Double Electron Capture in Relativistic U92З Collisions

Total Page:16

File Type:pdf, Size:1020Kb

Double Electron Capture in Relativistic U92З Collisions Physica Scripta. T92, 429^431, 2001 Double Electron Capture in Relativistic U92 Collisions Observed at the ESR Gas-Jet Target G. Bednarz1, A. Warczak1,P.S¨ wiat1, Th. StÎhlker2,3,H.Beyer2,F.Bosch2,R.W.Dunford4,S.Hagmann2,7,E.P.Kanter4, C. Kozhuharov2,A.KrÌmer2, D. Liesen2, T. Ludziejewski2,5,X.Ma2,P.H.Mokler2 and Z. Stachura6 1Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krako¨ w, Pol an d 2 Gesellschaft fur Schwerionenforschung (GSI), 64220 Darmstadt, Germany 3 Institut fÏr Kernphysik University of Frankfurt 60486 Frankfurt, Germany 4 Argonne National Laboratory, Argonne, IL, USA 5 Institute for Nuclear Studies, Sè wierk, Poland 6 Institute of Nuclear Physics, Krako¨ w, Pol an d 7 Kansas State University, Kansas, USA Received July 31, 2000; accepted August 15, 2000 pacs ref: 34.50.Fa, 34.70.e Abstract . radiative double electron capture (RDEC) ^ a one-step Processes associated with double electron capture into bare U92-ionshave process, where the energy and momentum gained by been observed under single collision conditions. Regions of very low cross capture of two correlated electronsisconverted into sections, close to mbarn, have been explored successfully. In particular, an one photon with approximately twice the energy of a attempt to register photons with twice the energy of single K-REC photons single REC photon. In analogy to REC, the RDEC hasbeen performed. Moreover, K-REC spectra associated with double charge can be treated astime inversionof double exchange have been analysed in terms of their angular distribution. As a result, photoionization. Using the principle of detailed balance, evidence for correlated electron capture hasbeen found. one obtains, in the high energy limit, an approximation forthecrosssectionofRDEC(sRDEC)[4]: 1. Introduction 0:0932 s 2To s A Á Z À 1Á Á ph Á s Z 2 Radiative electron capture (REC) of a single electron, RDEC t 2 REC t Z sph To observed in fast collisions of fully stripped high-Z ionswith light target atoms, is a dominant charge-exchange process where A 1 stands for the phase-space fraction accessible [1]. Here, the fundamental electron^photon interaction to RDEC [4], sph isthe crosssectionfor singlephotoioniz- mechanisms can be studied complementary to photoioniz- ation caused by a photon with energy of ho 2ho). Very ation experiments when considering REC as time reversal recent theoretical consideration of RDEC [5], within a of photoe¡ect. Recently, considerable e¡orts, directed onto non-relativistic approximation, gives for sRDEC avery ^6 electron-photon interaction, went towardsdetailsof double small fraction of sREC which variesbetween 10 ^9 photoionization of two-electron systems. This phenomenon, (Z 18) and 10 (Z 92). Here again, there isno direct in particular, dealswith very challenging problemsof atomic experimental evidence for the process. The only exper- physics where the electron-electron interaction should be iment aiming at observing of RDEC photons [4] provided taken into account thusentering the area of correlation uswith an upper limit estimateof sRDEC (for Z 18) e¡ects[2]. which wasvery closeto the nonrelativisticpredictions In order to follow thisguideline, the main intention of the given in [5]. However, it was suggested in [5], that in present experiment was to observe processes associated with the high-Z region, due to relativistic e¡ects, the corre- capture of two electrons into bare and fast heavy ions. sponding RDEC cross section should be strongly Measurementsofprojectile X-raysassociatedwith double enhanced with respect to the nonrelativistic prediction. charge exchange give access to the investigation of the Therefore, at high-Z, a scattering of theoretical predic- following radiative processes: tionsfor sRDEC, covering six orders of magnitude, requiresurgently an experimental clari¢cation. double radiative electron capture (DREC) a two-step pro- cess in which two uncorrelated electrons