Restoring Western Ranges and Wildlands

Total Page:16

File Type:pdf, Size:1020Kb

Restoring Western Ranges and Wildlands United States Department of Agriculture Restoring Western Forest Service Rocky Mountain Research Station General Technical Ranges and Wildlands Report RMRS-GTR-136-vol. 3 September 2004 Volume 3 Chapters 24–29, Appendices, Index Abstract ______________________________________ Monsen, Stephen B.; Stevens, Richard; Shaw, Nancy L., comps. 2004. Restoring western ranges and wildlands. Gen. Tech. Rep. RMRS-GTR-136-vol-3. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. Pages 699– 884 plus appendices and index. This work, in three volumes, provides background on philosophy, processes, plant materials selection, site preparation, and seed and seeding equipment for revegetating disturbed rangelands, emphasizing use of native species. The 29 chapters include guidelines for planning, conducting, and managing, and contain a compilation of rangeland revegetation research conducted over the last several decades to aid practitioners in reestablishing healthy communities and curbing the spread of invasive species. Volume 3 contains chapters 24-29 plus appendices and index. Keywords: rehabilitation, revegetation, plant ecology, seed, plant communities, wildlife habitat, invasive species, equipment, plant materials, native plants A B A—Hand-harvesting grass seed. B—Certification tag. C—Native plant propagation in greenhouse. D—Brush machine. E—Flail-vac harvesting needle-and thread grass. Restoring Western Ranges and Wildlands Compilers Stephen B. Monsen Volume 3 Richard Stevens Nancy L. Shaw Chapters 24–29, Appendices, Index D C E i The Compilers _____________________________________ Stephen B. Monsen (retired), Botanist, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Shrub Sciences Laboratory, Provo, Utah Richard Stevens, Project Leader (retired), Utah Division of Wildlife Resources, Great Basin Research Center, Ephraim, Utah Nancy L. Shaw, Research Botanist, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Boise, Idaho The Authors _______________________________________ James N. Davis is Project Leader, Big Game Range Trend Program, Utah Division of Wildlife Resources, Shrub Sciences Laboratory, Provo, Utah. Sherel K. Goodrich is Ecologist, U.S. Department of Agriculture, Forest Service, Ashley National Forest, Vernal, Utah. Kent R. Jorgensen was Wildlife Biologist (deceased), Great Basin Research Center, Utah Division of Wildlife Resources, Ephraim, Utah. Carlos F. Lopez was Soil Scientist, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Shrub Sciences Laboratory, Provo, Utah. E. Durant McArthur is Project Leader and Research Geneticist, U.S. Department of Agricul- ture, Forest Service, Rocky Mountain Research Station, Shrub Sciences Laboratory, Provo, Utah. Stephen B. Monsen was Botanist (retired), U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Shrub Sciences Laboratory, Provo, Utah. He is currently a private natural resources consultant and volunteer worker for the Rocky Mountain Research Station. David L. Nelson was Plant Pathologist (retired), U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Shrub Sciences Laboratory, Provo, Utah. He continues contractual and volunteer work for the Rocky Mountain Research Station. Nancy L. Shaw is Research Botanist, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Boise, Idaho. Richard Stevens was Project Leader (retired), Great Basin Research Center, Utah Division of Wildlife Resources, Ephraim, Utah. Arthur R. Tiedemann was Project Leader and Range Scientist (retired), U.S. Department of Agriculture, Rocky Mountain Research Station, Shrub Sciences Laboratory, Provo, Utah. John F. Vallentine was Professor (Emeritus), Department of Integrative Biology, Brigham Young University, Provo, Utah. Gordon A. Van Epps was Associate Professor (retired), Snow Field Station, Utah Agricultural Experiment Station, Utah State University, Ephraim, Utah. Bruce L. Welch is Plant Physiologist, U.S. Department of Agriculture, Rocky Mountain Research Station, Shrub Sciences Laboratory, Provo, Utah. Steven G. Whisenant is Professor, Department of Rangeland Ecology and Management, Texas A&M University, College Station, Texas. G. Richard Wilson was Director (retired), Utah State Seed Laboratory, Utah Department of Agriculture, Salt Lake City, Utah. ii Contents Volume 1: Page Foreword by E. Durant McArthur .............................................................................iii 1. History of Range and Wildlife Habitat Restoration in the Intermountain West .................................................................................. 