Rosaceous Shrubs

Total Page:16

File Type:pdf, Size:1020Kb

Rosaceous Shrubs Nancy L. Shaw Stephen B. Monsen Chapter Richard Stevens 22 Rosaceous Shrubs Important shrubs of the Rose Family (Rosaceae) in the Inter- mountain region are distributed from blackbrush and salt desert shrub communities through high elevation forests and meadows. Growth habits of this group vary from trailing brambles to upright shrubs and small trees. Some species are evergreen while others are deciduous. Many of these species are highly valued for the cover, fruits, and forage they provide for wildlife and livestock. Rosaceous species that develop spreading root systems, root suckers, rhizomes, or stem layers provide soil stabilization. Several species are capable of regenerating follow- ing fire. Those that produce fragrant flowers or colorful fall foliage are prized for their ornamental value. Because of their browse value, antelope bitterbrush and several other rosaceous shrubs were among the first species to be used in wildlife habitat improvement efforts. Members of the bitter- brush-cliffrose complex as well as serviceberries, chokecherries, and the mountain mahoganies lend themselves to artificial seeding; their seed are fairly large and relatively easy to collect, clean, store, and plant. Additional species of this family are seeing increased use in response to the growing emphasis on use of native species for wildland revegetation and low maintenance landscaping, community restoration issues, mitigation for en- dangered species, and a general shift to employ revegetation when deemed necessary to conserve or restore ecosystem diver- sity and functionality. USDA Forest Service Gen. Tech. Rep. RMRS-GTR-136. 2004 539 Chapter 22 Rosaceous Shrubs Chapter Contents by Species Amelanchier alnifolia (Saskatoon serviceberry) ................................................................................ 541 Amelanchier utahensis (Utah serviceberry) ....................................................................................... 543 Cercocarpus betuloides (Birchleaf mountain mahogany) .................................................................. 544 Cercocarpus intricatus (Littleleaf mountain mahogany) .................................................................. 545 Cercocarpus ledifolius (Curlleaf mountain mahogany) ..................................................................... 545 Cercocarpus montanus (True mountain mahogany).......................................................................... 550 Coleogyne ramosissima (Blackbrush) ................................................................................................. 552 Cotoneaster acutifolia (Peking cotoneaster) ....................................................................................... 555 Cowania stansburiana (Stansbury cliffrose or cliffrose) ................................................................... 556 Crataegus douglasii (Douglas or river hawthorn) ............................................................................. 560 Fallugia paradoxa (Apache plume) .................................................................................................... 561 Holodiscus discolor (Creambush oceanspray) .................................................................................... 563 Holodiscus dumosus (Rockspirea) ...................................................................................................... 565 Peraphyllum ramosissimum (Indian apple) ....................................................................................... 566 Physocarpus malvaceous (Mallowleaf ninebark) ............................................................................... 567 Potentilla fruticosa (Shrubby cinquefoil) ............................................................................................ 569 Prunus americana (American plum) .................................................................................................. 571 Prunus andersonii (Desert almond or Anderson peachbrush) .......................................................... 572 Prunus besseyi (Bessey cherry) ........................................................................................................... 573 Prunus emarginata (Bitter cherry) ..................................................................................................... 574 Prunus fasciculata (Desert peachbrush) ............................................................................................ 575 Prunus spinosa (Blackthorn) .............................................................................................................. 577 Prunus tomentosa (Nanking cherry) .................................................................................................. 577 Prunus virginiana (Chokecherry) ....................................................................................................... 577 Purshia glandulosa (Desert bitterbrush) ........................................................................................... 579 Purshia tridentata (Antelope bitterbrush) ......................................................................................... 581 Rosa woodsii ultramontana (Woods rose) .......................................................................................... 586 Rubus leucodermis (Black raspberry, blackcap) ................................................................................ 590 Rubus parviflorus (Thimbleberry) ...................................................................................................... 591 Sorbus scopulina (Greene’s mountain ash) ........................................................................................ 592 Sorbus sitchensis (Sitka mountain ash) ............................................................................................. 