CXCL1 and CXCL2 Regulate NLRP3 Inflammasome Activation Via G-Protein–Coupled Receptor CXCR2

Total Page:16

File Type:pdf, Size:1020Kb

CXCL1 and CXCL2 Regulate NLRP3 Inflammasome Activation Via G-Protein–Coupled Receptor CXCR2 CXCL1 and CXCL2 Regulate NLRP3 Inflammasome Activation via G-Protein− Coupled Receptor CXCR2 This information is current as Monoranjan Boro and Kithiganahalli Narayanaswamy Balaji of October 1, 2021. J Immunol published online 24 July 2017 http://www.jimmunol.org/content/early/2017/07/22/jimmun ol.1700129 Downloaded from Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision http://www.jimmunol.org/ • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription by guest on October 1, 2021 Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2017 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published July 24, 2017, doi:10.4049/jimmunol.1700129 The Journal of Immunology CXCL1 and CXCL2 Regulate NLRP3 Inflammasome Activation via G-Protein–Coupled Receptor CXCR2 Monoranjan Boro and Kithiganahalli Narayanaswamy Balaji Inflammation is an extensively concerted process that confers protection to the host encountering immune insult. The major inflammatory mediators include IL-1 family members, such as IL-1b, and the functional activation of such molecules is arbitrated by their regulated cleavage brought about by components of a multiprotein complex called inflammasome. In this context, NLR family pyrin domain containing 3 (NLRP3) inflammasome activation often acts as a rate-limiting step in regulating critical cell- fate decisions in various inflammatory scenarios. In this study, we identify the G-protein–coupled receptor CXCR2 (recognizing chemokines CXCL1 and CXCL2) as another arm feeding into the regulated activation of NLRP3 inflammasome in macro- phages. We demonstrate that in vivo blocking of CXCL1 and CXCL2 can significantly reduce the Mycobacterium tuberculosis– induced bioactive IL-1b production. Further, CXCL1 could amplify the inflammasome activation in in vivo mouse models of carrageenan-induced inflammation in footpads and air pouches. The mechanistic insights revealed CXCR2-driven protein kinase Downloaded from C m–dependent integrin-linked kinase to be essential for CXCL1-mediated activation of NLRP3 inflammasome. Blocking the activity of integrin-linked kinase or protein kinase C m either by small interfering RNA–mediated knockdown or pharmacological inhibitor compromised inflammasome activation and subsequent production of bioactive IL-1b. Taken together, our study demonstrates CXCR2-driven activation of NLRP3 inflammasome in macrophages and indicates a potential host-directed thera- peutic target to limit the damaging inflammation associated with overt production of proinflammatory IL-1b. The Journal of Immunology, 2017, 199: 000–000. http://www.jimmunol.org/ hemokines, as inflammatory mediators, contribute sig- been implicated in the differentiation of T cells and in modu- nificantly in effectuating immune responses toward an im- lating the magnitude and cytokine polarity of T cell responses C munity breach (1–6). As known conventionally, chemokines (9). CXCL1 has been reported to be important for Th17 differ- have their role in orchestrating a concerted recruitment of immune entiation, and has been found to be essential for reactive oxygen cells to the site of inflammation or injury. Importantly, chemokines species production and neutrophil extracellular trap formation such as CXCL8 direct the recruitment of neutrophils whereas other (10). One of the cardinal responses to foreign particles or en- chemokines like CCL2, RANTES, and CXCL1 are known potent dogenous danger signals is constituted by the assembly