1 2. The Intermountain Setting ............................................................................ 7 3. Research Background ................................................................................ 15 4. Basic Considerations for Range and Wildland Revegetation and Restoration............................................................................................. 19 5. Restoration or Rehabilitation Through Management or Artificial Treatments ............................................................................... 25 6. Climate and Terrain .................................................................................... 33 7. Assessing Soil Factors in Wildland Improvement Programs ...................... 39 8. Controlling Plant Competition ..................................................................... 57 9. Mechanical Plant Control ........................................................................... 65 10. Herbicides for Plant Control ....................................................................... 89 11. Vegetative Manipulation with Prescribed Burning .................................... 101 12. Seedbed Preparation and Seeding Practices .......................................... 121 13. Incorporating Wildlife Habitat Needs into Restoration and Rehabilitation Projects ......................................................................... 155 14. Nutritive Principles in Restoration and Management ............................... 175 15. Plant Pathology and Managing Wildland Plant Disease Systems ........... 187 16. Management of Restored and Revegetated Sites ................................... 193 17. Guidelines for Restoration and Rehabilitation of Principal Plant Communities ............................................................................... 199 Volume 2: 18. Grasses .................................................................................................... 295 19. Forbs for Seeding Range and Wildlife Habitats ....................................... 425 20. Chenopod Shrubs .................................................................................... 467 21. Composite Shrubs .................................................................................... 493 22. Rosaceous Shrubs ................................................................................... 539 23. Shrubs of Other Families ......................................................................... 597 Volume 3: 24. Seed Collection, Cleaning, and Storage .................................................. 699 25. Shrub and Forb Seed Production ............................................................. 717 26. Seed Germination .................................................................................... 723 27. Seed Testing Requirements and Regulatory Laws .................................. 733 28. Establishing Plants by Transplanting and Interseeding ........................... 739 29. Production and Use of Planting Stock ...................................................... 745 References ............................................................................................... 769 Appendix 1 Scientific/Common Names .................................................... 847 Appendix 2 Common/Scientific Names .................................................... 866 Index .................................................................................................. Index-1 iii Kent R. Jorgensen Richard Stevens Chapter 24 Seed Collection, Cleaning, and Storage Seed Collection __________________________________ Acquisition of quality seed in the quantity needed is essential for successful restoration and revegetation programs. Seed is grown and harvested as a crop, or collected from native stands. In the past, when native species were seeded, it was either collect the seed yourself, or go without. Now, there are dealers who supply seed of many native species on a regular basis. Some seed companies will contract for collection of specific species. There are many grass and forb species that are cultivated for seed. Some of the more common species are: bluebunch wheat- grass, crested and desert wheatgrass, pubescent wheatgrass, intermediate wheatgrass, Russian wildrye, smooth brome, orchardgrass, Indian ricegrass, alfalfa, arrowleaf balsamroot, small burnet, Palmer penstemon, Rocky Mountain penstemon, Lewis flax, cicer milkvetch, crownvetch, Utah sweetvetch, and sainfoin. Seed of a few shrubs, including mountain and Wyoming big sagebrush, fourwing saltbush, and antelope bitterbrush are sometimes produced in orchards. Seed of many shrubs and forbs, and a few grass species are available only from native stands (table 1). USDA Forest Service Gen. Tech. Rep. RMRS-GTR-136. 2004 699