are captured in one collision and two photons are emitted, both with 2. Experiment the energy of single REC photons. The cross section The experiment wasperformed at the heavy ion storagering, for thisprocess( sDREC) can be calculated within the inde- ESR, at GSI in Darmstadt. Bare U92+ ionsat an energy of pendent electron approximation and presented in the form 286 MeV/u have been used in collisions with gaseous N2- [3]: and Ar-targets, with densities ranging from 4.7Á1011/cm3 p up to 5.9Á1012/cm3 [6]. After passing through the target, s 0:13 Á Z Á aÀ2 Á s2 Z 1 DREC t 0 REC t the ions were charge state analysed in the next ESR bending where Zt isthe target atomic number, a0 Bohr radius, and magnet and collected in a movable position-sensitive multi- sREC stands for the cross section for single REC. So far, wire proportional counter (MWPC). In Fig. 1, the charge- thisprocesshasnotbeen observedand veri¢ed experi- state distribution for U92+! Ar collisions is shown. The sep- mentally; aration between the two neighbouring charge states (91 and # Physica Scripta 2001 Physica Scripta T92 430 G.Bednarz et al. 90) amountsto about 80 mm. Due to thislarge separation tion zone at a multitude of di¡erent observation angles with (the diameter of the ESR beam tube amountsto 250 mm) respect to the beam axis. For our current investigation an it wasnecessaryto tune the trajectory of the primary beam array of germanium detectors, covering observation angles out of the centre in order to detect both charge states of in the range from almost 0 up to 150 hasbeen installed. interest simultaneously on the detector. As observed in The X-ray detectorswere triggered by signalsfromthe par- Fig.1,therateofsingledown-chargedU91 isover four ticle detector. ordersof magnitude larger than for double down-charged U90 ions. In order to observe e¤ciently processes related to double capture, the particle detector wasplaced at a pos- ition where no single down-charged ions could hit the 3. Data analysis 92+ detector. Further on, single collision conditions for double InthecaseofU ! N2 collisions, single electron capture is electron capture were tested by measuring the yield U90+ predominantly determined by REC, with a measured cross ions as function of the target density (see Fig. 2). The linear section of 880 Æ 100 b which isin accordance with our pre- dependence observed in the ¢gure points clearly to single viousexperimental and theoretical results[1].In thiscol- collision conditions, a crucial requirement of the lision system double capture should be mediated mainly measurement. In this context, Fig. 1 presents ¢rst experi- by two uncorrelated REC processes. The cross section value mental evidence for double electron capture occurring in for the process of (8 Æ 3 mb), measured for the ¢rst time in singlecollisionsofbare uranium ionswith Ar atoms. thisexperiment, isin good agreement with Eq. (1) (10.4 mb). To register X-ray emission related to double capture Fig. 3 clearly shows that in this collision system the cross events, the atomic physics photon detection chamber at section associated with double charge exchange is about ¢ve the internal jet target of ring hasbeen used[7,8]. This orders of magnitude smaller than that for single capture environment allowsusto view the beam/jet target interac- channel. Fig.1. Charge state spectrum of U-ions after passage of U92-ionsthrough a thin Ar-target. The primary ion beam could not be registered simultaneously. Fig.3. Cross sections measured in the experiment: triangles ^ single capture; squares ^ double capture; circle ^ RDEC estimate. Lines show theoretical predictions: solid line ^ REC; dashed line ^ DREC (formula (1)); dotted Fig.2. Ratio of double charge-exchange yield over the number of ionspassing line ^ RDEC (nonrelativistic approximation [5]); dash-dotted line ^ RDEC through the N2-target (in arbitrary units). (relativistic corrections included [5]). Physica Scripta T92 # Physica Scripta 2001 Double Electron Capture in Relativistic U92 Collisions Observed at the ESR Gas-Jet Target 431 For U92+ ! Ar