and ac- by guest on October 1, 2021 chemoattractants for T cells, monocytes, and neutrophils, respectively tivation of inflammasome. (7). Apart from their role in immune cell recruitment, mounting Inflammasomes are multiprotein complexes that mediate the evidence implicates various chemokines in processes of cellular innate immune response by generating effectors of the proin- homeostasis. For instance, CCL2 has been reported to negatively flammatory IL-1 family of cytokines such as IL-1b and IL-18 (11). regulate processes including autophagy and necrosis in luminal Many pattern recognition receptors are integral to inflammasome B breast cancer cells (8). In the same manner, CCL2 has also assembly. Some of these include NOD-like receptors and absent in melanoma 2–like receptors (12). Cognate stimulation leads to their activation, oligomerization, and formation of a CASPASE- Department of Microbiology and Cell Biology, Indian Institute of Science, activating scaffold containing apoptosis-associated speck-like pro- Bangalore 560012, India tein containing a CARD (ASC). Canonically, activated CASPASE1 Received for publication January 26, 2017. Accepted for publication June 21, 2017. subsequently cleaves the proinflammatory cytokines pro–IL-1b and This work was supported by funds from the Department of Biotechnology and the Department of Science and Technology (under the Government of India). Infrastruc- pro–IL-18 to their respective bioactive forms (13). Hence, these ture support was provided by the Indian Council of Medical Research (Center for inflammasomes form a major arm of innate immune effectors Advanced Study in Molecular Medicine), the Department of Science and Technology and their dysfunction has been increasingly linked to a variety of (Fund for Improvement of Science and Technology Infrastructure in Universities and Higher Educational Institutions), and the University Grants Commission (special autoinflammatory and autoimmune diseases like Alzheimer’s dis- assistance to K.N.B.). K.N.B. is a J.C. Bose National Fellow of the Department of ease, atherosclerosis, and so on (14–18). Because chemokines also Science and Technology, New Delhi, India. M.B. is a recipient of a fellowship from play an important role in major host inflammatory responses and the Department of Biotechnology. cardinal immune mechanisms, their possible fine regulation of M.B. and K.N.B. designed and performed experiments and analyzed data; K.N.B. wrote the manuscript and supervised the study. the inflammasome appeared intriguing. Address correspondence and reprint requests to Dr. Kithiganahalli Narayanaswamy Among the different inflammasomes, NLR family pyrin domain Balaji, Department of Microbiology and Cell Biology, Indian Institute of Science, containing 3 (NLRP3) inflammasome responds to many different Bangalore 560012, Karnataka, India. E-mail address: [email protected] stimuli (19–21). In this study, to our knowledge it was found for Abbreviations used in this article: ASC, apoptosis-associated speck-like protein con- the first time that the chemokines CXCL1 and CXCL2 could lead taining a CARD; BMDM, bone marrow–derived macrophage; CGN, carrageenan; GPCR, G-protein–coupled receptor; ILK, integrin-linked kinase; MSU, monosodium to the activation of NLRP3 inflammasome in macrophages. This urate; NLRP3, NLR family pyrin domain containing 3; PKC, protein kinase C; PM, effect was mediated by their interaction with their cognate receptor peritoneal macrophage; qRT-PCR, quantitative real-time PCR; siRNA, small inter- CXCR2. Further insights into the molecular mechanism shed light fering RNA. on the role of protein kinase C (PKC) m integrin-linked kinase Copyright Ó 2017 