594 Spiraea betulifolia (Bridal wreath) .................................................................................................... 594 Spiraea densiflora (Subalpine spiraea) .............................................................................................. 596 Spiraea douglasii (Douglas spiraea)................................................................................................... 596 Use of rosaceous species often presents challenges Seedlings of native or introduced species of Prunus to those involved in revegetation efforts. Size and and Rosa are traditionally grown by many nurseries quality of seed crops vary considerably from year to for conservation plantings. Antelope bitterbrush, Sas- year. Complex germination requirements, low initial katoon serviceberry, and curlleaf mountain mahogany growth rates, sensitivity to competition, and rodent or true mountain mahogany seedlings are commonly and bird preference for seed and seedlings of some grown for wildlife habitat improvement. Seedlings of species hinder their establishment and reduce sur- specific ecotypes and most other species must gener- vival. Appropriate planting practices and manage- ally be obtained through contract production. ment of young seedlings or plants are required to Characteristics of the site of origin of seed or plant- minimize these problems. Control of browsing by live- ing stock should be matched to those of the planting stock and wildlife during the first 2 to 3 years is often site as closely as possible; ecotypes of individual spe- essential to improve establishment and early growth. cies vary considerably in range of adaptability. Al- Bareroot or containerized planting stock is commonly though few rosaceous shrub cultivars have been se- used to shorten the period of seedling vulnerability. lected and released for commercial production of seed 540 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-136. 2004 Chapter 22 Rosaceous Shrubs and planting stock by the USDA Soil Conservation Although different geographic races have not been Service (Hassell 1988), a number of others are under identified, they are expected to occur within these study. Site requirements and characteristics of re- widely distributed species (Brinkman 1974a). In addi- leased cultivars have been extensively studied and tion, several hybrids have been reported (Cruise 1964). documented. Publications are available describing the Saskatoon serviceberry is distributed from Alaska attributes and site requirements of commonly col- and the Yukon east to Hudson’s Bay and south to lected antelope bitterbrush populations (Tiedemann California, New Mexico, and Nebraska (Harrington and Johnson 1983). Verification of seed origin of 1964; Welsh and others 1987). Plants occur from near wildland collections may be accomplished by monitor- sea level to over 9,000 ft (2,770 m) in the Rocky ing contract seed collections from designated native Mountains in areas with an annual precipitation of sites or plantings. Seed certifying agencies have devel- 12 to 25 inches (30 to 64 cm) or more (Jones 1946). oped a “source identified” classification for wildland Saskatoon serviceberry grows on sites ranging from seed certification that provides verification of site of dry, rocky, exposed slopes to riparian areas with deep origin as well as compliance with minimum seed moist soils. At the lower edge of its range, plants are quality standards (Young 1995). often intermixed with mountain big sagebrush/grass Seeding recommendations for major vegetative types and to a lesser extent with Wyoming big sagebrush/ and conditions are discussed in chapter 17. Rosaceous grass communities (Tisdale and Hironaka 1981). shrubs adapted to these vegetative
Recommended publications
  • Plum Crazy: Rediscovering Our Lost Prunus Resources W.R
    Plum Crazy: Rediscovering Our Lost Prunus Resources W.R. Okie1 U.S. Department of Agriculture–Agricultural Research Service, Southeastern Fruit and Tree Nut Research Laboratory, 21 Dunbar Road, Byron, GA 31008 Recent utilization of genetic resources of peach [Prunus persica (‘Quetta’ from India, ‘John Rivers’ from England, and ‘Lippiatts’ (L.) Batsch] and Japanese plum (P. salicina Lindl. and hybrids) has from New Zealand) were critical to the development of modern been limited in the United States compared with that of many crops. nectarines in California (Taylor, 1959). However, most fresh-market Difficulties in collection, importation, and quarantine throughput have peach breeding programs in the United States have used germplasm limited the germplasm available. Prunus is more difficult to preserve developed in the United States for cultivar development (Okie, 1998). because more space is needed than for small fruit crops, and the shorter Only in New Jersey was there extensive hybridization with imported life of trees relative to other tree crops because of disease and insect clones, and most of these hybrids have not resulted in named cultivars problems. Lack of suitable rootstocks has also reduced tree life. The (Blake and Edgerton, 1946). trend toward fewer breeding programs, most of which emphasize In recent years, interest in collecting and utilizing novel germplasm “short-term” (long-term compared to most crops) commercial cultivar has increased. For example, non-melting clingstone peaches from development to meet immediate industry needs, has also contributed Mexico and Brazil have been used in the joint USDA–Univ. of to reduced use of exotic material. Georgia–Univ. of Florida breeding program for the development of Probably all modern commercial peaches grown in the United early ripening, non-melting, fresh-market peaches for low-chill areas States are related to ‘Chinese Cling’, a peach imported from China (Beckman and Sherman, 1996).