collisions about 75% of the cross section normalisation procedure as above and taking into account for single electron capture is due to REC [1]. The other part the corresponding X-ray e¤ciencies of the detectors, of the cross section is due to non-radiative electron capture di¡erential cross sections of 1.25 mbarn/sr (at 90)and (NRC). Therefore, the measured cross section value for 17.5 mbarn/sr (at 120) with uncertaintiescloseto 100% double charge exchange (360 Æ 70 mb) ismostprobably were determined. Averaging these two values and assuming composed of the cross sections for all the possible com- an isotropic distribution for RDEC, an estimate for sRDEC binationsof the uncorrelated REC and NRC transitions. waspossible( sRDEC 100 mb). Thisdata point ispresented According to Eq. (1) the contribution consisting of two in Fig. 3, aswell. It issituatedabout four ordersof magnitude uncorrelated radiative transitions(DREC) amountsto above the prediction of an non-relativistic approach [5] and 54.9 mb. Signi¢cant deviation of the measured cross section about two ordersof magnitude below the predictions from thisvalue (comp. Fig. 3) isprobably related to a strong involving relativistic corrections [5]. Our experimental contribution of NRC to double capture. ¢nding for sRDEC suggests that for the case of high-Z ions In addition, the angular distribution of K-REC photons thisprocesscontributestoa considerable amount to the inte- associated with double electron capture was registered. gral double electron capture probability and pointsto an However, only in the case of U92 ! Ar collisions the stat- increasing role of electron^electron correlation. Signi¢cant istical signi¢cance was su¤cient for an analysis (Fig. 4). uncertaintiesdue to poor statisticsof the presentexperiment The corresponding di¡erential cross sections were deter- require, however, continuation of these dedicated measure- mined by normalising the photon yields to the number of mentswhich shouldreveal the role of thisvery rare atomic K-REC photons measured in coincidence with single process in heavy ion-atom collisions. capture where the angular distribution is experimentally known [7].
Recommended publications
  • What Is the Nature of Neutrinos?
    16th Neutrino Platform Week 2019: Hot Topics in Neutrino Physics CERN, Switzerland, Switzerland, 7– 11 October 2019 Matrix Elements for Neutrinoless Double Beta Decay Fedor Šimkovic OUTLINE I. Introduction (Majorana ν’s) II. The 0νββ-decay scenarios due neutrinos exchange (simpliest, sterile ν, LR-symmetric model) III. DBD NMEs – Current status (deformation, scaling relation?, exp. support, ab initio… ) IV. Quenching of gA (Ikeda sum rule, 2νββ-calc., novel approach for effective gA ) V. Looking for a signal of lepton number violation (LHC study, resonant 0νECEC …) Acknowledgements: A. Faessler (Tuebingen), P. Vogel (Caltech), S. Kovalenko (Valparaiso U.), M. Krivoruchenko (ITEP Moscow), D. Štefánik, R. Dvornický (Comenius10/8/2019 U.), A. Babič, A. SmetanaFedor(IEAP SimkovicCTU Prague), … 2 After 89/63 years Fundamental ν properties No answer yet we know • Are ν Dirac or • 3 families of light Majorana? (V-A) neutrinos: •Is there a CP violation ν , ν , ν ν e µ τ e in ν sector? • ν are massive: • Are neutrinos stable? we know mass • What is the magnetic squared differences moment of ν? • relation between • Sterile neutrinos? flavor states • Statistical properties and mass states ν µ of ν? Fermionic or (neutrino mixing) partly bosonic? Currently main issue Nature, Mass hierarchy, CP-properties, sterile ν The observation of neutrino oscillations has opened a new excited era in neutrino physics and represents a big step forward in our knowledge of neutrino10/8/2019 properties Fedor Simkovic 3 Symmetric Theory of Electron and Positron Nuovo Cim. 14 (1937) 171 CNNP 2018, Catania, October 15-21, 2018 10/8/2019 Fedor Simkovic 4 ν ↔ ν- oscillation (neutrinos are Majorana particles) 1968 Gribov, Pontecorvo [PLB 28(1969) 493] oscillations of neutrinos - a solution of deficit10/8/2019 of solar neutrinos in HomestakeFedor Simkovic exp.