Recommended publications
  • Aislamiento, Caracterización Estructural Y Regulación De La Expresión De Genes Implicados En La Tolerancia Al Aluminio En Centeno
    UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS BIOLÓGICAS Departamento de Genética AISLAMIENTO, CARACTERIZACIÓN ESTRUCTURAL Y REGULACIÓN DE LA EXPRESIÓN DE GENES IMPLICADOS EN LA TOLERANCIA AL ALUMINIO EN CENTENO MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Diaa Ahmed Mohamed Abd El-Moneim Bajo la dirección de los doctores César Benito Jiménez Francisco Gallego Rodríguez Madrid, 2012 © Diaa Ahmed Mohamed Abd El-Moneim, 2012 UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS BIOLÓGICAS DEPARTAMENTO DE GENÉTICA Aislamiento, Caracterización Estructural y Regulación de la Expresión de Genes Implicados en la Tolerancia al Aluminio en Centeno TESIS DOCTORAL DIAA AHMED MOHAMED ABD EL-MONEIM MADRID, 2012 UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS BIOLÓGICAS DEPARTAMENTO DE GENÉTICA Aislamiento, caracterización estructural y regulación de la expresión de genes implicados en la tolerancia al aluminio en centeno Memoria que para optar al grado de Doctor en Ciencias Biológicas por la Universidad Complutense de Madrid presenta DIAA AHMED MOHAMED ABD EL-MONEIM Vº Bº Director de la Tesis Prof. Cesar Benito Jiménez Prof. Francisco Javier Gallego Rodríguez MADRID, 2012 AL ALMA DE MI PADRE, A MI MADRE, A MI QUERIDA MAYSA, A MIS NIÑAS SHAZA Y HANA, A LAS ALMAS DE LOS MÁRTIRES DE LA REVOLUCIÓN DE ENERO 2011 Ningún número de experimentos, por muchos que sean, Podrán demostrar que tenga razón. Tan solo un Experimento puede demostrar que estoy equivocado (Albert Einstein) I Hace solamente cuatro años que me embarqué en este trabajo (el mundo del aluminio) y ya estoy agradeciendo a toda la gente que me ha apoyado, ayudado, sobre todo, aguantado durante este tiempo.
    [Show full text]
  • Plum Crazy: Rediscovering Our Lost Prunus Resources W.R
    Plum Crazy: Rediscovering Our Lost Prunus Resources W.R. Okie1 U.S. Department of Agriculture–Agricultural Research Service, Southeastern Fruit and Tree Nut Research Laboratory, 21 Dunbar Road, Byron, GA 31008 Recent utilization of genetic resources of peach [Prunus persica (‘Quetta’ from India, ‘John Rivers’ from England, and ‘Lippiatts’ (L.) Batsch] and Japanese plum (P. salicina Lindl. and hybrids) has from New Zealand) were critical to the development of modern been limited in the United States compared with that of many crops. nectarines in California (Taylor, 1959). However, most fresh-market Difficulties in collection, importation, and quarantine throughput have peach breeding programs in the United States have used germplasm limited the germplasm available. Prunus is more difficult to preserve developed in the United States for cultivar development (Okie, 1998). because more space is needed than for small fruit crops, and the shorter Only in New Jersey was there extensive hybridization with imported life of trees relative to other tree crops because of disease and insect clones, and most of these hybrids have not resulted in named cultivars problems. Lack of suitable rootstocks has also reduced tree life. The (Blake and Edgerton, 1946). trend toward fewer breeding programs, most of which emphasize In recent years, interest in collecting and utilizing novel germplasm “short-term” (long-term compared to most crops) commercial cultivar has increased. For example, non-melting clingstone peaches from development to meet immediate industry needs, has also contributed Mexico and Brazil have been used in the joint USDA–Univ. of to reduced use of exotic material. Georgia–Univ. of Florida breeding program for the development of Probably all modern commercial peaches grown in the United early ripening, non-melting, fresh-market peaches for low-chill areas States are related to ‘Chinese Cling’, a peach imported from China (Beckman and Sherman, 1996).