by The American Association of Immunologists, Inc. 0022-1767/17/$30.00 (ILK) in transducing the signal from CXCR2 to CASPASE1 and www.jimmunol.org/cgi/doi/10.4049/jimmunol.1700129 2 CXCR2 ORCHESTRATES THE ACTIVATION OF NLRP3 INFLAMMASOME subsequent IL-1b maturation. Because dysregulated inflamma- (250-15) were purchased from PeproTech. Non-targeting small interfering somes may lead to overt inflammation and physiological pathology, RNA (siRNA) (D-001210-01-20), Nlrp3 (M-053455-01-0005), Ilk (M-040115- m delineation of the molecular mechanisms contributing to its acti- 00-0005), Cxcr2 (M-042157-01-0005), and Prkd1/Pkc (M-048415-01-0005) siRNAs were obtained from Dharmacon as siGENOME SMART-pool reagents. vation and modulation demands attention. In this regard, uncover- Anti–b-actin (A3854) Ab was purchased from Sigma-Aldrich and HRP- ing pivotal components in the arsenal of inflammasome regulation conjugated anti-rabbit (111-035-045)/anti-mouse (115-035-003) IgG Abs may pave the way for the development of advanced therapeutic were procured from Jackson ImmunoResearch. Anti-ASC (67824), anti– b strategies to control hyperinflammation and associated disorders. IL-1 (12242), anti-CASPASE1 (3866), anti-ILK (3862), anti-phospho PKCm (Ser916) (2051), and anti-PKCm (2052) Abs were obtained from Cell Signaling Technology. Anti-phospho ILK (Ser 246) (AB1076) Ab Materials and Methods was purchased from Merck-Millipore and anti-NLRP3 (66846) Ab was Cells and mice obtained from Santa Cruz Biotechnology. CXCL1-neutralizing (AF-453- NA) and CXCL2-neutralizing (AF-452-NA) Abs were purchased from Male or female 4 wk old BALB/c mice were injected i.p. with 1 ml of 8% R&D Systems. Goat IgG (02-6202) isotype control Ab was procured Brewer thioglycollate and peritoneal macrophages (PMs)
Recommended publications
  • Induced CNS Expression of CXCL1 Augments Neurologic Disease in a Murine Model of Multiple Sclerosis Via Enhanced Neutrophil Recruitment
    Eur. J. Immunol. 2018. 48: 1199–1210 DOI: 10.1002/eji.201747442 Jonathan J. Grist et al. 1199 Basic Immunodeficiencies and autoimmunity Research Article Induced CNS expression of CXCL1 augments neurologic disease in a murine model of multiple sclerosis via enhanced neutrophil recruitment Jonathan J. Grist1, Brett S. Marro3, Dominic D. Skinner1, Amber R. Syage1, Colleen Worne1, Daniel J. Doty1, Robert S. Fujinami1,2 andThomasE.Lane1,2 1 Department of Pathology, Division of Microbiology and Immunology, University of Utah, School of Medicine, Salt Lake City, UT, USA 2 Immunology, Inflammation, and Infectious Disease Initiative, University of Utah, UT, USA 3 Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA Increasing evidence points to an important role for neutrophils in participating in the pathogenesis of the human demyelinating disease MS and the animal model EAE. There- fore, a better understanding of the signals controlling migration of neutrophils as well as evaluating the role of these cells in demyelination is important to define cellular com- ponents that contribute to disease in MS patients. In this study, we examined the func- tional role of the chemokine CXCL1 in contributing to neuroinflammation and demyeli- nation in EAE. Using transgenic mice in which expression of CXCL1 is under the control of a tetracycline-inducible promoter active within glial fibrillary acidic protein-positive cells, we have shown that sustained CXCL1 expression within the CNS increased the severity of clinical and histologic disease that was independent of an increase in the frequency of encephalitogenic Th1 and Th17 cells. Rather, disease was associated with enhanced recruitment of CD11b+Ly6G+ neutrophils into the spinal cord.