    [Show full text]
  • Ivan V. Ani~In Faculty of Physics, University of Belgrade, Belgrade, Serbia and Montenegro
    THE NEUTRINO Its past, present and future Ivan V. Ani~in Faculty of Physics, University of Belgrade, Belgrade, Serbia and Montenegro The review consists of two parts. In the first part the critical points in the past, present and future of neutrino physics (nuclear, particle and astroparticle) are briefly reviewed. In the second part the contributions of Yugoslav physics to the physics of the neutrino are commented upon. The review is meant as a first reading for the newcomers to the field of neutrino physics. Table of contents Introduction A. GENERAL REVIEW OF NEUTRINO a.2. Electromagnetic properties of the neutrino PHYSICS b. Neutrino in branches of knowledge other A.1. Short history of the neutrino than neutrino physics A.1.1. First epoch: 1930-1956 A.2. The present status of the neutrino A.1.2. Second epoch: 1956-1958 A.3. The future of neutrino physics A.1.3. Third epoch: 1958-1983 A.1.4. Fourth epoch: 1983-2001 B. THE YUGOSLAV CONNECTION a. The properties of the neutrino B.1. The Thallium solar neutrino experiment a.1. Neutrino masses B.2. The neutrinoless double beta decay a.1.1. Direct methods Epilogue a.1.2. Indirect methods References a.1.2.1. Neutrinoless double beta decay a.1.2.2. Neutrino oscillations 1 Introduction The neutrinos appear to constitute by number of species not less than one quarter of the particles which make the world, and even half of the stable ones. By number of particles in the Universe they are perhaps second only to photons.
    [Show full text]
  • Electron Capture in Stars
    Electron capture in stars K Langanke1;2, G Mart´ınez-Pinedo1;2;3 and R.G.T. Zegers4;5;6 1GSI Helmholtzzentrum f¨urSchwerionenforschung, D-64291 Darmstadt, Germany 2Institut f¨urKernphysik (Theoriezentrum), Department of Physics, Technische Universit¨atDarmstadt, D-64298 Darmstadt, Germany 3Helmholtz Forschungsakademie Hessen f¨urFAIR, GSI Helmholtzzentrum f¨ur Schwerionenforschung, D-64291 Darmstadt, Germany 4 National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA 5 Joint Institute for Nuclear Astrophysics: Center for the Evolution of the Elements, Michigan State University, East Lansing, Michigan 48824, USA 6 Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA E-mail: [email protected], [email protected], [email protected] Abstract. Electron captures on nuclei play an essential role for the dynamics of several astrophysical objects, including core-collapse and thermonuclear supernovae, the crust of accreting neutron stars in binary systems and the final core evolution of intermediate mass stars. In these astrophysical objects, the capture occurs at finite temperatures and at densities at which the electrons form a degenerate relativistic electron gas. The capture rates can be derived in perturbation theory where allowed nuclear transitions (Gamow-Teller transitions) dominate, except at the higher temperatures achieved in core-collapse supernovae where also forbidden transitions contribute significantly to the rates. There has been decisive progress in recent years in measuring Gamow-Teller (GT) strength distributions using novel experimental techniques based on charge-exchange reactions. These measurements provide not only data for the GT distributions of ground states for many relevant nuclei, but also serve as valuable constraints for nuclear models which are needed to derive the capture rates for the arXiv:2009.01750v1 [nucl-th] 3 Sep 2020 many nuclei, for which no data exist yet.