    [Show full text]
  • P L a N T L I S T Water-Wise Trees and Shrubs for the High Plains
    P L A N T L I S T Water-Wise Trees and Shrubs for the High Plains By Steve Scott, Cheyenne Botanic Gardens Horticulturist 03302004 © Cheyenne Botanic Gardens 2003 710 S. Lions Park Dr., Cheyenne WY, 82001 www.botanic.org The following is a list of suitable water-wise trees and shrubs that are suitable for water- wise landscaping also known as xeriscapes. Many of these plants may suffer if they are placed in areas receiving more than ¾ of an inch of water per week in summer. Even drought tolerant trees and shrubs are doomed to failure if grasses or weeds are growing directly under and around the plant, especially during the first few years. It is best to practice tillage, hoeing, hand pulling or an approved herbicide to kill all competing vegetation for the first five to eight years of establishment. Avoid sweetening the planting hole with manure or compost. If the soil is needs improvement, improve the whole area, not just the planting hole. Trees and shrubs generally do best well with no amendments. Many of the plants listed here are not available in department type stores. Your best bets for finding these plants will be in local nurseries- shop your hometown first! Take this list with you. Encourage nurseries and landscapers to carry these plants! For more information on any of these plants please contact the Cheyenne Botanic Gardens (307-637-6458), the Cheyenne Forestry Department (307-637-6428) or your favorite local nursery. CODE KEY- The code key below will assist you in selecting for appropriate characteristics.
    [Show full text]
  • Amelanchierspp. Family: Rosaceae Serviceberry
    Amelanchier spp. Family: Rosaceae Serviceberry The genus Amelanchier contains about 16 species native to North America [5], Mexico [2], and Eurasia to northern Africa [4]. The word amelanchier is derived from the French common name amelanche of the European serviceberry, Amelanchier ovalis. Amelanchier alnifolia-juneberry, Pacific serviceberry, pigeonberry, rocky mountain servicetree, sarvice, sarviceberry, saskatoon, saskatoon serviceberry, western service, western serviceberry , western shadbush Amelanchier arborea-Allegheny serviceberry, apple shadbush, downy serviceberry , northern smooth shadbush, shadblow, shadblown serviceberry, shadbush, shadbush serviceberry Amelanchier bartramiana-Bartram serviceberry Amelanchier canadensis-American lancewood, currant-tree, downy serviceberry, Indian cherry, Indian pear, Indian wild pear, juice plum, juneberry, may cherry, sugar plum, sarvice, servicetree, shadberry, shadblow, shadbush, shadbush serviceberry, shadflower, thicket serviceberry Amelanchier florida-Pacific serviceberry Amelanchier interior-inland serviceberry Amelanchier sanguinea-Huron serviceberry, roundleaf juneberry, roundleaf serviceberry , shore shadbush Amelanchier utahensis-Utah serviceberry Distribution In North America throughout upper elevations and temperate forests. The Tree Serviceberry is a shrub or tree that reaches a height of 40 ft (12 m) and a diameter of 2 ft (0.6 m). It grows in many soil types and occurs from swamps to mountainous hillsides. It flowers in early spring, producing delicate white flowers, making
    [Show full text]
  • Propagation of Colorado Natives at Little Valley©