    [Show full text]
  • Iridopsis Socoromaensis Sp. N., a Geometrid Moth (Lepidoptera, Geometridae) from the Andes of Northern Chile
    Biodiversity Data Journal 9: e61592 doi: 10.3897/BDJ.9.e61592 Taxonomic Paper Iridopsis socoromaensis sp. n., a geometrid moth (Lepidoptera, Geometridae) from the Andes of northern Chile Héctor A. Vargas ‡ ‡ Universidad Tarapacá, Arica, Chile Corresponding author: Héctor A. Vargas ([email protected]) Academic editor: Axel Hausmann Received: 02 Dec 2020 | Accepted: 26 Jan 2021 | Published: 28 Jan 2021 Citation: Vargas HA (2021) Iridopsis socoromaensis sp. n., a geometrid moth (Lepidoptera, Geometridae) from the Andes of northern Chile. Biodiversity Data Journal 9: e61592. https://doi.org/10.3897/BDJ.9.e61592 ZooBank: urn:lsid:zoobank.org:pub:3D37F554-E2DC-443C-B11A-8C7E32D88F4F Abstract Background Iridopsis Warren, 1894 (Lepidoptera: Geometridae: Ennominae: Boarmiini) is a New World moth genus mainly diversified in the Neotropical Region. It is represented in Chile by two described species, both from the Atacama Desert. New information Iridopsis socoromaensis sp. n. (Lepidoptera: Geometridae: Ennominae: Boarmiini) is described and illustrated from the western slopes of the Andes of northern Chile. Its larvae were found feeding on leaves of the Chilean endemic shrub Dalea pennellii (J.F. Macbr.) J.F. Macbr. var. chilensis Barneby (Fabaceae). Morphological differences of I. socoromaensis sp. n. with the two species of the genus previously known from Chile are discussed. A DNA barcode fragment of I. socoromaensis sp. n. showed 93.7-94.3% similarity with the Nearctic I. sanctissima (Barnes & McDunnough, 1917). However, the morphology of the genitalia suggests that these two species are distantly related. The © Vargas H. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Highlights in the History of Entomology in Hawaii 1778-1963
    Pacific Insects 6 (4) : 689-729 December 30, 1964 HIGHLIGHTS IN THE HISTORY OF ENTOMOLOGY IN HAWAII 1778-1963 By C. E. Pemberton HONORARY ASSOCIATE IN ENTOMOLOGY BERNICE P. BISHOP MUSEUM PRINCIPAL ENTOMOLOGIST (RETIRED) EXPERIMENT STATION, HAWAIIAN SUGAR PLANTERS' ASSOCIATION CONTENTS Page Introduction 690 Early References to Hawaiian Insects 691 Other Sources of Information on Hawaiian Entomology 692 Important Immigrant Insect Pests and Biological Control 695 Culex quinquefasciatus Say 696 Pheidole megacephala (Fabr.) 696 Cryptotermes brevis (Walker) 696 Rhabdoscelus obscurus (Boisduval) 697 Spodoptera exempta (Walker) 697 Icerya purchasi Mask. 699 Adore tus sinicus Burm. 699 Peregrinus maidis (Ashmead) 700 Hedylepta blackburni (Butler) 700 Aedes albopictus (Skuse) 701 Aedes aegypti (Linn.) 701 Siphanta acuta (Walker) 701 Saccharicoccus sacchari (Ckll.) 702 Pulvinaria psidii Mask. 702 Dacus cucurbitae Coq. 703 Longuiungis sacchari (Zehnt.) 704 Oxya chinensis (Thun.) 704 Nipaecoccus nipae (Mask.) 705 Syagrius fulvitarsus Pasc. 705 Dysmicoccus brevipes (Ckll.) 706 Perkinsiella saccharicida Kirk. 706 Anomala orientalis (Waterhouse) 708 Coptotermes formosanus Shiraki 710 Ceratitis capitata (Wiedemann) 710 690 Pacific Insects Vol. 6, no. 4 Tarophagus proserpina (Kirk.) 712 Anacamptodes fragilaria (Grossbeck) 713 Polydesma umbricola Boisduval 714 Dacus dorsalis Hendel 715 Spodoptera mauritia acronyctoides (Guenee) 716 Nezara viridula var. smaragdula (Fab.) 717 Biological Control of Noxious Plants 718 Lantana camara var. aculeata 119 Pamakani,
    [Show full text]