    [Show full text]
  • 2.3 Neutrino-Less Double Electron Capture - Potential Tool to Determine the Majorana Neutrino Mass by Z.Sujkowski, S Wycech
    DEPARTMENT OF NUCLEAR SPECTROSCOPY AND TECHNIQUE 39 The above conservatively large systematic hypothesis. TIle quoted uncertainties will be soon uncertainty reflects the fact that we did not finish reduced as our analysis progresses. evaluating the corrections fully in the current analysis We are simultaneously recording a large set of at the time of this writing, a situation that will soon radiative decay events for the processes t e'v y change. This result is to be compared with 1he and pi-+eN v y. The former will be used to extract previous most accurate measurement of McFarlane the ratio FA/Fv of the axial and vector form factors, a et al. (Phys. Rev. D 1984): quantity of great and longstanding interest to low BR = (1.026 ± 0.039)'1 I 0 energy effective QCD theory. Both processes are as well as with the Standard Model (SM) furthermore very sensitive to non- (V-A) admixtures in prediction (Particle Data Group - PDG 2000): the electroweak lagLangian, and thus can reveal BR = (I 038 - 1.041 )*1 0-s (90%C.L.) information on physics beyond the SM. We are currently analyzing these data and expect results soon. (1.005 - 1.008)* 1W') - excl. rad. corr. Tale 1 We see that even working result strongly confirms Current P1IBETA event sxpelilnentstatistics, compared with the the validity of the radiative corrections. Another world data set. interesting comparison is with the prediction based on Decay PIBETA World data set the most accurate evaluation of the CKM matrix n >60k 1.77k element V d based on the CVC hypothesis and ihce >60 1.77_ _ _ results
    [Show full text]
  • Double-Beta Decay of 96Zr and Double-Electron Capture of 156Dy to Excited Final States
    Double-Beta Decay of 96Zr and Double-Electron Capture of 156Dy to Excited Final States by Sean W. Finch Department of Physics Duke University Date: Approved: Werner Tornow, Supervisor Calvin Howell Kate Scholberg Berndt Mueller Albert Chang Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics in the Graduate School of Duke University 2015 Abstract Double-Beta Decay of 96Zr and Double-Electron Capture of 156Dy to Excited Final States by Sean W. Finch Department of Physics Duke University Date: Approved: Werner Tornow, Supervisor Calvin Howell Kate Scholberg Berndt Mueller Albert Chang An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics in the Graduate School of Duke University 2015 Copyright c 2015 by Sean W. Finch All rights reserved except the rights granted by the Creative Commons Attribution-Noncommercial License Abstract Two separate experimental searches for second-order weak nuclear decays to excited final states were conducted. Both experiments were carried out at the Kimballton Underground Research Facility to provide shielding from cosmic rays. The first search is for the 2νββ decay of 96Zr to excited final states of the daughter nucleus, 96Mo. As a byproduct of this experiment, the β decay of 96Zr was also investigated. Two coaxial high-purity germanium detectors were used in coincidence to detect γ rays produced by the daughter nucleus as it de-excited to the ground state. After collecting 1.92 years of data with 17.91 g of enriched 96Zr, half-life limits at the level of 1020 yr were produced.
    [Show full text]
  • «Nucleus-2020»
    NRC «Kurchatov Institute» Saint Petersburg State University Joint Institute for Nuclear Research LXX INTERNATIONAL CONFERENCE «NUCLEUS-2020» NUCLEAR PHYSICS AND ELEMENTARY PARTICLE PHYSICS. NUCLEAR PHYSICS TECHNOLOGIES. BOOK OF ABSTRACTS Online part. 12 – 17 October 2020 Saint Petersburg НИЦ «Курчатовский институт» Санкт-Петербургский государственный университет Объединенный институт ядерных исследований LXX МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ «ЯДРО-2020» ЯДЕРНАЯ ФИЗИКА И ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ. ЯДЕРНО-ФИЗИЧЕСКИЕ ТЕХНОЛОГИИ. СБОРНИК ТЕЗИСОВ Онлайн часть. 12 – 17 октября 2020 Санкт-Петербург Organisers NRC «Kurchatov Institute» Saint Petersburg State University Joint Institute for Nuclear Research Chairs M. Kovalchuk (Chairman, NRC “Kurchatov Institute”) V. Zherebchevsky (Co-Chairman, SPbU) P. Forsh (Vice-Chairman, NRC “Kurchatov Institute”) Yu. Dyakova (Vice-Chairman, NRC “Kurchatov Institute”) A. Vlasnikov (Vice-Chairman, SPbU) S. Torilov (Scientific Secretary, SPbU) The contributions are reproduced directly from the originals. The responsibility for misprints in the report and paper texts is held by the authors of the reports. International Conference “NUCLEUS – 2020. Nuclear physics and elementary particle physics. Nuclear physics technologies” (LXX; 2020; Online part). LXX International conference “NUCLEUS – 2020. Nuclear physics and elementary particle physics. Nuclear physics technologies” (Saint Petersburg, Russia, 12–17 October 2020): Book of Abstracts /Ed. by V. N. Kovalenko and E. V. Andronov. – Saint Petersburg: VVM, 2020. – 324p. ISBN Международная Конференция «ЯДРО – 2020. Ядерная физика и физика элементарных частиц. Ядерно-физические технологии» (LXX; 2020; Онлайн часть). LXX Международная Конференция «ЯДРО – 2020. Ядерная физика и физика элементарных частиц. Ядерно-физические технологии» (Санкт-Петербург, Россия, 12–17 Октября 2020): Аннот. докл./под ред. В.Н. Коваленко, Е.В. Андронова. – Санкт-Петербург: ВВМ , 2020. – 324 c. ISBN 978-5-9651-0587-8 ISBN 978-5-9651-0587-8 ii Program Committee V.
