Timber and Steel Design Lecture 16 Lateral Resisting System

Total Page:16

File Type:pdf, Size:1020Kb

Timber and Steel Design Lecture 16 Lateral Resisting System TimberTimber andand SteelSteel DesignDesign LectureLecture 1166 LateralLateral ResistingResisting SystemSystem Basic of Bracing Braced Panels Arrangements Trussing to Reduce Story Drift Tabular Frame Concept Mongkol JIRAVACHARADET S U R A N A R E E INSTITUTE OF ENGINEERING UNIVERSITY OF TECHNOLOGY SCHOOL OF CIVIL ENGINEERING Wind & Building Pressure windward leeward Windward columns in tension (+) (-) elevatorshaft Leeward columns in compression Wind pressure “pushes” outdoor air into the windward side of the building and “pulls” indoor air from the leeward side Sidesway of Buildings Basic of Bracing Dual-functioning Bracing: Story Drift: H H X-bracing: H ∆ Tension H h Tension Compression H T e n s i o n H Single-story Multi-bay Bracing: Bracing multistory buildings: Bracing Around Floor Opening Vertical bracing Opening Vertical bracing Vertical Vertical bracing Vertical Vertical bracing Bracing to Resist Wind Load 4,480 kg 4,480 C H1 T 4.0 m 6 0 3 ,3 6 6,000 kg 10,480 C C 4,480 H2 T 1 4.0 m 2 ,8 4 1 14,960 T 14,960 3,400 kg 13,880 C C 14,960 H3 T 2 9 4.5 m ,8 0 2 14,960 T 14,960 30,575 C 30,575 13,880 4.0 m 30,575 30,575 Building Frame to Resist Lateral Loads To dissipate energy in the moment-frame beams and to avoid soft story mechanisms “Soft-story” failure mode Earthquake Earthquake Beam-sway mechanism Column-sway mechanism Building Collapse in KOBE Earthquake (1995) 5th floor Bracket-type Bracing: Eccentrically Braced Frames (EBF) To dissipate energy in the shear or moment links and protect the remainder of the frame from inelastic action. e e e e D-Braced EBF Split-K-Braced EBF V-Braced EBF Split-K is the best because large moments are avoided near the column Forces in EBF D-Braced EBF Split-K-Braced EBF e e M M V V P P EBF with W-Shape Bracing Stiffener plates both Intermediate stiffener sides with continuous plate both sides for fillet welds to web link length e > 62.5 cm and flange Link length e CL of brace must intersect CL of beam at edge or inside link Concentrically Braced Frames (CBF) To dissipate energy in yielding and buckling braces. Diagonal braced CBF Inverted V-braced CBF V-braced CBF X-braced CBF K-braced CBF Braced Panels Arrangements Trussing to Reduce Story Drift (a) Bracing around (b) Hat Truss (c) Belt Truss Elevator Shaft Tabular Frame Concept Solid-wall tube (a) (b) World Trade Center - New York Height : 417 and 415 meters Ground Breaking : August 5, 1966 Opened : April 4, 1973 Terrorist attack: September 11, 2001 Typical Floor Plan of the World Trade Center The central core is designed to carry part of the vertical loads only. The closely spaced tabular perimeter columns act like a hollow tube supporting part of vertical loads and all the horizontal loads. Sears Tower - Chicago World's Tallest Building Until 1996 Height : 442 meters Build : 1973 Terrorist attack: not yet Actually nine 23-by-23 meters towers bundled together World's Top 10 Buildings Rank Name City Country Feet Metres Stories 1 Petronas Tower 1 Kuala Lumpur Malaysia 1483 452 88 2 Petronas Tower 2 Kuala Lumpur Malaysia 1483 452 88 3 Sears Tower Chicago USA 1450 442 110 4 Jin Mao Tower Shanghai China 1380 421 88 **5 Citic Plaza Guangzhou China 1,283 391 80 6 Shun Hing Square Shenzhen China 1,260 384 69 7 Empire State New York USA 1250 381 102 8 Central Plaza Hong Kong China 1227 374 78 9 Bank Of China Hong Kong China 1209 369 70 10 The Center Hong Kong China 1148 350 79 11 T & C Tower Kaohsiung Taiwan 1140 348 85 12 Aon Center Chicago USA 1136 346 80 13 John Hancock Chicago USA 1127 344 100 14 Burj al Arab Hotel Dubai UAE 1,053 321 60 15 Baiyoke Tower II Bangkok Thailand 1,050 320 90 Bundled Tube Structure The Sears Tower is a bundled-tube structural design. The rigid outer walls act like the walls of a hollow tube. The Sears Tower is actually a bundle of nine tubes, and is considered one of the most efficient structures designed to withstand wind. Typical Framing Plan 3 @ 23 m = 69 m 4.6 m typ. 3 @ 23 m = 69 m The Petronas Twin Towers were the tallest buildings in the world from April 15th, 1996 until October 17th, 2003 when Taipei 101 (Financial Center) was topped out at 508m (1676ft). FUTURE TALLEST? Planned Shanghai tower may rise 500 meters. MEGAFRAME Perimeter tube has columns, belt trusses, bracing..
