1986). On-line Penning-trap facilities for experiments on exotic nuclides JYFLTRAP SHIPTRAP MLLTRAP TITAN TRIGATRAP CPT LEBIT ISOLTRAP achievable accuracy of mass measurements short-lived nuclides : δm/m ~ 10-6 - 10-8 long-lived nuclides : δm/m ~ 10-10 Off-line Penning-trap setups for experiments on long-lived nuclides FSU achievable accuracy of mass measurements long-lived and stable nuclides : δm/m < 10-10 Off-line Penning-trap setups for experiments on long-lived nuclides THe-TRAP PENTATRAP FSU CHIP-TRAP achievable accuracy of mass measurements long-lived and stable nuclides : δm/m < 10-11 High Precision PTMS Q = Mmother- Mdaughter of β and ββ transitions 10−8−10−9 type of neutrinos < 10−11 < 10−11 neutrino mass sterile neutrinos High Precision PTMS Q = Mmother- Mdaughter of β and ββ transitions 10−8−10−9 type of neutrinos < 10−11 < 10−11 neutrino mass sterile neutrinos 184 double-electron-capture nuclides Os 190Pt 130Ba 124Xe 112Sn proton number proton 96Zr 82Se double β-decay nuclides neutron number − Neutrinoless Double-β Decay Contribution of Penning Traps: measurements of Q2β – values with a sub-keV uncertainty transition T1/2/ y <mν >/ eV Experiment 136Xe → 136Ba > 5·1025 < 0.09 – 0.24 KamLAND-Zen 76Ge → 76Se > 3.5·1025 < 0.18 – 0.48 GERDA-I + GERDA-II 130Te → 130Xe > 4·1024 < 0.26 – 0.97 CUORICINO + CUORE0 100Mo → 100Ru > 1.1·1024 < 0.33 – 0.62 NEMO-3 82Se → 82Kr > 3.6·1023 < 1 – 2.4 NEMO-3 116Cd → 116Sn > 1.9·1023 < 1 – 1.8 AURORA 48Ca → 48Ti > 5.8·1022 < 3.1 – 15.4 CANDLES 150Nd → 150Sm > 2·1022 < 1.6 – 5.3 NEMO-3 96Zr → 96Mo > 9.2·1021 < 3.6 – 10.4 NEMO-3 A.S. Barabash, arXiv: 1702.06340v1 (2017) − Neutrinoless Double-β Decay Contribution of Penning Traps: measurements of Q2β – values with a sub-keV uncertainty transition Q / keV δQ / keV Experiment 136Xe → 136Ba 2457.83 0.37 FSU-trap (2007) 76Ge → 76Se 2039.006 0.05 MIT-trap (2001) 130Te → 130Xe 2527.518 0.013 FSU-trap (2009) 100Mo → 100Ru 3034.40 0.17 JYFLTRAP (2008) 82Se → 82Kr 2997.9 0.3 LEBIT-trap (2013) 116Cd → 116Sn 2813.50 0.13 JYFLTRAP (2013) 48Ca → 48Ti 4268.121 0.079 LEBIT-trap (2013) 150Nd → 150Sm 3371.38 0.2 JYFLTRAP (2010) 96Zr → 96Mo 3356.097 0.086 JYFLTRAP (2016) Neutrinoless Double-Electron Capture R. G. Winter, Phys. Rev. 100 (1955) 142. 1 2 2 Γ2h ~ M0νεε mν M. B. Voloshin, G. V. Mitselmakher, R. A. Eramzhyan, 2 T1/2 1 2 JETP Lett. 35 (1982) 656. (Q − B2h − E γ ) + Γ2h 4 J. Bernabeu, A. De Rujula, C. Jarlskog, Nucl. Phys. B 223 (1983) 15. M. I. Krivoruchenko, F. Simkovic, D. Frekers, A. Faessler, Nucl. Phys. A 859 (2011) 140. / ; ≈ y / ; ≈ . y ∙ Neutrinoless Double-Electron Capture 184 double-electron-capture nuclides Os 190Pt 15 nuclides 130Ba 124Xe 112Sn proton number proton Measurement of Q=Mi-Mf 96 Zr with δQ ~ 100 eV 82Se double β-decay nuclides neutron number Neutrinoless Double-Electron Capture transition Q / keV δQ / keV Experiment 112Sn → 112Cd 1919.82 0.16 JYFLTRAP (2009) 74Se → 74Ge 1209.240 0.007 FSU-trap (2010) 136Ce → 136Ba 2378.53 0.27 SHIPTRAP (2011) 2378.49 0.35 JYFLTRAP (2011) 184Os → 184W 1453.68 0.58 TRIGATRAP (2012) 190Pt → 190Os 1401.57 0.47 LEBIT-trap (2016) 152Gd → 152Sm 55.70 0.18 164Er → 164Dy 25.07 0.12 180W → 180Hf 143.20 0.27 96Ru → 96Mo 2714.51 0.13 162Er → 162Dy 1846.95 0.3 SHIPTRAP (2011,2012) 168Yb → 168Er 1409.27 0.25 106Cd → 106Pd 2775.39 0.10 156Dy → 156Gd 2005.95 0.10 124Xe → 124Te 2856.73 0.12 130Ba → 130Xe 2623.74 0.29 152Gd → 152Sm 0+ → 0+ transition between nuclear ground states Q (old)/ keV ∆ (old)/ keV Q (new)/ keV ∆ (new)/ keV 54.6(3.5) -0.2(3.5) 55.7(0.2) 0.9(0.2) Nuclear Matrix Element sQRPA dQRPA IBM-2 EDF D.