    224 Combined Proceedings International Plant Propagators’ Society, Volume 58, 2008 Propagation of Colorado Natives at Little Valley © Brian Core Little Valley Wholesale Nursery, 13022 E. 136th Ave., Brighton, Colorado 80601 U.S.A. Email: [email protected] INTRODUCTION Little Valley Wholesale Nursery was established in 1979 with 15 acres of field and container stock and a staff of four people. Over the years, it has expanded to en- compass 141 acres and a peak-season staff of more than 150 people. The plant palette now includes more than 500 taxa of perennials, 275 taxa of shrubs, and over 130 taxa of trees. The area served by Little Valley’s distribution system includes Wyoming, Colorado, New Mexico, and Arizona. Little Valley’s motto “The Rocky Mountain Standard” expresses the commitment to be the best wholesale plant dis- tributor in the western region. Native plants have been an important part of Little Valley’s plant mix for many years. Native plants are ideal for low-input sustainable landscapes. The Denver Metro area receives 8–15 inches of rain per year; in contrast, many eastern cities receive 50 or even 60 inches of annual precipitation. Colorado has a rapidly expanding population that threatens to deplete the water supply within a few decades. Many native plants require no supplemental water when established in the landscape; water that is not wasted on bluegrass lawns is water that can be used for human consumption. Native plants also require less frequent fertilizer and pesticide appli- cations; overuse of fertilizer and pesticide can lead to contamination of groundwater supplies with carcinogens.
    [Show full text]
  • A Vegetation Map of Carlsbad Caverns National Park, New Mexico 1
    ______________________________________________________________________________ A Vegetation Map of Carlsbad Caverns National Park, New Mexico ______________________________________________________________________________ 2003 A Vegetation Map of Carlsbad Caverns National Park, New Mexico 1 Esteban Muldavin, Paul Neville, Paul Arbetan, Yvonne Chauvin, Amanda Browder, and Teri Neville2 ABSTRACT A vegetation classification and high resolution vegetation map was developed for Carlsbad Caverns National Park, New Mexico to support natural resources management, particularly fire management and rare species habitat analysis. The classification and map were based on 400 field plots collected between 1999 and 2002. The vegetation communities of Carlsbad Caverns NP are diverse. They range from desert shrublands and semi-grasslands of the lowland basins and foothills up through montane grasslands, shrublands, and woodlands of the highest elevations. Using various multivariate statistical tools, we identified 85 plant associations for the park, many of them unique in the Southwest. The vegetation map was developed using a combination of automated digital processing (supervised classifications) and direct image interpretation of high-resolution satellite imagery (Landsat Thematic Mapper and IKONOS). The map is composed of 34 map units derived from the vegetation classification, and is designed to facilitate ecologically based natural resources management at a 1:24,000 scale with 0.5 ha minimum map unit size (NPS national standard). Along with an overview of the vegetation ecology of the park in the context of the classification, descriptions of the composition and distribution of each map unit are provided. The map was delivered both in hard copy and in digital form as part of a geographic information system (GIS) compatible with that used in the park.