    [Show full text]
  • The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors—A Review of Literature
    International Journal of Molecular Sciences Review The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors—A Review of Literature Jan Korbecki 1 , Klaudyna Kojder 2, Patrycja Kapczuk 1, Patrycja Kupnicka 1 , Barbara Gawro ´nska-Szklarz 3 , Izabela Gutowska 4 , Dariusz Chlubek 1 and Irena Baranowska-Bosiacka 1,* 1 Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powsta´nców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; [email protected] (J.K.); [email protected] (P.K.); [email protected] (P.K.); [email protected] (D.C.) 2 Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-281 Szczecin, Poland; [email protected] 3 Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University in Szczecin, Powsta´nców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; [email protected] 4 Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powsta´nców Wlkp. 72 Av., 70-111 Szczecin, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-914661515 Abstract: Hypoxia is an integral component of the tumor microenvironment. Either as chronic or cycling hypoxia, it exerts a similar effect on cancer processes by activating hypoxia-inducible factor-1 (HIF-1) and nuclear factor (NF-κB), with cycling hypoxia showing a stronger proinflammatory influ- ence. One of the systems affected by hypoxia is the CXC chemokine system. This paper reviews all available information on hypoxia-induced changes in the expression of all CXC chemokines (CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8 (IL-8), CXCL9, CXCL10, CXCL11, CXCL12 Citation: Korbecki, J.; Kojder, K.; Kapczuk, P.; Kupnicka, P.; (SDF-1), CXCL13, CXCL14, CXCL15, CXCL16, CXCL17) as well as CXC chemokine receptors— Gawro´nska-Szklarz,B.; Gutowska, I.; CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, CXCR7 and CXCR8.
    [Show full text]
  • The Chemokine System in Innate Immunity
    Downloaded from http://cshperspectives.cshlp.org/ on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press The Chemokine System in Innate Immunity Caroline L. Sokol and Andrew D. Luster Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 Correspondence: [email protected] Chemokines are chemotactic cytokines that control the migration and positioning of immune cells in tissues and are critical for the function of the innate immune system. Chemokines control the release of innate immune cells from the bone marrow during homeostasis as well as in response to infection and inflammation. Theyalso recruit innate immune effectors out of the circulation and into the tissue where, in collaboration with other chemoattractants, they guide these cells to the very sites of tissue injury. Chemokine function is also critical for the positioning of innate immune sentinels in peripheral tissue and then, following innate immune activation, guiding these activated cells to the draining lymph node to initiate and imprint an adaptive immune response. In this review, we will highlight recent advances in understanding how chemokine function regulates the movement and positioning of innate immune cells at homeostasis and in response to acute inflammation, and then we will review how chemokine-mediated innate immune cell trafficking plays an essential role in linking the innate and adaptive immune responses. hemokines are chemotactic cytokines that with emphasis placed on its role in the innate Ccontrol cell migration and cell positioning immune system. throughout development, homeostasis, and in- flammation. The immune system, which is de- pendent on the coordinated migration of cells, CHEMOKINES AND CHEMOKINE RECEPTORS is particularly dependent on chemokines for its function.
    [Show full text]
  • Rescuing Functional T Cells Induced by Growth Factor Deprivation, CCL2 Inhibits the Apoptosis Program
    CCL2 Inhibits the Apoptosis Program Induced by Growth Factor Deprivation, Rescuing Functional T Cells This information is current as Eva Diaz-Guerra, Rolando Vernal, M. Julieta del Prete, of September 24, 2021. Augusto Silva and Jose A. Garcia-Sanz J Immunol 2007; 179:7352-7357; ; doi: 10.4049/jimmunol.179.11.7352 http://www.jimmunol.org/content/179/11/7352 Downloaded from References This article cites 41 articles, 21 of which you can access for free at: http://www.jimmunol.org/content/179/11/7352.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 24, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2007 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology CCL2 Inhibits the Apoptosis Program Induced by Growth Factor Deprivation, Rescuing Functional T Cells1 Eva Diaz-Guerra,2 Rolando Vernal,2 M. Julieta del Prete,2 Augusto Silva, and Jose A. Garcia-Sanz3 The precise mechanisms involved in the switch between the clonal expansion and contraction phases of a CD8؉ T cell response remain to be fully elucidated.