  • The Pubescent-Fruited Species of Prunus of the Southwestern States
    THE PUBESCENT-FRUITED SPECIES OF PRUNUS OF THE SOUTHWESTERN STATES By SIMS C. MASON, Arboriculturist, Crop Physiology and Breeding Investigations, Bureau of Plant Industry INTRODUCTION The species of the genus Prunus described in this article occupy a unique position in the flora of the western United States from the fact that their relationship with the wild plums of the country is remote and they are more closely allied to some of the Asiatic species of this genus. Their economic importance arises chiefly from their close adaptation to the climatic and soil conditions of the Southwest, where fluctuations of heat and cold, severe drought, and considerable alkalinity of the soil must be endured by most tree crops. Adaptable stocks for the cultivated forms of Prunus capable of meeting such conditions are eagerly sought. Species with such characters which are capable of being hybridized with the old-established cultivated forms of the genus offer attractive possibilities to the plant breeder. This is especially true of the one edible-fruited form, Prunus texana, which affords in aroma and flavor of fruit most attractive characters for combi- nation with other stone fruits of larger size and more staple commercial character. Instead of forming a homogeneous group, as has usually been be- lieved, these species fall into small groups of quite diverse character and affinities. To the plant breeder and student of their economic possibilities these relationships are of such importance that the following detailed study of them is deemed essential
    [Show full text]
  • Knowledge Gaps, Training Needs and Bio-Ecological Studies on Fruit-Infesting Flies (Diptera: Tephritidae) in Northern Ghana
    University of Ghana http://ugspace.ug.edu.gh KNOWLEDGE GAPS, TRAINING NEEDS AND BIO-ECOLOGICAL STUDIES ON FRUIT-INFESTING FLIES (DIPTERA: TEPHRITIDAE) IN NORTHERN GHANA BY BADII KONGYELI BENJAMIN MASTER OF PHILOSOPHY IN ENTOMOLOGY UNIVERSITY OF GHANA, LEGON, GHANA THIS THESIS IS SUBMITTED TO THE UNIVERSITY OF GHANA, LEGON IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE AWARD OF DOCTOR OF PHILOSOPHY CROP SCIENCE (ENTOMOLOGY) DEGREE JULY, 2014 University of Ghana http://ugspace.ug.edu.gh DECLARATION I hereby declare that this thesis is the result of my own original research, and that it has neither in whole nor in part been presented for a degree elsewhere. Works of others which served as sources of information have been duly acknowledged by reference to the authors. Candidate ………………………… Badii Kongyeli Benjamin Principal Supervisor …………………. Co-supervisor ………………….. Prof. Daniel Obeng-Ofori Prof. Kwame Afreh-Nuamah Co-supervisor …………………… Dr. Maxwell Kevin Billah University of Ghana http://ugspace.ug.edu.gh ACKNOWLEDGEMENTS This thesis could not have been accomplished without the guidance of my dear supervisors and academic mentors. My supervisors (Prof. Daniel Obeng-Ofori, Prof. Kwame Afreh-Nuamah and Dr. Maxwell K. Billah) offered me the needed encouragement, support and guidance throughout the study. Also, Prof. Gebriel A. Teye (Pro-Vice Chancellor), Prof. George Nyarko (Dean, Faculty of Agriculture), Dr. Elias N. K. Sowley (Director, Academic Quality Assurance Directorate) and Dr. Isaac K. Addai (Head, Department of Agronomy) all of the University for Development Studies (UDS) approved of my leave of study, supported and encouraged me throughout my study. The Head of Department (Mrs. Dr C.