    [Show full text]
  • PEAK to PRAIRIE: BOTANICAL LANDSCAPES of the PIKES PEAK REGION Tass Kelso Dept of Biology Colorado College 2012
    !"#$%&'%!(#)()"*%+'&#,)-#.%.#,/0-#!"0%'1%&2"%!)$"0% !"#$%("3)',% &455%$6758% /69:%8;%+<878=>% -878?4@8%-8776=6% ABCA% Kelso-Peak to Prairie Biodiversity and Place: Landscape’s Coat of Many Colors Mountain peaks often capture our imaginations, spark our instincts to explore and conquer, or heighten our artistic senses. Mt. Olympus, mythological home of the Greek gods, Yosemite’s Half Dome, the ever-classic Matterhorn, Alaska’s Denali, and Colorado’s Pikes Peak all share the quality of compelling attraction that a charismatic alpine profile evokes. At the base of our peak along the confluence of two small, nondescript streams, Native Americans gathered thousands of years ago. Explorers, immigrants, city-visionaries and fortune-seekers arrived successively, all shaping in turn the region and communities that today spread from the flanks of Pikes Peak. From any vantage point along the Interstate 25 corridor, the Colorado plains, or the Arkansas River Valley escarpments, Pikes Peak looms as the dominant feature of a diverse “bioregion”, a geographical area with a distinct flora and fauna, that stretches from alpine tundra to desert grasslands. “Biodiversity” is shorthand for biological diversity: a term covering a broad array of contexts from the genetics of individual organisms to ecosystem interactions. The news tells us daily of ongoing threats from the loss of biodiversity on global and regional levels as humans extend their influence across the face of the earth and into its sustaining processes. On a regional level, biologists look for measures of biodiversity, celebrate when they find sites where those measures are high and mourn when they diminish; conservation organizations and in some cases, legal statutes, try to protect biodiversity, and communities often struggle to balance human needs for social infrastructure with desirable elements of the natural landscape.
    [Show full text]
  • CDFG Natural Communities List
    Department of Fish and Game Biogeographic Data Branch The Vegetation Classification and Mapping Program List of California Terrestrial Natural Communities Recognized by The California Natural Diversity Database September 2003 Edition Introduction: This document supersedes all other lists of terrestrial natural communities developed by the Natural Diversity Database (CNDDB). It is based on the classification put forth in “A Manual of California Vegetation” (Sawyer and Keeler-Wolf 1995 and upcoming new edition). However, it is structured to be compatible with previous CNDDB lists (e.g., Holland 1986). For those familiar with the Holland numerical coding system you will see a general similarity in the upper levels of the hierarchy. You will also see a greater detail at the lower levels of the hierarchy. The numbering system has been modified to incorporate this richer detail. Decimal points have been added to separate major groupings and two additional digits have been added to encompass the finest hierarchal detail. One of the objectives of the Manual of California Vegetation (MCV) was to apply a uniform hierarchical structure to the State’s vegetation types. Quantifiable classification rules were established to define the major floristic groups, called alliances and associations in the National Vegetation Classification (Grossman et al. 1998). In this document, the alliance level is denoted in the center triplet of the coding system and the associations in the right hand pair of numbers to the left of the final decimal. The numbers of the alliance in the center triplet attempt to denote relationships in floristic similarity. For example, the Chamise-Eastwood Manzanita alliance (37.106.00) is more closely related to the Chamise- Cupleaf Ceanothus alliance (37.105.00) than it is to the Chaparral Whitethorn alliance (37.205.00).
    [Show full text]
  • Restoring Western Ranges and Wildlands
    United States Department of Agriculture Restoring Western Forest Service Rocky Mountain Research Station General Technical Ranges and Wildlands Report RMRS-GTR-136-vol. 3 September 2004 Volume 3 Chapters 24–29, Appendices, Index Abstract ______________________________________ Monsen, Stephen B.; Stevens, Richard; Shaw, Nancy L., comps. 2004. Restoring western ranges and wildlands. Gen. Tech. Rep. RMRS-GTR-136-vol-3. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. Pages 699– 884 plus appendices and index. This work, in three volumes, provides background on philosophy, processes, plant materials selection, site preparation, and seed and seeding equipment for revegetating disturbed rangelands, emphasizing use of native species. The 29 chapters include guidelines for planning, conducting, and managing, and contain a compilation of rangeland revegetation research conducted over the last several decades to aid practitioners in reestablishing healthy communities and curbing the spread of invasive species. Volume 3 contains chapters 24-29 plus appendices and index. Keywords: rehabilitation, revegetation, plant ecology, seed, plant communities, wildlife habitat, invasive species, equipment, plant materials, native plants A B A—Hand-harvesting grass seed. B—Certification tag. C—Native plant propagation in greenhouse. D—Brush machine. E—Flail-vac harvesting needle-and thread grass. Restoring Western Ranges and Wildlands Compilers Stephen B. Monsen Volume 3 Richard Stevens Nancy L. Shaw Chapters 24–29, Appendices, Index D C E i The Compilers _____________________________________ Stephen B. Monsen (retired), Botanist, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Shrub Sciences Laboratory, Provo, Utah Richard Stevens, Project Leader (retired), Utah Division of Wildlife Resources, Great Basin Research Center, Ephraim, Utah Nancy L.