    [Show full text]
  • Predictive Biomarkers for the Ranking of Pulmonary Toxicity of Nanomaterials
    nanomaterials Article Predictive Biomarkers for the Ranking of Pulmonary Toxicity of Nanomaterials Chinatsu Nishida 1, Hiroto Izumi 2, Taisuke Tomonaga 2 , Jun-ichi Takeshita 3 , Ke-Yong Wang 4, Kei Yamasaki 1, Kazuhiro Yatera 1 and Yasuo Morimoto 2,* 1 Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan. 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan; [email protected] (C.N.); [email protected] (K.Y.); [email protected] (K.Y.) 2 Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan. 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan; [email protected] (H.I.); [email protected] (T.T.) 3 Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan. 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan; [email protected] 4 Shared-Use Research Center, University of Occupational and Environmental Health, Japan. 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-93-691-7136 Received: 3 September 2020; Accepted: 9 October 2020; Published: 15 October 2020 Abstract: We analyzed the mRNA expression of chemokines in rat lungs following intratracheal instillation of nanomaterials in order to find useful predictive markers of the pulmonary toxicity of nanomaterials. Nickel oxide (NiO) and cerium dioxide (CeO2) as nanomaterials with high pulmonary toxicity, and titanium dioxide (TiO2) and zinc oxide (ZnO) as nanomaterials with low pulmonary toxicity, were administered into rat lungs (0.8 or 4 mg/kg BW).
    [Show full text]
  • Starvation and Antimetabolic Therapy Promote Cytokine Release and Recruitment of Immune Cells
    Starvation and antimetabolic therapy promote cytokine release and recruitment of immune cells Franziska Püschela, Francesca Favaroa,b,c,d,1, Jaime Redondo-Pedrazaa,1, Estefanía Lucendoa, Raffaella Iurlaroa, Sandrine Marchettie, Blanca Majema, Eric Elderingb,c,d, Ernest Nadalf, Jean-Ehrland Riccie, Eric Chevetg,h, and Cristina Muñoz-Pinedoa,i,2 aOncobell Program, Bellvitge Biomedical Research Institute, Hospitalet, 08908 Barcelona, Spain; bDepartment of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; cLymphoma and Myeloma Center, Cancer Center Amsterdam, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; dAmsterdam Institute for Infection & Immunity, 1105 AZ Amsterdam, The Netherlands; eINSERM, Centre Méditerranéen de Médecine Moléculaire, Université Côte d’Azur, 06204 Nice, France; fThoracic Oncology Unit, Department of Medical Oncology, Catalan Institute of Oncology, Hospitalet, 08908 Barcelona, Spain; gINSERM U1242 “Chemistry, Oncogenesis, Stress, Signaling,” Université de Rennes, 35042 Rennes, France; hINSERM U1242, Centre de Lutte Contre le Cancer Eugène Marquis, 35042 Rennes, France; and iDepartment of Basic Nursing, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Hospitalet, 08907 Barcelona, Spain Edited by Karen H. Vousden, Francis Crick Institute, London, United Kingdom, and approved March 16, 2020 (received for review August 14, 2019) Cellular starvation is typically a consequence of tissue injury that of oxygen or nutrients. However, some reports suggest that nutrient disrupts the local blood supply but can also occur where cell restriction, even without cell death, can be sufficient to promote the populations outgrow the local vasculature, as observed in solid synthesis and/or secretion of select proinflammatory cytokines tumors. Cells react to nutrient deprivation by adapting their (7–9).
