Zenon Manual Programming Interfaces

Total Page:16

File Type:pdf, Size:1020Kb

Zenon Manual Programming Interfaces zenon manual Programming interfaces v.7.11 ©2014 Ing. Punzenberger COPA-DATA GmbH All rights reserved. Distribution and/or reproduction of this document or parts thereof in any form are permitted solely with the written permission of the company COPA-DATA. The technical data contained herein has been provided solely for informational purposes and is not legally binding. Subject to change, technical or otherwise. Contents 1. Welcome to COPA-DATA help ...................................................................................................... 6 2. Programming interfaces ............................................................................................................... 6 3. Process Control Engine (PCE) ........................................................................................................ 9 3.1 The PCE Editor ............................................................................................................................................. 9 3.1.1 The Taskmanager ....................................................................................................................... 10 3.1.2 The editing area .......................................................................................................................... 10 3.1.3 The output window .................................................................................................................... 11 3.1.4 The menus of the PCE Editor ...................................................................................................... 11 3.1.5 The icon bar of the PCE Editor .................................................................................................... 14 3.2 Course of actions....................................................................................................................................... 15 3.2.1 Creating a task ............................................................................................................................ 15 3.2.2 Entering code ............................................................................................................................. 17 3.2.3 Function Show PCE ..................................................................................................................... 20 3.2.4 Executing tasks ........................................................................................................................... 20 3.3 VB Script - Introduction ............................................................................................................................. 21 3.3.1 Data types ................................................................................................................................... 21 3.3.2 Variables ..................................................................................................................................... 23 3.3.3 Constants .................................................................................................................................... 25 3.3.4 Operators ................................................................................................................................... 26 3.3.5 Conditional Statements .............................................................................................................. 28 3.3.6 Looping Through Code ............................................................................................................... 30 3.3.7 Types of procedures ................................................................................................................... 35 3.3.8 Coding Conventions .................................................................................................................... 37 4. Macro list .................................................................................................................................. 43 4.1 VBA toolbar and context menu detail view .............................................................................................. 45 4.2 VBA on 64-bit systems .............................................................................................................................. 49 4.3 Basics ......................................................................................................................................................... 49 4.3.1 Object PROPERTIES ..................................................................................................................... 49 4.3.2 Object METHODS ........................................................................................................................ 50 4.3.3 Object EVENTS ............................................................................................................................ 50 3 4.3.4 VBA object structure in zenon .................................................................................................... 51 4.3.5 How to use VBA macros ............................................................................................................. 53 4.3.6 How to insert an ActiveX element in zenon? ............................................................................. 55 4.3.7 Access from an external program .............................................................................................. 56 4.3.8 Functionality of online variables ................................................................................................ 57 4.3.9 List of status bits ......................................................................................................................... 60 4.3.10 Lasso for selecting dynamic elements in the Runtime ............................................................... 62 4.4 Macros in the Editor .................................................................................................................................. 63 4.4.1 Tool bar macro list ...................................................................................................................... 64 4.4.2 Linking macros ............................................................................................................................ 66 4.5 Functions in zenon .................................................................................................................................... 67 4.5.1 Execute VBA Macro .................................................................................................................... 68 4.6 Developing wizard in VBA ......................................................................................................................... 69 4.6.1 Using a wizard ............................................................................................................................ 70 4.6.2 Structure of a wizard .................................................................................................................. 71 4.6.3 Integration in VBA ...................................................................................................................... 71 4.6.4 Developing a wizard ................................................................................................................... 72 4.6.5 Updating wizards ........................................................................................................................ 78 4.7 Frequently asked questions ...................................................................................................................... 78 4.7.1 Why does the button stay pressed? ........................................................................................... 78 4.7.2 Macro is not performed with the first click ................................................................................ 79 4.7.3 Macros no longer work in the Runtime? .................................................................................... 79 4.7.4 Windows CE and VBA ................................................................................................................. 79 4.8 Examples ................................................................................................................................................... 79 4.8.1 MouseEvents and ActiveX Control initialization......................................................................... 79 4.8.2 Display variable information ...................................................................................................... 81 4.8.3 Read and write variable values .................................................................................................. 81 4.8.4 Read and write variables and implement online variables ........................................................ 82 4.8.5 Use dialog multiple times ........................................................................................................... 84 4.8.6 Alarm – Events and ActiveX Control handling ............................................................................ 86 4.8.7 Access to alarms ......................................................................................................................... 89 4.8.8 Set switch (working with process variables) .............................................................................. 91 5. VSTA ......................................................................................................................................... 94 5.1 Basics ........................................................................................................................................................