Recommended publications
  • CHRYSLER BUILDING, 405 Lexington Avenue, Borough of Manhattan
    Landmarks Preservation Commission September 12. 1978~ Designation List 118 LP-0992 CHRYSLER BUILDING, 405 Lexington Avenue, Borough of Manhattan. Built 1928- 1930; architect William Van Alen. Landmark Site: Borough of Manhattan Tax Map Block 1297, Lot 23. On March 14, 1978, the Landmarks Preservation Commission held a_public hearing on the proposed designation as a Landmark of the Chrysler Building and the proposed designation of the related Landmark Site (Item No. 12). The item was again heard on May 9, 1978 (Item No. 3) and July 11, 1978 (Item No. 1). All hearings had been duly advertised in accordance with the provisions of law. Thirteen witnesses spoke in favor of designation. There were two speakers in opposition to designation. The Commission has received many letters and communications supporting designation. DESCRIPTION AND ANALYSIS The Chrysler Building, a stunning statement in the Art Deco style by architect William Van Alen, embodies the romantic essence of the New York City skyscraper. Built in 1928-30 for Walter P. Chrysler of the Chrysler Corporation, it was "dedicated to world commerce and industry."! The tallest building in the world when completed in 1930, it stood proudly on the New York skyline as a personal symbol of Walter Chrysler and the strength of his corporation. History of Construction The Chrysler Building had its beginnings in an office building project for William H. Reynolds, a real-estate developer and promoter and former New York State senator. Reynolds had acquired a long-term lease in 1921 on a parcel of property at Lexington Avenue and 42nd Street owned by the Cooper Union for the Advancement of Science and Art.
    [Show full text]
  • Lbbert Wayne Wamer a Thesis Presented to the Graduate
    I AN ANALYSIS OF MULTIPLE USE BUILDING; by lbbert Wayne Wamer A Thesis Presented to the Graduate Committee of Lehigh University in Candidacy for the Degree of Master of Science in Civil Engineering Lehigh University 1982 TABLE OF CCNI'ENTS ABSI'RACI' 1 1. INTRODlCI'ICN 2 2. THE CGJCEPr OF A MULTI-USE BUILDING 3 3. HI8rORY AND GRami OF MULTI-USE BUIIDINCS 6 4. WHY MULTI-USE BUIIDINCS ARE PRACTICAL 11 4.1 CGVNI'GJN REJUVINATICN 11 4. 2 EN'ERGY SAVIN CS 11 4.3 CRIME PREVENTIOO 12 4. 4 VERI'ICAL CANYOO EFFECT 12 4. 5 OVEOCRO'IDING 13 5. DESHN CHARACTERisriCS OF MULTI-USE BUILDINCS 15 5 .1 srRlCI'URAL SYSI'EMS 15 5. 2 AOCHITECI'URAL CHARACTERisriCS 18 5. 3 ELEVATOR CHARACTERisriCS 19 6. PSYCHOI..OCICAL ASPECTS 21 7. CASE srUDIES 24 7 .1 JOHN HANCOCK CENTER 24 7 • 2 WATER TOiVER PlACE 25 7. 3 CITICORP CENTER 27 8. SUMMARY 29 9. GLOSSARY 31 10. TABLES 33 11. FIGJRES 41 12. REFERENCES 59 VITA 63 iii ACKNCMLEI)(}IIENTS The author would like to express his appreciation to Dr. Lynn S. Beedle for the supervision of this project and review of this manuscript. Research for this thesis was carried out at the Fritz Engineering Laboratory Library, Mart Science and Engineering Library, and Lindennan Library. The thesis is needed to partially fulfill degree requirenents in Civil Engineering. Dr. Lynn S. Beedle is the Director of Fritz Laboratory and Dr. David VanHom is the Chainnan of the Department of Civil Engineering. The author wishes to thank Betty Sumners, I:olores Rice, and Estella Brueningsen, who are staff menbers in Fritz Lab, for their help in locating infonnation and references.