    [Show full text]
  • F.3 References for Appendix F
    F-1 APPENDIX F: ECOREGIONS OF THE 11 WESTERN STATES AND DISTRIBUTION BY ECOREGION OF WIND ENERGY RESOURCES ON BLM-ADMINISTERED LANDS WITHIN EACH STATE F-2 F-3 APPENDIX F: ECOREGIONS OF THE 11 WESTERN STATES AND DISTRIBUTION BY ECOREGION OF WIND ENERGY RESOURCES ON BLM-ADMINISTERED LANDS WITHIN EACH STATE F.1 DESCRIPTIONS OF THE ECOREGIONS Ecoregions delineate areas that have a general similarity in their ecosystems and in the types, qualities, and quantities of their environmental resources. They are based on unique combinations of geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology (EPA 2004). Ecoregions are defined as areas having relative homogeneity in their ecological systems and their components. Factors associated with spatial differences in the quality and quantity of ecosystem components (including soils, vegetation, climate, geology, and physiography) are relatively homogeneous within an ecoregion. A number of individuals and organizations have characterized North America on the basis of ecoregions (e.g., Omernik 1987; CEC 1997; Bailey 1997). The intent of such ecoregion classifications has been to provide a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. The ecoregion discussions presented in this programmatic environmental impact statement (PEIS) follow the Level III ecoregion classification based on Omernik (1987) and refined through collaborations among U.S. Environmental Protection Agency (EPA) regional offices, state resource management agencies, and other federal agencies (EPA 2004). The following sections provide brief descriptions of each of the Level III ecoregions that have been identified for the 11 western states in which potential wind energy development may occur on BLM-administered lands.
    [Show full text]
  • Facilitation of Yucca Brevifolia Recruitment by Mojave Desert Shrubs
    UNLV Retrospective Theses & Dissertations 1-1-1998 Facilitation of Yucca brevifolia recruitment by Mojave Desert shrubs Steve B Brittingham University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds Repository Citation Brittingham, Steve B, "Facilitation of Yucca brevifolia recruitment by Mojave Desert shrubs" (1998). UNLV Retrospective Theses & Dissertations. 950. http://dx.doi.org/10.25669/ms22-zauw This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter free, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • Cercocarpus Montanus Cercocarpus Montanus ‘USU-CEMO-001’ ‘USU-CEMO- Was Collected As a Suspected Dwarf Plant in TM Moffat County, CO, on 20 June 2014
    HORTSCIENCE 55(11):1871–1875. 2020. https://doi.org/10.21273/HORTSCI15343-20 Origin Cercocarpus montanus Cercocarpus montanus ‘USU-CEMO-001’ ‘USU-CEMO- was collected as a suspected dwarf plant in TM Moffat County, CO, on 20 June 2014. This 001’: A New Sego Supreme Plant unique, procumbent specimen was discovered laying over a rock on a windy ridge at an Asmita Paudel, Youping Sun, and Larry A. Rupp elevation of 2708 m (Fig. 2A). The appearance Center for Water Efficient Landscaping, Department of Plants, Soils, and looked different from the typical C. montanus Climate, Utah