Recommended publications
  • Performance Best Practices for Vmware Workstation Vmware Workstation 7.0
    Performance Best Practices for VMware Workstation VMware Workstation 7.0 This document supports the version of each product listed and supports all subsequent versions until the document is replaced by a new edition. To check for more recent editions of this document, see http://www.vmware.com/support/pubs. EN-000294-00 Performance Best Practices for VMware Workstation You can find the most up-to-date technical documentation on the VMware Web site at: http://www.vmware.com/support/ The VMware Web site also provides the latest product updates. If you have comments about this documentation, submit your feedback to: [email protected] Copyright © 2007–2009 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. VMware, Inc. 3401 Hillview Ave. Palo Alto, CA 94304 www.vmware.com 2 VMware, Inc. Contents About This Book 5 Terminology 5 Intended Audience 5 Document Feedback 5 Technical Support and Education Resources 5 Online and Telephone Support 5 Support Offerings 5 VMware Professional Services 6 1 Hardware for VMware Workstation 7 CPUs for VMware Workstation 7 Hyperthreading 7 Hardware-Assisted Virtualization 7 Hardware-Assisted CPU Virtualization (Intel VT-x and AMD AMD-V)
    [Show full text]
  • Chapter 1. Origins of Mac OS X
    1 Chapter 1. Origins of Mac OS X "Most ideas come from previous ideas." Alan Curtis Kay The Mac OS X operating system represents a rather successful coming together of paradigms, ideologies, and technologies that have often resisted each other in the past. A good example is the cordial relationship that exists between the command-line and graphical interfaces in Mac OS X. The system is a result of the trials and tribulations of Apple and NeXT, as well as their user and developer communities. Mac OS X exemplifies how a capable system can result from the direct or indirect efforts of corporations, academic and research communities, the Open Source and Free Software movements, and, of course, individuals. Apple has been around since 1976, and many accounts of its history have been told. If the story of Apple as a company is fascinating, so is the technical history of Apple's operating systems. In this chapter,[1] we will trace the history of Mac OS X, discussing several technologies whose confluence eventually led to the modern-day Apple operating system. [1] This book's accompanying web site (www.osxbook.com) provides a more detailed technical history of all of Apple's operating systems. 1 2 2 1 1.1. Apple's Quest for the[2] Operating System [2] Whereas the word "the" is used here to designate prominence and desirability, it is an interesting coincidence that "THE" was the name of a multiprogramming system described by Edsger W. Dijkstra in a 1968 paper. It was March 1988. The Macintosh had been around for four years.