    [Show full text]
  • Around Guangzhou
    NOVEMBER 19, 20 CHINA DAILY PAGE 15 ASIAD AROUND GUANGZHOU ATTRACTIONS Ancestral Temple of the Chen Zhuhai and Zhaoqing. Th e exhibition Family (Chen Clan Academy) celebrates the 58th anniversary of the founding of the Guangzhou Daily and Phoenix Mountain and 陈家祠 Longyandong Forest Park also the Asian Games. Ancestral Temple of the Chen Family is Hours: 10 am-10 pm, until Nov 30 凤凰山、龙眼洞森林公园 also called Chen Clan Academy, which Address: Grandview Mall, 228 Tianhe Lu, Phoenix Mountain is one of the easi- is a place both for off ering sacrifi ces to Tianhe district Tel: (020) 38331818 est mountains to get to from the city ancestors and for studying. Now the Admission free center. A narrow winding road, fre- Chen Clan Ancestral Temple in Guang- quented by cars, cyclists and hikers, zhou, the Ancestoral Temple in Foshan, Harry Potter & Th e Deathly runs through part of the mountain and the former Residence of Sun Yat-sen in Hallows: Part 1 passes by a small lake before ascending. Zhongshan and the Opium War Memo- Most paths cutting through the forested rial Hall in Dongguan are regarded as Another edge-of-your-seat adventure mountain are small and infrequently the four major cultural tourist sites in awaits Harry Potter fans this month. used. Views towards Long Dong are not Guangdong province. Th e temple is a Voldemort’s death-eaters have taken spectacular, but to the east, hikers can compound consisting of nine halls, six over the Ministry of Magic and Hog- see rolling hills, ponds and lush green- courtyards and 19 buildings connected warts, but Voldemort won’t rest until ery.
    [Show full text]
  • Sustainable High-Rise Construction in Shanghai Civil Engineering July 2015
    Sustainable High-rise Construction in Shanghai Case study – Shanghai Tower Gina Letízia Lau Thesis to obtain the Master of Science Degree in Civil Engineering Supervisor: Professor Manuel Guilherme Caras Altas Duarte Pinheiro Supervisor: Professor Manuel de Arriaga Brito Correia Guedes Examination Committee Chairperson: Professor Albano Luís Rebelo da Silva das Neves e Sousa Supervisor: Professor Manuel Guilherme Caras Altas Duarte Pinheiro Member of the Committee: Professor Vítor Faria e Sousa July 2015 In Memoriam “Godfather” Conny van Rietschoten Acknowledgements Firstly, THANK YOU to my parents and my grandparents for always encouraging me to do and to be better. Especially my extraordinary and lovely mom, for her dedication, for leading me to the right path, for accepting and supporting my decisions, always taught me to think positively and be strong, because “Life is not about waiting for the storm to pass…it's about learning how to dance in the rain!” And my grandparents for educating me during my childhood and believing me. Although they are in Shanghai, but they have always supported me when I needed. And to Tiotio, I would like to thank him for all the support I have received since I moved to Portugal. When I first came to Portugal, I did not understand a single word in Portuguese, with my family´s support and a lot of hard work I managed to overcome the language barrier. Secondly, I would like to express my deepest gratitude to my supervisors, Professor Manuel Duarte Pinheiro and Professor Manuel Correia Guedes, for their exemplary guidance, patience and information provided throughout the course of this work.
    [Show full text]
  • China Megastructures: Learning by Experience
    AC 2009-131: CHINA MEGASTRUCTURES: LEARNING BY EXPERIENCE Richard Balling, Brigham Young University Page 14.320.1 Page © American Society for Engineering Education, 2009 CHINA MEGA-STRUCTURES: LEARNING BY EXPERIENCE Abstract A study abroad program for senior and graduate civil engineering students is described. The program provides an opportunity for students to learn by experience. The program includes a two-week trip to China to study mega-structures such as skyscrapers, bridges, and complexes (stadiums, airports, etc). The program objectives and the methods for achieving those objectives are described. The relationships between the program objectives and the college educational emphases and the ABET outcomes are also presented. Student comments are included from the first offering of the program in 2008. Introduction This paper summarizes the development of a study abroad program to China where civil engineering students learn by experience. Consider some of the benefits of learning by experience. Experiential learning increases retention, creates passion, and develops perspective. Some things can only be learned by experience. Once, while the author was lecturing his teenage son for a foolish misdeed, his son interrupted him with a surprisingly profound statement, "Dad, leave me alone....sometimes you just got to be young and stupid before you can be old and wise". As parents, it's difficult to patiently let our children learn by experience. The author traveled to China for the first time in 2007. He was blindsided by the rapid pace of change in that country, and by the remarkable new mega-structures. More than half of the world's tallest skyscrapers, longest bridges, and biggest complexes (stadiums, airports, etc) are in China, and most of these have been constructed in the past decade.