    [Show full text]
  • Limit on the Radiative Neutrinoless Double Electron Capture of Ar from GERDA Phase I
    Eur. Phys. J. C (2016) 76:652 DOI 10.1140/epjc/s10052-016-4454-5 Regular Article - Experimental Physics Limit on the radiative neutrinoless double electron capture of 36Ar from GERDA Phase I GERDA Collaboration1,a M. Agostini1, M. Allardt4, A. M. Bakalyarov13, M. Balata1, I. Barabanov11 , N. Barros4,20, L. Baudis19, C. Bauer7, E. Bellotti8,9, S. Belogurov11,12, S. T. Belyaev13, G. Benato19, A. Bettini16,17, L. Bezrukov11, T. Bode15, D. Borowicz3,5, V. Brudanin5, R. Brugnera16,17, A. Caldwell14, C. Cattadori9, A. Chernogorov12, V. D’Andrea1, E. V. Demidova12, A. di Vacri1, A. Domula4, E. Doroshkevich11, V. Egorov5, R. Falkenstein18, O. Fedorova11, K. Freund18, N. Frodyma3, A. Gangapshev7,11, A. Garfagnini16,17, C. Gooch14, P. Grabmayr18, V. Gurentsov11, K. Gusev5,13,15, J. Hakenmüller7, A. Hegai18,M.Heisel7, S. Hemmer17, G. Heusser7, W. Hofmann7,M.Hult6, L. V. Inzhechik11,21, J. Janicskó Csáthy15, J. Jochum18, M. Junker1, V. Kazalov11,T.Kihm7, I. V. Kirpichnikov12 , A. Kirsch7,A.Kish19, A. Klimenko5,7,22, R. Kneißl14, K. T. Knöpfle7, O. Kochetov5, V. N. Kornoukhov11,12, V. V. K u z m i n o v 11, M. Laubenstein1, A. Lazzaro15, V. I. Lebedev13, B. Lehnert4,H.Y.Liao14, M. Lindner7, I. Lippi17, A. Lubashevskiy5,7 , B. Lubsandorzhiev11, G. Lutter6, C. Macolino1,23, B. Majorovits14, W. Maneschg7, E. Medinaceli16,17, M. Miloradovic19, R. Mingazheva19, M. Misiaszek3, P. Moseev11, I. Nemchenok5, D. Palioselitis14, K. Panas3, L. Pandola2, K. Pelczar3, A. Pullia10, S. Riboldi10, N. Rumyantseva5, C. Sada16,17, F. Salamida9, M. Salathe7, C. Schmitt18, B. Schneider4, S. Schönert15, J. Schreiner7, A.-K.