    [Show full text]
  • Alivenf6p-VSTA
    ALiveNF6P-VSTA User Manual Version 1.1 Published November 2007 Copyright©2007 ASRock INC. All rights reserved. 1 Copyright Notice: No part of this manual may be reproduced, transcribed, transmitted, or translated in any language, in any form or by any means, except duplication of documentation by the purchaser for backup purpose, without written consent of ASRock Inc. Products and corporate names appearing in this manual may or may not be regis- tered trademarks or copyrights of their respective companies, and are used only for identification or explanation and to the owners’ benefit, without intent to infringe. Disclaimer: Specifications and information contained in this manual are furnished for informa- tional use only and subject to change without notice, and should not be constructed as a commitment by ASRock. ASRock assumes no responsibility for any errors or omissions that may appear in this manual. With respect to the contents of this manual, ASRock does not provide warranty of any kind, either expressed or implied, including but not limited to the implied warran- ties or conditions of merchantability or fitness for a particular purpose. In no event shall ASRock, its directors, officers, employees, or agents be liable for any indirect, special, incidental, or consequential damages (including damages for loss of profits, loss of business, loss of data, interruption of business and the like), even if ASRock has been advised of the possibility of such damages arising from any defect or error in the manual or product. This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
    [Show full text]
  • Operating Systems and Computer Networks
    Operating Systems and Computer Networks Exercise 1: Introduction to Operating System Faculty of Engineering Operating Systems and Institute of Computer Engineering Computer Networks Exercises Prof. Dr.-Ing. Axel Hunger Alexander Maxeiner, M.Sc. Q1.1 – Operating System (OS) • Operating System is – a program that manages computer hardware and resources – providing Interfaces between hardware and applications – the intermediary between computer and users • Functions: – For Users: convenient usage of computer system and usage of applications – For System: Management of Computer Resources and abstraction of underlying (complex) machine Faculty of Engineering Operating Systems and Institute of Computer Engineering Computer Networks Exercises Prof. Dr.-Ing. Axel Hunger Alexander Maxeiner, M.Sc. Q1.1 – Operating System (OS) Computer systems •provide a capability for gathering data (i.e. data mining, to get information that lead to tailored commercials) •performing computations (modeling large system instead of building them) •storing information, (Photos, tables, etc.) •communicating with other computer systems (I.e. Internet) “The operating system defines our computing experience. It is the first software we see when we turn on the computer and the last software we see when the computer is turned off.” Faculty of Engineering Operating Systems and Institute of Computer Engineering Computer Networks Exercises Prof. Dr.-Ing. Axel Hunger Alexander Maxeiner, M.Sc. Q1.1 – Operating System (OS) User Application Interfaces nice Operating System Interfaces
    [Show full text]
  • Operating System Architectures
    Operating System Architectures • Learning objectives: • Explain how OS functionality is orthogonal to where you place services relative to processor modes. • Describe some alternative ways to structure the operating system. • Operating systems evolve over time, but that evolution is frequently in terms of their architecture: how they structure functionality relative to protection boundaries. • We’ll review some of the basic architectures: • Executives • Monolithic kernels • Micro kernels • Exo kernels • Extensible operating systems 2/3/15 CS161 Spring 2015 1 OS Executives • Think MS-DOS: With no hardware protection, the OS is simply a set of services: • Live in memory • Applications can invoke them • Requires a software trap to invoke them. • Live in same address space as application 1-2-3 QBasic WP Applications Command Software Traps Operating System routlines 2/3/15 CS161 Spring 2015 2 Monolithic Operating System • Traditional architecture • Applications and operating system run in different address spaces. • Operating system runs in privileged mode; applications run in user mode. Applications Operating System file system processes networking Device drivers virtual memory 2/3/15 CS161 Spring 2015 3 Microkernels (late 80’s and on) • Put as little of OS as possible in privileged mode (the microkernel). • Implement most core OS services as user-level servers. • Only microkernel really knows about hardware • File system, device drivers, virtual memory all implemented in unprivileged servers. • Must use IPC (interprocess communication) to communicate among different servers. Applications Process Virtual management memory file system networking Microkernel 2/3/15 CS161 Spring 2015 4 Microkernels: Past and Present • Much research and debate in late 80’s early 90’s • Pioneering effort in Mach (CMU).