    [Show full text]
  • Major Projects
    Major Projects S/N Image Project Description Height: 468m Built Up Area: 686,000sqm 1 Chongqing Rui'an Phase II Steel Tonnage: 67,000MT The tallest building in west China. Height: 350.6m 2 Shenyang Hang Lung Plaza Built Up Area: 480,000sqm Steel Tonnage: 60,000MT Height: 309m 3 Hefei Evergrande Center Built Up Area: 247,600sqm Steel Tonnage: 21,800MT Height: 170m Hangzhou Wanyin International 4 Built Up Area: 92,000sqm Building Steel Tonnage: 12,000MT S/N Image Project Description Height: 597m Built Up Area: 370,000sqm 5 Tianjin Goldin 117 Tower Steel Tonnage: 120,000MT The tallest building in north China. Height: 384m 6 Shenzhen Shun Hing Square Built Up Area: 150,000sqm Steel Tonnage: 25,000MT Height: 492m Built Up Area: 380,000sqm 7 Shanghai World Finance Center Steel Tonnage: 67,000MT The tallestroof height in the world in that time. Height: 342m 8 Zhenjiang Suning Plaza Built Up Area: 390,000sqm Steel Tonnage: 28,000MT S/N Image Project Description Height: 400m Shenzhen China Resources 9 Built Up Area: 260,000sqm Building Steel Tonnage: 33,000MT Height: 208m Shanghai Taiping Financial 10 Built Up Area: 110,000sqm Tower Steel Tonnage: 11,000MT Height: 432m Guangzhou International 11 Built Up Area: 450,000sqm Financial Center Steel Tonnage: 40,000MT Height: 660m (5 basement + 118 tower) Built Up Area: 450,000sqm Steel Tonnage: 100,000MT Height: 660m (5 basement + 118 12 Guangzhou Taikoo Hui Plaza tower) Built Up Area: 450,000sqm Steel Tonnage: 100,000MT Height: 212m Built Up Area: 460,000sqm Steel Tonnage: 19,000MT S/N Image Project Description Height: 234m Built Up Area: 550,000sqm Beijing CCTV New Office 13 Steel Tonnage: 140,000MT Building The biggest steel structure building in the world in terms of steel tonnage.
    [Show full text]
  • China Shine Plaza Guangzhou
    COVER STORY China Shine Plaza Guangzhou Located at Lin He Xi Road in north Tianhe District, China Shine Plaza is not just an ordinary grade-A office building in the city. The site of the development lies along the centre axis of the most prestigious business area in Guangzhou and across the road is the 360-metre high CITIC Plaza, the tallest building in the city built in 1996. 18 China Shine Plaza CHINA SHINE PLAZA China Shine Plaza 19 COVER STORY n the mid-80s, the Guangzhou Municipal Prestigious location Government commenced the planning of The development of north Tianhe basically I Tianhe District in the eastern part of the city started in the early 90s with the construction of to provide new space for large-scale commercial the Guangzhou East Station, the second railway and office developments. Transportation is a station in the city which provides express key factor for making such a decision. At that through train service between Hong Kong and time, Tianhe was a remote part of the city Guangzhou. The planning incorporates a centre without any infrastructure. The development axis which runs south from Guangzhou East of Tianhe would also allow the city to create a Station, with 47 hectare of landscaped open new transportation hub away from the old city space extends all the way to CITIC Plaza. New centre. Moreover, Tianhe is designated to luxury hotels, office towers and residential become the new CBD of Guangzhou. buildings were developed along the axis. With 20 China Shine Plaza CHINA SHINE PLAZA China Shine Plaza 21 COVER STORY Unitized aluminium curtain wall system with Low-E glazing provides comfortable working environment and energy conservation 22 China Shine Plaza CHINA SHINE PLAZA most of the projects being built at the turn of the millennium, China Shine Plaza is one of the latest office developments completed in this prestigious business area.