    [Show full text]
  • Nuclear Physics and Astrophysics SPA5302, 2019 Chris Clarkson, School of Physics & Astronomy [email protected]
    Nuclear Physics and Astrophysics SPA5302, 2019 Chris Clarkson, School of Physics & Astronomy [email protected] These notes are evolving, so please let me know of any typos, factual errors etc. They will be updated weekly on QM+ (and may include updates to early parts we have already covered). Note that material in purple ‘Digression’ boxes is not examinable. Updated 16:29, on 05/12/2019. Contents 1 Basic Nuclear Properties4 1.1 Length Scales, Units and Dimensions............................7 2 Nuclear Properties and Models8 2.1 Nuclear Radius and Distribution of Nucleons.......................8 2.1.1 Scattering Cross Section............................... 12 2.1.2 Matter Distribution................................. 18 2.2 Nuclear Binding Energy................................... 20 2.3 The Nuclear Force....................................... 24 2.4 The Liquid Drop Model and the Semi-Empirical Mass Formula............ 26 2.5 The Shell Model........................................ 33 2.5.1 Nuclei Configurations................................ 44 3 Radioactive Decay and Nuclear Instability 48 3.1 Radioactive Decay...................................... 49 CONTENTS CONTENTS 3.2 a Decay............................................. 56 3.2.1 Decay Mechanism and a calculation of t1/2(Q) .................. 58 3.3 b-Decay............................................. 62 3.3.1 The Valley of Stability................................ 64 3.3.2 Neutrinos, Leptons and Weak Force........................ 68 3.4 g-Decay...........................................
    [Show full text]
  • Two-Neutrino Double Electron Capture on 124Xe Based on an Effective
    Physics Letters B 797 (2019) 134885 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb 124 Two-neutrino double electron capture on Xe based on an effective theory and the nuclear shell model ∗ E.A. Coello Pérez a,b, , J. Menéndez c, A. Schwenk a,b,d a Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany b ExtreMe Matter Institute EMMI, Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany c Center for Nuclear Study, The University of Tokyo, Tokyo 113-0033, Japan d Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany a r t i c l e i n f o a b s t r a c t Article history: We study the two-neutrino double electron capture on 124Xe based on an effective theory (ET) and Received 22 March 2019 large-scale shell model calculations, two modern nuclear structure approaches that have been tested Received in revised form 31 July 2019 against Gamow-Teller and double-beta decay data. In the ET, the low-energy constants are fit to electron Accepted 21 August 2019 − capture and β transitions around xenon. For the nuclear shell model, we use an interaction in a large Available online 23 August 2019 configuration space that reproduces the spectroscopy of nuclei in this mass region. For the dominant Editor: J.-P. Blaizot 124 2νECEC = − × 22 transition to the Te ground state, we find half-lives T1/2 (1.3 18) 10 y for the ET and 2νECEC = − × 22 T1/2 (0.43 2.9) 10 y for the shell model.
    [Show full text]
  • Status and Perspectives of 2, + and 2+ Decays
    Review Status and Perspectives of 2e, eb+ and 2b+ Decays Pierluigi Belli 1,2,*,† , Rita Bernabei 1,2,*,† and Vincenzo Caracciolo 1,2,3,*,† 1 Istituto Nazionale di Fisica Nucleare (INFN), sezione di Roma “Tor Vergata”, I-00133 Rome, Italy 2 Dipartimento di Fisica, Università di Roma “Tor Vergata”, I-00133 Rome, Italy 3 INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi, Italy * Correspondence: [email protected] (P.B.); [email protected] (R.B.); [email protected] (V.C.) † These authors contributed equally to this work. Abstract: This paper reviews the main experimental techniques and the most significant results in the searches for the 2e, eb+ and 2b+ decay modes. Efforts related to the study of these decay modes are important, since they can potentially offer complementary information with respect to the cases of 2b− decays, which allow a better constraint of models for the nuclear structure calculations. Some positive results that have been claimed will be mentioned, and some new perspectives will be addressed shortly. Keywords: positive double beta decay; double electron capture; resonant effect; rare events; neutrino 1. Introduction The double beta decay (DBD) is a powerful tool for studying the nuclear instability, the electroweak interaction, the nature of the neutrinos, and physics beyond the Standard Model (SM) of Particle Physics. The theoretical interpretations of the double beta decay Citation: Belli, P.; Bernabei, R.; with the emission of two neutrinos is well described in the SM; the process is characterized Caracciolo, V. Status and Perspectives by a nuclear transition changing the atomic number Z of two units while leaving the atomic of 2e, eb+ and 2b+ Decays.