    [Show full text]
  • Critical Role of CXCL4 in the Lung Pathogenesis of Influenza (H1N1) Respiratory Infection
    ARTICLES Critical role of CXCL4 in the lung pathogenesis of influenza (H1N1) respiratory infection L Guo1,3, K Feng1,3, YC Wang1,3, JJ Mei1,2, RT Ning1, HW Zheng1, JJ Wang1, GS Worthen2, X Wang1, J Song1,QHLi1 and LD Liu1 Annual epidemics and unexpected pandemics of influenza are threats to human health. Lung immune and inflammatory responses, such as those induced by respiratory infection influenza virus, determine the outcome of pulmonary pathogenesis. Platelet-derived chemokine (C-X-C motif) ligand 4 (CXCL4) has an immunoregulatory role in inflammatory diseases. Here we show that CXCL4 is associated with pulmonary influenza infection and has a critical role in protecting mice from fatal H1N1 virus respiratory infection. CXCL4 knockout resulted in diminished viral clearance from the lung and decreased lung inflammation during early infection but more severe lung pathology relative to wild-type mice during late infection. Additionally, CXCL4 deficiency decreased leukocyte accumulation in the infected lung with markedly decreased neutrophil infiltration into the lung during early infection and extensive leukocyte, especially lymphocyte accumulation at the late infection stage. Loss of CXCL4 did not affect the activation of adaptive immune T and B lymphocytes during the late stage of lung infection. Further study revealed that CXCL4 deficiency inhibited neutrophil recruitment to the infected mouse lung. Thus the above results identify CXCL4 as a vital immunoregulatory chemokine essential for protecting mice against influenza A virus infection, especially as it affects the development of lung injury and neutrophil mobilization to the inflamed lung. INTRODUCTION necrosis factor (TNF)-a, interleukin (IL)-6, and IL-1b, to exert Influenza A virus (IAV) infections cause respiratory diseases in further antiviral innate immune effects.2 Meanwhile, the innate large populations worldwide every year and result in seasonal immune cells act as antigen-presenting cells and release influenza epidemics and unexpected pandemic.
    [Show full text]
  • CCL2 Inhibits the Apoptosis Program Induced by Growth Factor Deprivation, Rescuing Functional T Cells1
    The Journal of Immunology CCL2 Inhibits the Apoptosis Program Induced by Growth Factor Deprivation, Rescuing Functional T Cells1 Eva Diaz-Guerra,2 Rolando Vernal,2 M. Julieta del Prete,2 Augusto Silva, and Jose A. Garcia-Sanz3 The precise mechanisms involved in the switch between the clonal expansion and contraction phases of a CD8؉ T cell response remain to be fully elucidated. One of the mechanisms implicated in the contraction phase is cytokine deprivation, which triggers apoptosis in these cells. CCR2 chemokine receptor is up-regulated following IL-2 deprivation, and its ligand CCL2 plays an essential role preventing apoptosis induced by IL-2 withdrawal not only in CTLL2 cells, but also in mouse Ag-activated primary CD8؉ T cells because it rescued functional CD8؉ T cells from deprivation induced apoptosis, promoting proliferation in response to subsequent addition of IL-2 or to secondary antigenic challenges. Thus, up-regulation of the CCR2 upon growth factor with- drawal together with the protective effects of CCL2, represent a double-edged survival strategy, protecting cells from apoptosis and enabling them to migrate toward sites where Ag and/or growth factors are available. The Journal of Immunology, 2007, 179: 7352–7357. espite the continuous generation of T lymphocytes in the is induced by TCR stimulation of naive T cells in the absence of body, their total number is tightly regulated, implying costimulatory signals. Such T cell death can be inhibited in vivo by D that T cells disappear at about the same rate as they are inflammation and in vitro by cytokines; bacterial products promote being produced.