State University, 4820 Old Main Hill, Logan, UT 84322 nearby (Fig. 2B). The leaves are smaller and narrower with less serrations compared with Richard Anderson the typical plants (Fig. 2C). Healthy cuttings USU Botanical Center, 725 Sego Lily Drive, Kaysville, UT 84037 were collected, wrapped in moist newspapers and placed on ice until transferred to a cooler at Additional index words. alder-leaf mountain mahogany, cutting propagation, landscape plant, 4 °C. On 21 June, the terminal cuttings were native plant, true mountain mahogany rinsed in 1% ZeroTol (27.1% hydrogen diox- ide, 2.0% peroxyacetic acid, 70.9% inert in- gredient; BioSafe Systems, Hartford, CT), Sego SupremeTM is a plant introduction mose style with elongated achenes wounded by scraping 1 cm of bark from the program developed by the Utah State Uni- (Fig. 1B) (Shaw et al., 2004). It possesses base of the cutting on one side, treated with versity (USU) Botanical Center (Anderson an extensive root system and adapts to 2000 mg·L–1 indole-3-butyric acid (IBA)/1000 et al., 2014) to introduce native and adaptable medium to coarse textured soil.
    [Show full text]
  • Texas Big Tree Registry a List of the Largest Trees in Texas Sponsored by Texas a & M Forest Service
    Texas Big Tree Registry A list of the largest trees in Texas Sponsored by Texas A & M Forest Service Native and Naturalized Species of Texas: 320 ( D indicates species naturalized to Texas) Common Name (also known as) Latin Name Remarks Cir. Threshold acacia, Berlandier (guajillo) Senegalia berlandieri Considered a shrub by B. Simpson 18'' or 1.5 ' acacia, blackbrush Vachellia rigidula Considered a shrub by Simpson 12'' or 1.0 ' acacia, Gregg (catclaw acacia, Gregg catclaw) Senegalia greggii var. greggii Was named A. greggii 55'' or 4.6 ' acacia, Roemer (roundflower catclaw) Senegalia roemeriana 18'' or 1.5 ' acacia, sweet (huisache) Vachellia farnesiana 100'' or 8.3 ' acacia, twisted (huisachillo) Vachellia bravoensis Was named 'A. tortuosa' 9'' or 0.8 ' acacia, Wright (Wright catclaw) Senegalia greggii var. wrightii Was named 'A. wrightii' 70'' or 5.8 ' D ailanthus (tree-of-heaven) Ailanthus altissima 120'' or 10.0 ' alder, hazel Alnus serrulata 18'' or 1.5 ' allthorn (crown-of-thorns) Koeberlinia spinosa Considered a shrub by Simpson 18'' or 1.5 ' anacahuita (anacahuite, Mexican olive) Cordia boissieri 60'' or 5.0 ' anacua (anaqua, knockaway) Ehretia anacua 120'' or 10.0 ' ash, Carolina Fraxinus caroliniana 90'' or 7.5 ' ash, Chihuahuan Fraxinus papillosa 12'' or 1.0 ' ash, fragrant Fraxinus cuspidata 18'' or 1.5 ' ash, green Fraxinus pennsylvanica 120'' or 10.0 ' ash, Gregg (littleleaf ash) Fraxinus greggii 12'' or 1.0 ' ash, Mexican (Berlandier ash) Fraxinus berlandieriana Was named 'F. berlandierana' 120'' or 10.0 ' ash, Texas Fraxinus texensis 60'' or 5.0 ' ash, velvet (Arizona ash) Fraxinus velutina 120'' or 10.0 ' ash, white Fraxinus americana 100'' or 8.3 ' aspen, quaking Populus tremuloides 25'' or 2.1 ' baccharis, eastern (groundseltree) Baccharis halimifolia Considered a shrub by Simpson 12'' or 1.0 ' baldcypress (bald cypress) Taxodium distichum Was named 'T.
    [Show full text]