    [Show full text]
  • List of World's Tallest Buildings in the World
    Height Height Rank Building City Country Floors Built (m) (ft) 1 Burj Khalifa Dubai UAE 828 m 2,717 ft 163 2010 2 Shanghai Tower Shanghai China 632 m 2,073 ft 121 2014 Saudi 3 Makkah Royal Clock Tower Hotel Mecca 601 m 1,971 ft 120 2012 Arabia 4 One World Trade Center New York City USA 541.3 m 1,776 ft 104 2013 5 Taipei 101 Taipei Taiwan 509 m 1,670 ft 101 2004 6 Shanghai World Financial Center Shanghai China 492 m 1,614 ft 101 2008 7 International Commerce Centre Hong Kong Hong Kong 484 m 1,588 ft 118 2010 8 Petronas Tower 1 Kuala Lumpur Malaysia 452 m 1,483 ft 88 1998 8 Petronas Tower 2 Kuala Lumpur Malaysia 452 m 1,483 ft 88 1998 10 Zifeng Tower Nanjing China 450 m 1,476 ft 89 2010 11 Willis Tower (Formerly Sears Tower) Chicago USA 442 m 1,450 ft 108 1973 12 Kingkey 100 Shenzhen China 442 m 1,449 ft 100 2011 13 Guangzhou International Finance Center Guangzhou China 440 m 1,440 ft 103 2010 14 Dream Dubai Marina Dubai UAE 432 m 1,417 ft 101 2014 15 Trump International Hotel and Tower Chicago USA 423 m 1,389 ft 98 2009 16 Jin Mao Tower Shanghai China 421 m 1,380 ft 88 1999 17 Princess Tower Dubai UAE 414 m 1,358 ft 101 2012 18 Al Hamra Firdous Tower Kuwait City Kuwait 413 m 1,354 ft 77 2011 19 2 International Finance Centre Hong Kong Hong Kong 412 m 1,352 ft 88 2003 20 23 Marina Dubai UAE 395 m 1,296 ft 89 2012 21 CITIC Plaza Guangzhou China 391 m 1,283 ft 80 1997 22 Shun Hing Square Shenzhen China 384 m 1,260 ft 69 1996 23 Central Market Project Abu Dhabi UAE 381 m 1,251 ft 88 2012 24 Empire State Building New York City USA 381 m 1,250
    [Show full text]
  • The Pearl River Delta Region Portion of Guangdong Province) Has Made the Region Even More Attractive to Investors
    The Greater Pearl River Delta Guangzhou Zhaoqing Foshan Huizhou Dongguan Zhongshan Shenzhen Jiangemen Zhuhai Hong Kong Macao A report commissioned by Invest Hong Kong 6th Edition The Greater Pearl River Delta 6th Edition Authors Michael J. Enright Edith E. Scott Richard Petty Enright, Scott & Associates Editorial Invest Hong Kong EXECUTIVE SUMMARY The Greater Pearl River Delta Executive Authors Michael J. Enright Edith E. Scott Summary Richard Petty Enright, Scott & Associates Editorial Invest Hong Kong Background First Published April 2003 Invest Hong Kong is pleased to publish the sixth edition of ‘The Greater Pearl Second Edition June 2004 Third Edition October 2005 River Delta’. Much has happened since the publication of the fifth edition. Fourth Edition October 2006 Rapid economic and business development in the Greater Pearl River Delta Fifth Edition September 2007 (which consists of the Hong Kong Special Administrative Region, the Macao Sixth Edition May 2010 Special Administrative Region, and the Pearl River Delta region portion of Guangdong Province) has made the region even more attractive to investors. © Copyright reserved The region has increased in importance as a production centre and a market within China and globally. Improvements in connectivity within the region and ISBN-13: 978-988-97122-6-6 Printed in Hong Kong Published by Invest Hong Kong of the HKSAR Government EXECUTIVE SUMMARY EXECUTIVE SUMMARY with the rest of the world have made it easier to access for investors than ever The third part of the report provides brief profi les of the jurisdictions of the before. And a range of key policy initiatives, such as ‘The Outline Plan for the Greater Pearl River Delta region, highlighting the main features of the local Reform and Development of the Pearl River Delta (2008-2020)’ from China’s economies, including the principal manufacturing and service sectors, National Development and Reform Commission (NDRC), hold great promise economic development plans, location of development zones and industrial for the future.