    [Show full text]
  • Exploration of Prognostic Biomarkers and Therapeutic Targets in the Microenvironment of Bladder Cancer Based on CXC Chemokines
    Exploration of Prognostic Biomarkers and Therapeutic Targets in The Microenvironment of Bladder Cancer Based on CXC Chemokines Xiaoqi Sun Department of Urology, Kaiping Central Hospital, Kaiping, 529300, China Qunxi Chen Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China Lihong Zhang Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China Jiewei Chen Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China Xinke Zhang ( [email protected] ) Sun Yat-sen University Cancer Center Research Keywords: Bladder cancer, Biomarkers, CXC Chemokines, Microenvironment Posted Date: February 24th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-223127/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/29 Abstract Background: Bladder cancer (BLCA) has a high rate of morbidity and mortality, and is considered as one of the most malignant tumors of the urinary system. Tumor cells interact with surrounding interstitial cells, playing a key role in carcinogenesis and progression, which is partly mediated by chemokines. CXC chemokines exert anti‐tumor biological roles in the tumor microenvironment and affect patient prognosis. Nevertheless, their expression and prognostic values patients with BLCA remain unclear. Methods: We used online tools, including Oncomine, UALCAN, GEPIA, GEO databases, cBioPortal, GeneMANIA, DAVID 6.8, Metascape, TRUST (version 2.0), LinkedOmics, TCGA, and TIMER2.0 to perform the relevant analysis. Results: The mRNA levels of C-X-C motif chemokine ligand (CXCL)1, CXCL5, CXCL6, CXCL7, CXCL9, CXCL10, CXCL11, CXCL13, CXCL16, and CXCL17 were increased signicantly increased, and those of CXCL2, CXCL3, and CXCL12 were decreased signicantly in BLCA tissues as assessed using the Oncomine, TCGA, and GEO databases.
    [Show full text]
  • Predictive Value of Preoperative Serum CCL2, CCL18, and VEGF for the Patients with Gastric Cancer Jianghong Wu1,2†, Xiaowen Liu1,2† and Yanong Wang1,2*
    Wu et al. BMC Clinical Pathology 2013, 13:15 http://www.biomedcentral.com/1472-6890/13/15 RESEARCH ARTICLE Open Access Predictive value of preoperative serum CCL2, CCL18, and VEGF for the patients with gastric cancer Jianghong Wu1,2†, Xiaowen Liu1,2† and Yanong Wang1,2* Abstract Background: To investigate the expression of chemokine ligand 2 (CCL2), chemokine ligand 18 (CCL18), and vascular endothelial growth factor (VEGF) in peripheral blood of patients with gastric cancer and their correlation with presence of malignancy and disease progression. Methods: Sixty patients with pathological proved gastric cancer were prospectively included into study. The levels of CCL2, CCL18, and VEGF in peripheral blood were examined by enzyme-linked immunosorbentassay (ELISA). Peripheral blood from 20 healthy people was examined as control. Results: The preoperative serum levels of CCL2, CCL18 and VEGF in gastric cancer patients were significantly higher than that of controls (P <0.001, P <0.001, and P <0.001, respectively). ROC curve analysis showed that with a cut-off value of ≥1272.8, the VEGF*CCL2 predicted the presence of gastric cancer with 83% sensitivity and 80% specificity. Preoperative serum CCL2 was significantly correlated to N stage (P =0.040); CCL18 associated with N stage (P =0.002), and TNM stage (P =0.002); VEGF correlated to T stage (P =0.000), N stage (P =0.015), and TNM stage (P =0.000). Conclusion: Preoperative serum levels of CCL2 and VEGF could play a crucial role in predicting the presence and progression of gastric cancer. Keywords: Gastric cancer, Diagnosis, Biological markers Background Chemokines were a kind of low-molecular weight cy- Although the incidence of gastric cancer has been sub- tokines, which were implicated in many biological pro- stantially declining for several decades, it was still the cesses, such as migration of leukocytes, angiogenesis, fourth most common cancer and the second most fre- and tumor growth.