    [Show full text]
  • 18 New Nothogenera and 8 New Combinations in the Grass Family Poaceae
    CACTOLOGIA PHANTASTICA 3(2) 4 FEB 2019 ​ ​ ​ 10 ISSN 2590-3403 DOI 10.5281/zenodo.2556225 ​ ​ ​ 18 New Nothogenera and 8 New Combinations in the Grass Family Poaceae By MAARTEN H. J. VAN DER MEER ​ The grass family Poaceae includes major crop genera like Triticum (wheat), Hordeum (barley) and Secale (rye) in the ​ ​ subfamily Pooideae, and Saccharum (sugarcane), Sorghum ​ ​ ​ (sorghum) and Zea (maize) in the subfamily Panicoideae. Species ​ ​ from this family have been used for extensive hybridization experiments. No less than 59 valid nothogenera are listed in IPNI, yet dozens of intergeneric hybrids remain nameless.1 Notho- generic names are proposed here for eighteen intergeneric hybrids, including one tetrageneric hybrid, ten trigeneric hybrids and seven bigeneric hybrids. In addition, seven new combinations for nothospecies are proposed. Wheat Barley Rye David Monniaux Cliff LSDSL CC BY-SA 3.0 / Wikimedia CC BY 2.0 / Wikimedia CC BY-SA 3.0 / Wikimedia 1 Note that the widely used ×Triticale, an invalid younger synonym of ×Triticosecale, is not ​ ​ ​ ​ listed. MAARTEN H. J. VAN DER MEER ROGGEKAMP 379 NL-2592 VV DEN HAAG [email protected] CACTOLOGIA PHANTASTICA 3(2) 4 FEB 2019 ​ ​ ​ 11 ISSN 2590-3403 DOI 10.5281/zenodo.2556225 ​ ​ ​ Valid Nothogenera in Poaceae NOTHOGENUS PARENT 1 PARENT 2 PARENT 3 ×Achnella Achnatherum Nassella ​ ×Aegilosecale Aegilops Secale ​ ×Aegilotriticum Aegilops Triticum ​ ×Agrocalamagrostis Agrostis Calamagrostis ​ ×Agroëlymus Agropyron Elymus ​ ×Agrohordeum Agropyron Hordeum ​ ×Agropogon Agrostis Polypogon ​ ×Agrositanion Acropyron Sitanion ​ ×Agrotrigia Agropyron Elytrigia ​ ×Agrotrisecale Agropyron Secale Triticum ​ ×Agrotriticum Agropyron Triticum ​ ×Ammocalamagrostis Ammophila Calamacrostis ​ ×Arctodupontia Arctophila Dupontia ​ ×Bromofestuca Bromus Festuca ​ ×Calamophila Ammophila Calamagrostis ​ ×Cynochloris Chloris Cynodon ​ ×Danthosieglingia Danthonia Sieglingia ​ ×Dupoa Dupontia Poa ​ ×Dupontopoa Arctopoa Dupontia ​ ×Elyleymus Elymus Leymus ​ ×Elymopyron Agropyron Elymus ​ ×Elymordeum Elymus Hordeum ​ MAARTEN H.
    [Show full text]
  • MOTHS and BUTTERFLIES LEPIDOPTERA DISTRIBUTION DATA SOURCES (LEPIDOPTERA) * Detailed Distributional Information Has Been J.D
    MOTHS AND BUTTERFLIES LEPIDOPTERA DISTRIBUTION DATA SOURCES (LEPIDOPTERA) * Detailed distributional information has been J.D. Lafontaine published for only a few groups of Lepidoptera in western Biological Resources Program, Agriculture and Agri-food Canada. Scott (1986) gives good distribution maps for Canada butterflies in North America but these are generalized shade Central Experimental Farm Ottawa, Ontario K1A 0C6 maps that give no detail within the Montane Cordillera Ecozone. A series of memoirs on the Inchworms (family and Geometridae) of Canada by McGuffin (1967, 1972, 1977, 1981, 1987) and Bolte (1990) cover about 3/4 of the Canadian J.T. Troubridge fauna and include dot maps for most species. A long term project on the “Forest Lepidoptera of Canada” resulted in a Pacific Agri-Food Research Centre (Agassiz) four volume series on Lepidoptera that feed on trees in Agriculture and Agri-Food Canada Canada and these also give dot maps for most species Box 1000, Agassiz, B.C. V0M 1A0 (McGugan, 1958; Prentice, 1962, 1963, 1965). Dot maps for three groups of Cutworm Moths (Family Noctuidae): the subfamily Plusiinae (Lafontaine and Poole, 1991), the subfamilies Cuculliinae and Psaphidinae (Poole, 1995), and ABSTRACT the tribe Noctuini (subfamily Noctuinae) (Lafontaine, 1998) have also been published. Most fascicles in The Moths of The Montane Cordillera Ecozone of British Columbia America North of Mexico series (e.g. Ferguson, 1971-72, and southwestern Alberta supports a diverse fauna with over 1978; Franclemont, 1973; Hodges, 1971, 1986; Lafontaine, 2,000 species of butterflies and moths (Order Lepidoptera) 1987; Munroe, 1972-74, 1976; Neunzig, 1986, 1990, 1997) recorded to date.