    [Show full text]
  • The-Hows-Whats-And-Wows-Of-Willis
    There are enough impressive facts about the When you get back to your school, we hope Willis Tower to make even the most worldly your students will send us photos or write or among us say, “Wow!” So many things at the create artwork about their experiences and Willis Tower can be described by a share them with us (via email or the mailing superlative: biggest, fastest, and longest. But address at the end of this guide). there is more to the building than all these “wows”: 1,450 sky-scraping, cloud-bumping One photo will be selected as the “Photo of feet of glass and steel, 43,000 miles of the Day” and displayed on our Skydeck telephone cable, 25,000 miles of plumbing, monitors for all to see. Artwork and writing 4.56 million square feet of floor space and a will posted on bulletin boards in the view of four states. lunchroom area. We would also love to have you and your students post you Skydeck Behind the “wows” are lots of “hows” and Chicago photos to the Skydeck Chicago pages “whats” for you and your students to on Facebook, Instagram, and Twitter. explore. In this guide you will be introduced to the building—its beginnings as the Sears As you get ready for your trip, please call us Tower and its design, construction and place with any questions at (312) 875-9447. We aim in the pantheon of skyscrapers. Its name to make your visit your best school trip ever. was recently changed to the Willis Tower, proudly reflecting the name of the global insurance broker who makes the Tower its Chicago home.
    [Show full text]
  • Dynamic Elasto-Plastic Analysis of a Super High-Rise Hybrid Structure
    th The 14 World Conference on Earthquake Engineering October 12-17, 2008, Beijing, China DYNAMIC ELASTO-PLASTIC ANALYSIS OF A SUPER HIGH-RISE HYBRID STRUCTURE JIANG Jun1 HAO Jiping1 HU Ming2 LI Kangning2 LI Yangcheng1 YOU Bing2 1 School of civil Engineering, Xi’an University of Architecture & Technology, Xi’an, China 2 LANTO Consulting Architects & Engineers Co.,Ltd ,Shenzhen ,China Email: [email protected] ABSTRACT : Dynamic elasto-plastic analysis methods can actually indicate the characteristic of structure, and it is considered as an accurate method. This paper is concerned with the seismic performance evaluation of a super high-rise hybrid structure on a background of project by using nonlinear dynamic procedure (NDP). By reasonable selection of input ground motions which include three natural earthquake records and a group of artificial waves, and based on some assumptions and considerations, the nonlinear dynamic analyses are carried out by using CANNY program. Then the seismic responses of hybrid structure under three different earthquake intensities are obtained. Comparing the responses of three levels with preestablished performance objective, the results show that all responses meet the requirements. At the same time, the inter-storey shear drifts are mentioned to judge the seismic behaviors of hybrid structure. Based on the large amount of structural response information, conclusion can be drawn that the super high-rise hybrid structure achieves the earthquake performance objective. KEYWORDS: hybrid structure, dynamic analysis, resorting force model, inter-storey drift 1. INTRODUCTION With the development of performance-based seismic design (PBSD), the more demands for performance of buildings need to be indicated by structural engineers.
    [Show full text]
  • Tall Can Be Beautiful
    The Financial Express January 10, 2010 7 INDIA’S VERTICAL QUEST TALLCANBEBEAUTIFUL SCRAPINGTHE PreetiParashar 301m)—willbecompleted. FSI allowed is 1.50-2.75 in all metros and meansprojectswillbecheaperonaunit-to- ronment-friendly. ” KaizerRangwala mid-risebuildings.ThisisbecauseIndian TalltowersshouldbedesignedfortheIndi- SKY, FORWHAT? Of the newer constructions,the APIIC ground coverage is 30-40%. It is insuffi- unit basis and also more plentiful in prof- “There is a need for more service pro- cities have the lowest floor space index an context. They should take advantage of S THE WORLD’S Tower (Andhra Pradesh Industrial Infra- cient to build skyscrapers here.”He adds, itable areas,which is good news for viders of eco-friendly construction mate- Winston Churchill said, (FSI), in the world. Government regula- thelocalclimate—rainfall,light,ventilation, tallest building, the structure Corporation Tower) being built “The maximum height that can be built investors and the buyers.However, allow- rials toreducecosts,”saysPeriwal. “We make our buildings tions thatallowspecific number of build- solar orientation without sacrificing the KiranYadav theleadafterWorldWarI—again,aperiod 828-metreBurjKhalifa, at Hyderabadisexpectedtobea100-storey (basedonperacrescalculation)isapproxi- ing high-rises indiscriminately in certain However Sandhir thinks of high-rises and afterwards they make ing floors based on the land area, thus street-levelorientationof buildings;history; marked by economic growth and techno- alters the skyline of buildingwithaheightof
    [Show full text]