    [Show full text]
  • CCL2 Is a Vascular Permeability Factor Inducing CCR2-Dependent Endothelial Retraction During Lung Metastasis Marko Roblek1, Darya Protsyuk1, Paul F
    Published OnlineFirst December 14, 2018; DOI: 10.1158/1541-7786.MCR-18-0530 Signal Transduction and Functional Imaging Molecular Cancer Research CCL2 Is a Vascular Permeability Factor Inducing CCR2-Dependent Endothelial Retraction during Lung Metastasis Marko Roblek1, Darya Protsyuk1, Paul F. Becker2, Cristina Stefanescu1, Christian Gorzelanny3, Jesus F.Glaus Garzon1, Lucia Knopfova4,5, Mathias Heikenwalder2,6, Bruno Luckow7, Stefan W. Schneider3, and Lubor Borsig1 Abstract Increased levels of the chemokine CCL2 in cancer patients of vascular permeability induction was observed only in are associated with poor prognosis. Experimental evidence Ccr2ecKO mice. CCL2 stimulation of pulmonary endothe- suggests that CCL2 correlates with inflammatory monocyte lial cells resulted in increased phosphorylation of MLC2, recruitment and induction of vascular activation, but the endothelial cell retraction, and vascular leakiness that was functionality remains open. Here, we show that endothelial blocked by an addition of a CCR2 inhibitor. These data Ccr2 facilitates pulmonary metastasis using an endothelial- demonstrate that endothelial CCR2 expression is required specific Ccr2-deficient mouse model (Ccr2ecKO). Similar for tumor cell extravasation and pulmonary metastasis. levels of circulating monocytes and equal leukocyte recruit- fl/fl ment to metastatic lesions of Ccr2ecKO and Ccr2 litter- Implications: The findings provide mechanistic insight into mates were observed. The absence of endothelial Ccr2 how CCL2–CCR2 signaling in endothelial cells promotes their strongly reduced pulmonary metastasis, while the primary activation through myosin light chain phosphorylation, tumor growth was unaffected. Despite a comparable cyto- resulting in endothelial retraction and enhanced tumor cell fl/fl kine milieu in Ccr2ecKO and Ccr2 littermates the absence migration and metastasis. Introduction monocytic cells that contribute to formation of a metastatic niche (3–5).
    [Show full text]
  • Fbxw7 Increases CCL2/7 in CX3CR1 Macrophages to Promote Intestinal Inflammation
    Fbxw7 increases CCL2/7 in CX3CR1hi macrophages to promote intestinal inflammation Jia He, … , Lihua Lai, Qingqing Wang J Clin Invest. 2019. https://doi.org/10.1172/JCI123374. Research In-Press Preview Immunology Inflammation Resident and inflammatory mononuclear phagocytes (MPh) with functional plasticity in the intestine are critically involved in the pathology of Inflammatory Bowel Diseases (IBD), in which the mechanism remains incompletely understood. In the present study, we found that increased expression of E3 ligase FBXW7 in the inflamed intestine was significantly correlated to IBD severity in both human diseases and mice model. Myeloid-Fbxw7 deficiency protected mice from dextran sodium sulfate (DSS) and 2,6,4-trinitrobenzene sulfonic acid (TNBS) induced colitis. Fbxw7 deficiency resulted in decreased production of chemokines CCL2 and CCL7 by colonic CX3CR1hi resident macrophages and reduced accumulation of CX3CR1int pro-inflammatory MPh in colitis colon tissue. Mice received AAV-shFbxw7 administration showed significantly improved survival rate and alleviated colitis. Mechanisms screening demonstrated that FBXW7 suppresses H3K27me3 modification and promotes Ccl2 and Ccl7 expression via degradation of histone-lysine N- methyltransferase EZH2 in macrophages. Taken together, our results indicate that FBXW7 degrades EZH2 and increases Ccl2/Ccl7 in CX3CR1hi macrophages, which promotes the recruiting CX3CR1int pro-inflammatory MPh into local colon tissues with colitis. Targeting FBXW7 might represent a potential therapeutic approach for intestine inflammation intervention. Find the latest version: https://jci.me/123374/pdf Fbxw7 increases CCL2/7 in CX3CR1hi macrophages to promote intestinal inflammation Jia He1,#, Yinjing Song1,#, Gaopeng Li1,#, Peng Xiao2, Yang Liu1, Yue Xue1, Qian Cao2, Xintao Tu1, Ting Pan1, Zhinong Jiang3, Xuetao Cao1,4, Lihua Lai1,*, and Qingqing Wang1,* Authors Affiliations 1Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, P.
    [Show full text]