    [Show full text]
  • Flies) Benjamin Kongyeli Badii
    Chapter Phylogeny and Functional Morphology of Diptera (Flies) Benjamin Kongyeli Badii Abstract The order Diptera includes all true flies. Members of this order are the most ecologically diverse and probably have a greater economic impact on humans than any other group of insects. The application of explicit methods of phylogenetic and morphological analysis has revealed weaknesses in the traditional classification of dipteran insects, but little progress has been made to achieve a robust, stable clas- sification that reflects evolutionary relationships and morphological adaptations for a more precise understanding of their developmental biology and behavioral ecol- ogy. The current status of Diptera phylogenetics is reviewed in this chapter. Also, key aspects of the morphology of the different life stages of the flies, particularly characters useful for taxonomic purposes and for an understanding of the group’s biology have been described with an emphasis on newer contributions and progress in understanding this important group of insects. Keywords: Tephritoidea, Diptera flies, Nematocera, Brachycera metamorphosis, larva 1. Introduction Phylogeny refers to the evolutionary history of a taxonomic group of organisms. Phylogeny is essential in understanding the biodiversity, genetics, evolution, and ecology among groups of organisms [1, 2]. Functional morphology involves the study of the relationships between the structure of an organism and the function of the various parts of an organism. The old adage “form follows function” is a guiding principle of functional morphology. It helps in understanding the ways in which body structures can be used to produce a wide variety of different behaviors, including moving, feeding, fighting, and reproducing. It thus, integrates concepts from physiology, evolution, anatomy and development, and synthesizes the diverse ways that biological and physical factors interact in the lives of organisms [3].
    [Show full text]
  • Insects and Related Arthropods Associated with of Agriculture
    USDA United States Department Insects and Related Arthropods Associated with of Agriculture Forest Service Greenleaf Manzanita in Montane Chaparral Pacific Southwest Communities of Northeastern California Research Station General Technical Report Michael A. Valenti George T. Ferrell Alan A. Berryman PSW-GTR- 167 Publisher: Pacific Southwest Research Station Albany, California Forest Service Mailing address: U.S. Department of Agriculture PO Box 245, Berkeley CA 9470 1 -0245 Abstract Valenti, Michael A.; Ferrell, George T.; Berryman, Alan A. 1997. Insects and related arthropods associated with greenleaf manzanita in montane chaparral communities of northeastern California. Gen. Tech. Rep. PSW-GTR-167. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Dept. Agriculture; 26 p. September 1997 Specimens representing 19 orders and 169 arthropod families (mostly insects) were collected from greenleaf manzanita brushfields in northeastern California and identified to species whenever possible. More than500 taxa below the family level wereinventoried, and each listing includes relative frequency of encounter, life stages collected, and dominant role in the greenleaf manzanita community. Specific host relationships are included for some predators and parasitoids. Herbivores, predators, and parasitoids comprised the majority (80 percent) of identified insects and related taxa. Retrieval Terms: Arctostaphylos patula, arthropods, California, insects, manzanita The Authors Michael A. Valenti is Forest Health Specialist, Delaware Department of Agriculture, 2320 S. DuPont Hwy, Dover, DE 19901-5515. George T. Ferrell is a retired Research Entomologist, Pacific Southwest Research Station, 2400 Washington Ave., Redding, CA 96001. Alan A. Berryman is Professor of Entomology, Washington State University, Pullman, WA 99164-6382. All photographs were taken by Michael A. Valenti, except for Figure 2, which was taken by Amy H.