-L. Fang et al., J. Kotila et al., T.R. Rodrigez & G. Martinez-Pinedo, PRC 85 (2012) 035503 PRC 89 (2014) 064319 PRC 85 (2012) 044310 7.21-7.59 2.67-3.23 2.44 0.89-1.07 / = 2; < 0.25 ; > 0.3 > ∙ 156Dy → 156Gd ● full degeneracy ● |M| ≈ 0.3 (IBM-2) J. Kotila et al., PRC 89 (2014) 064319 ● mν < 0.25 eV + + 27 T1/2 (0 →0 ) > 4∙10 y M. I. Krivoruchenko, F. Simkovic, D. Frekers, A. Faessler, Nucl. Phys. A 859 (2011) 140. Conclusion: + + 27 T1/2 (0 →0 ) > 4∙10 y very optimistic 156Dy , 152Gd are not good candidates for a search for 0ν2EC 0ν2EC in radioactive nuclides ? V.I. Tretyak et al., On the possibility to search for 2β decay of initially unstable (α/β radioactive) nuclei, Europhys. Lett. 69 (2005) 41. 150Gd 0+ 6 2EC, L L , ∆=15(6) keV α-decay, T1/2= 1.8·10 y 1255.51(2) keV 1 1 0+ Q2EC = 1286.6(6.2) keV Qα = 2726(9) keV 150Sm 0+ 146Sm 0+ 0ν2EC in radioactive nuclides ? V.I. Tretyak et al., On the possibility to search for 2β decay of initially unstable (α/β radioactive) nuclei, Europhys. Lett. 69 (2005) 41. 150Gd 0+ 6 2EC, L L , ∆=15(6) keV α-decay, T1/2= 1.8·10 y 1255.51(2) keV 1 1 0+ Q2EC = 1286.6(6.2) keV Qα = 2726(9) keV 150Sm 0+ 146Sm 0+ Criteria: • production - tens of kg • purity of produced sample • T1/2 – long enough • decay mode: α-decay to ground state or low energy EC 0ν2EC in radioactive nuclides ? V.I. Tretyak et al., On the possibility to search for 2β decay of initially unstable (α/β radioactive) nuclei, Europhys. Lett. 69 (2005) 41. 150Gd 0+ 6 2EC, L L , ∆=15(6) keV α-decay, T1/2= 1.8·10 y 1255.51(2) keV 1 1 0+ Q2EC = 1286.6(6.2) keV Qα = 2726(9) keV 150Sm 0+ 146Sm 0+ Criteria: • production - tens of kg ?????????????????????????? • purity of produced sample • T1/2 – long enough • decay mode: α-decay to ground state or low energy EC High Precision PTMS Q = Mmother- Mdaughter of β and ββ transitions 10−8−10−9 type of neutrinos < 10−11 < 10−11 neutrino mass sterile neutrinos Determination of neutrino mass with a sub-eV uncertainty : β-decay : Electron capture 163 163 Ho + Dy + 3H 3He + + + Q − 163Dy + + + − → ∗ → β < 2.0 eV < 225 eV Current limit: (95% C.L.) Current limit: → NuMECS 2/13 Determination of neutrino mass with a sub-eV uncertainty : β-decay : Electron capture Uncertainty which has been achieved until now: δQ (tritium decay) ≈ 70 meV δQ (EC in 163Ho) ≈ 30 eV FSU-trap SHIPTRAP at GSI Required uncertainty in Q-value determination with Penning traps: δQ (tritium decay) ≈ a few meV δQ (EC in 163Ho) ≈ 1 eV THe-trap at MPIK PENTATRAP at MPIK High Precision PTMS Q = Mmother- Mdaughter of β and ββ transitions 10−8−10−9 type of neutrinos < 10−11 < 10−11 neutrino mass sterile neutrinos sterile neutrinos Light Sterile Neutrinos: A White Paper K.N. Abazajian et al., arXiv: 1204.5379 (2012) A White Paper on keV Sterile Neutrino Dark Matter R. Adhikari et al., arXiv: 1602.04816 (2017) “Majority of the SM extensions predict the existence of sterile neutrinos” • SNs do not couple to Z, W gauge bosons • SNs and active neutrinos interact via mixing (U4) • SNs can have any mass • SNs with mass 0.5 keV to 50 keV – DM candidates sterile neutrinos Light Sterile Neutrinos: A White Paper K.N.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    48 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us