    [Show full text]
  • Search for Double Beta Decay of 106Cd with an Enriched 106 Cdwo4 Crystal Scintillator in Coincidence with Cdwo4 Scintillation Counters
    Article Search for double beta decay of 106Cd with an enriched 106 CdWO4 crystal scintillator in coincidence with CdWO4 scintillation counters P. Belli1,2 , R. Bernabei 1,2* , V.B. Brudanin3 , F. Cappella4,5 , V. Caracciolo1,2,6 , R. Cerulli1,2 , F.A. Danevich7 , A. Incicchitti4,5 , D.V. Kasperovych7 , V.R. Klavdiienko7 , V.V. Kobychev7 , V. Merlo1,2 ,O.G. Polischuk7 , V.I. Tretyak7 and M.M. Zarytskyy7 1 INFN, sezione di Roma “Tor Vergata”, I-00133 Rome, Italy 2 Dipartimento di Fisica, Università di Roma “Tor Vergata”, I-00133 Rome, Italy 3 Joint Institute for Nuclear Research, 141980 Dubna, Russia 4 INFN, sezione Roma “La Sapienza”, I-00185 Rome, Italy 5 Dipartimento di Fisica, Università di Roma “La Sapienza”, I-00185 Rome, Italy 6 INFN, Laboratori Nazionali del Gran Sasso, 67100 Assergi (AQ), Italy 7 Institute for Nuclear Research of NASU, 03028 Kyiv, Ukraine * Correspondence: Dipartimento di Fisica, Università di Roma “Tor Vergata”, I-00133 Rome, Italy. E-mail address: [email protected] (Rita Bernabei) Received: date; Accepted: date; Published: date Abstract: Studies on double beta decay processes in 106Cd were performed by using a cadmium tungstate 106 106 scintillator enriched in Cd at 66% ( CdWO4) with two CdWO4 scintillation counters (with natural Cd composition). No effect was observed in the data accumulated over 26033 h. New improved half-life limits were set on the different channels and modes of the 106Cd double beta decay at level of 20 22 106 lim T1/2 ∼ 10 − 10 yr. The limit for the two neutrino electron capture with positron emission in Cd + 106 2nECb ≥ × 21 106 to the ground state of Pd, T1/2 2.1 10 yr, was set by the analysis of the CdWO4 data in coincidence with the energy release 511 keV in both CdWO4 counters.
    [Show full text]
  • Radioactivity
    AccessScience from McGraw-Hill Education Page 1 of 43 www.accessscience.com Radioactivity Contributed by: Joseph H. Hamilton Publication year: 2014 A phenomenon resulting from an instability of the atomic nucleus in certain atoms whereby the nucleus experiences a spontaneous but measurably delayed nuclear transition or transformation with the resulting emission of radiation. The discovery of radioactivity by Henri Becquerel in 1896 was an indirect consequence of the discovery of x-rays a few months earlier by Wilhelm Roentgen, and marked the birth of nuclear physics. See also: X-RAYS. On the other hand, nuclear physics can also be said to begin with the proposal by Ernest Rutherford in 1911 that atoms have a nucleus. On the basis of the scattering of alpha particles (emitted in radioactive decay) by gold foils, Rutherford proposed a solar model of atoms, where negatively charged electrons orbit the tiny nucleus, which contains all the positive charge and essentially all the mass of the atom, as planets orbit around the Sun. The attractive Coulomb electrical force holds the electrons in orbit about the nucleus. Atoms have radii of about 10,−10 m and the nuclei of atoms have radii about 2 × 10,−15 m, so atoms are mostly empty space, like the solar system. Niels Bohr proposed a theoretical model for the atom that removed certain difficulties of the Rutherford model. See also: ATOMIC STRUCTURE AND SPECTRA. However, it was only after the discovery of the neutron in 1932 that a proper understanding was achieved of the particles that compose the nucleus of the atom.
    [Show full text]