    [Show full text]
  • Managing Intermountain Rangelands
    This file was created by scanning the printed publication. Errors identified by the software have been corrected; however, some errors may remain. USE OF ROSACEOUS SHRUBS FOR WILDLAND PLANTINGS IN THE INTERMOUNTAIN WEST Robert B. Ferguson ABSTRACT: This paper summarizes information on While many of the early efforts to use shrub Rosaceous shrubs to assist range or wildlife species in artificial revegetation centered on managers in planning range improvement projects. bitterbrush, other members of the Rosaceae were Species from at least 16 different genera of the being studied and recommended. Plummer and Rosaceae family have been used, or are others (1968) listed species that could be used potentially useful, for revegetating disturbed in revegetation programs in Utah, including true wildlands in the Intermountain West. mountain mahogany (Cercocarpus montanus Raf.), Information is given on form and rate of growth, curlleaf mountain mahogany (C. ledifolius reproduction, longevity, and geographical Nutt.), cliffrose (Cowania mexicana var. distribution of useful Rosaceous shrubs. stansburiana [Torr.] Jeps.), desert bitterbrush Information is also presented on forage value, (Purshia glandulosa Curran), Saskatoon response to fire and herbicides, and the effects serviceberry (Amelanchier alnifolia Nutt.), Utah of insects and disease. Finally, methods used serviceberry (A. utahensis Koehne), Woods rose for the establishment of the Rosaceous shrubs (Rosa woodsii Lindl.), apache plume (Fallugia are described. paradoxa·[D. Don] Endl.), black chokecherry (Prunus virginiana L. var. melanocarpa [A. Nels.] Sarg.), desert peachbrush (P. fasciculata INTRODUCTION [Torr.] Gray), American plum (P. americana Marsh), squawapple (Peraphyllum ramosissimum William A. Dayton (1931), early plant ecologist Nutt.), and bush cinquefoil (Potentilla of the Forest Service, stated, "The rose group fruticosa L.).
    [Show full text]
  • Sex Attractants of Geometrid and Noctuid Moths: Chemical Characterization and Field Test of Monoepoxides of 6,9-Dienes and Related Compounds
    Journal of Chemical Ecology, VoL 21, No. 3, 1995 SEX ATTRACTANTS OF GEOMETRID AND NOCTUID MOTHS: CHEMICAL CHARACTERIZATION AND FIELD TEST OF MONOEPOXIDES OF 6,9-DIENES AND RELATED COMPOUNDS TETSU ANDO, I'* HIDEKI KISHI, ~'3 NAOKO AKASHIO, I XU-RONG QIN,I NAMIKO SAITO,I HIROSHI ABE, and SATOSHI HASHIMOTO ~ ~Department of Applied Biological Science, Facul~. of Agriculture Tokyo University of Agriculture and Technology Fuchu, Tokyo 183, Japan '-Zoological Laboratory, Faculty of Agriculture Meijo University Tempaku-ku, Nagoya, 468, Japan (Received September 2, 1994; accepted November 28, 1994) Abstract--(Z,Z)-6,9-Dienes with straight C~s-C2~ chains were synthesized from linoleic acid, and a C~7 chain was synthesized by hydrogenation of the corresponding 6,9-diyne prepared from propargyl alcohol. Oxidation of the homoconjugated dienes with m-chloroperoxybenzoic acid yielded a 1 : 1 mix- ture of two monoepoxides that could be separated by repeated medium-pres- sure liquid chromatography with a Lobar column. The chemical slructure of each positional isomer was confirmed by analyses of the ozonolysis products, and the isomers showed characteristic ~SC signals in their NMR spectra and fragment ions in their El mass spectra. In addition to the (Z,Z,Z)-3,6,9-trienes with straight C~s-C23 chains and their monoepoxides, field tests using single source lures incorporating one of the above seven dienes and 14 monoepoxy- monoenes were carried out in a forest in Tokyo from 1992 to 1994. Conse- quently, attraction of six geometrid species and five noctuid species was observed for the first time. Key Words--Sex pheromone, lepidopterous attractant, field test, monoepoxy- monoene, monoepoxydiene, mass spectrum, Geometridae, Noctuidae.
    [Show full text]