    [Show full text]
  • Filesystems HOWTO Filesystems HOWTO Table of Contents Filesystems HOWTO
    Filesystems HOWTO Filesystems HOWTO Table of Contents Filesystems HOWTO..........................................................................................................................................1 Martin Hinner < [email protected]>, http://martin.hinner.info............................................................1 1. Introduction..........................................................................................................................................1 2. Volumes...............................................................................................................................................1 3. DOS FAT 12/16/32, VFAT.................................................................................................................2 4. High Performance FileSystem (HPFS)................................................................................................2 5. New Technology FileSystem (NTFS).................................................................................................2 6. Extended filesystems (Ext, Ext2, Ext3)...............................................................................................2 7. Macintosh Hierarchical Filesystem − HFS..........................................................................................3 8. ISO 9660 − CD−ROM filesystem.......................................................................................................3 9. Other filesystems.................................................................................................................................3
    [Show full text]
  • Pew Washington 0250E 17054.Pdf (7.705Mb)
    Testing and Advancement of a Variable Stiffness Transverse Plane Adapter for Use in a Lower Limb Prosthesis Corey Pew A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2017 Reading Committee: Glenn Klute, Chair Gador Canton Santosh Devasia Nate Sniadecki Program Authorized to Offer Degree: Mechanical Engineering ©Copyright 2017 Corey Pew University of Washington i Abstract Testing and Advancement of a Variable Stiffness Transverse Plane Adapter for Use in a Lower Limb Prosthesis Corey Pew Chair of the Supervisory Committee: Glenn Klute, Ph.D. Affiliate Professor Department of Mechanical Engineering Background The goal of a lower limb prosthesis is to restore the abilities of the intact limb for an individual with lower limb amputation. Daily ambulation includes many maneuvers such as turning, and twisting, which require a component of transverse plane mobility. It has been shown that the inclusion of a transverse plane adapter could reduce peak torsional loads on the residual limb and may alleviate soft tissue damage, increase comfort, and improve mobility level for a lower limb amputee. However, currently available transverse plane adaptors only allow for a single stiffness setting and do not allow for variation to accommodate the maneuvers of everyday ambulation. The specific aims of this research were to determine the transverse plane stiffness that minimizes the transverse plane moment applied to the residual limb of lower limb amputees during different ambulatory activities and identify a user’s preferred transverse plane stiffness during different ambulatory activities at different speeds. Three tasks were performed to achieve these aims.
    [Show full text]
  • Access Control for the SPIN Extensible Operating System
    Access Control for the SPIN Extensible Operating System Robert Grimm Brian N. Bershad Dept. of Computer Science and Engineering University of Washington Seattle, WA 98195, U.S.A. Extensible systems, such as SPIN or Java, raise new se- on extensions and threads, are enforced at link time (when curity concerns. In these systems, code can be added to a an extension wants to link against other extensions) and at running system in almost arbitrary fashion, and it can inter- call time (when a thread wants to call an extension). Ac- act through low latency (but type safe) interfaces with other cess restrictions on objects are enforced by the extension code. Consequently, it is necessary to devise and apply that provides an object’s abstraction (if an extension is not security mechanisms that allow the expression of policies trusted to enforce access control on its objects but is ex- controlling an extension’s access to other extensions and its pected to do so, DTE can be used to prevent other exten- ability to extend, or override, the behavior of already exist- sions from linking against the untrusted extension). ing services. In the SPIN operating system [3, 4] built at the Due to the fine grained composition of extensions in University of Washington, we are experimenting with a ver- SPIN, it is important to minimize the performance overhead sion of domain and type enforcement (DTE) [1, 2] that has of call time access control. We are therefore exploring opti- been extended to address the security concerns of extensible mization that make it possible to avoid some dynamic ac- systems.
    [Show full text]
  • Linux Assembly HOWTO Linux Assembly HOWTO
    Linux Assembly HOWTO Linux Assembly HOWTO Table of Contents Linux Assembly HOWTO..................................................................................................................................1 Konstantin Boldyshev and François−René Rideau................................................................................1 1.INTRODUCTION................................................................................................................................1 2.DO YOU NEED ASSEMBLY?...........................................................................................................1 3.ASSEMBLERS.....................................................................................................................................1 4.METAPROGRAMMING/MACROPROCESSING............................................................................2 5.CALLING CONVENTIONS................................................................................................................2 6.QUICK START....................................................................................................................................2 7.RESOURCES.......................................................................................................................................2 1. INTRODUCTION...............................................................................................................................2 1.1 Legal Blurb........................................................................................................................................2
    [Show full text]
  • PLM Industry Summary Jillian Hayes, Editor Vol
    PLM Industry Summary Jillian Hayes, Editor Vol. 14 No 49 Friday 7 December 2012 Contents CIMdata News _____________________________________________________________________ 2 Product Lifecycle Management Special Interest Report Published in The London Times December 2012 __2 Acquisitions _______________________________________________________________________ 3 Hexagon Acquires 3D City Modelling Pioneer GTA Geoinformatik GmbH__________________________3 Synopsys Completes Acquisition of SpringSoft ________________________________________________3 Company News _____________________________________________________________________ 4 Edgecam Training Event for European Resellers _______________________________________________4 FISHER/UNITECH Announces Partnership with the New Stratasys Ltd. ___________________________5 GibbsCAM Selected for Membership in Okuma Partners in THINC _______________________________5 Kelar Pacific LLC Earns Autodesk Structural Engineering Specialization ___________________________6 Knovel Selected for 2012-2013 EContent 100 _________________________________________________7 NGC Software Earns Top 10 Rankings in Retail Industry's Most Influential Guide to Software Vendors ___7 PRION Group in a New Design ____________________________________________________________8 Synergis Student Competitions Open for a Third Year __________________________________________9 Tata Consultancy Services wins ITSMA Diamond Award for Marketing Excellence _________________10 Team “BIM Unlimited” Wins Award at Build Qatar Live 2012 Using
    [Show full text]
  • Designing a Concurrent File Server
    Communicating Process Architectures 2012 1 P.H. Welch et al. (Eds.) Open Channel Publishing Ltd., 2012 c 2012 The authors and Open Channel Publishing Ltd. All rights reserved. Designing a Concurrent File Server James WHITEHEAD II Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, United Kingdom; [email protected] Abstract. In this paper we present a design and architecture for a concurrent file sys- tem server. This architecture is a compromise between the fully concurrent V6 UNIX implementation, and the simple sequential implementation in the MINIX operating system. The design of the server is made easier through the use of a disciplined model of concurrency, based on the CSP process algebra. By viewing the problem through this restricted lens, without traditional explicit locking mechanisms, we can construct the system as a process network of components with explicit connections and depen- dencies. This provides us with insight into the problem domain, and allows us to anal- yse the issues present in concurrent file system implementation. Keywords. file system, Go, CSP, UNIX, MINIX. Introduction Modern operating systems allow multiple users and programs to share the computing re- sources on a single machine. They also serve as an intermediary between programs and the physical computing hardware, such as persistent storage devices. In the UNIX family of op- erating systems, disk access is accomplished by interacting with files and directories through a hierarchical file system, using system calls. Managing access to the file system in a concurrent environment is a challenging problem. An implementation must ensure that a program cannot corrupt the state of the file system, or the data stored on disk.
    [Show full text]
  • Z/OS Basics Preface
    Contents Preface . iii How this course is organized . iii How each topic is organized . iv Part 1. Introduction to z/OS and the mainframe environment Chapter 1. Introduction to the new mainframe . 3 1.1 The new mainframe. 4 1.2 The S/360: A turning point in mainframe history . 4 1.3 An evolving architecture . 5 1.4 Mainframes in our midst . 6 1.5 What is a mainframe? . 7 1.6 Who uses mainframe computers?. 10 1.7 Factors contributing to mainframe use . 11 1.8 Typical mainframe workloads . 14 1.9 Roles in the mainframe world . 21 1.10 z/OS and other mainframe operating systems . 27 1.11 Summary . 29 Chapter 2. z/OS overview. 31 2.1 What is an operating system? . 32 2.2 Overview of z/OS facilities. 32 2.3 What is z/OS? . 34 2.4 Virtual storage and other mainframe concepts . 39 2.5 What is workload management? . 57 2.6 I/O and data management. 60 2.7 Supervising the execution of work in the system . 60 2.8 Defining characteristics of z/OS . 68 2.9 Licensed programs for z/OS . 69 2.10 Middleware for z/OS . 70 2.11 A brief comparison of z/OS and UNIX. 71 2.12 Summary . 73 Chapter 3. TSO/E, ISPF, and UNIX: Interactive facilities of z/OS . 75 3.1 How do we interact with z/OS? . 76 3.2 TSO overview . 76 3.3 ISPF overview . 80 3.4 z/OS UNIX interactive interfaces. 99 3.5 Summary .
    [Show full text]