Copyrighted Material

Total Page:16

File Type:pdf, Size:1020Kb

Copyrighted Material 319 Index a oral cavity 195 guanocytes 228, 231, 233 accessory sex glands 125, 316 parasites 210–11 heart 235 acidophils 209, 254 pharynx 195, 197 hemocytes 236 acinar glands 304 podocytes 203–4 hemolymph 234–5, 236 acontia 68 pseudohearts 206, 208 immune system 236 air sacs 305 reproductive system 186, 214–17 life expectancy 222 alimentary canal see digestive setae 191–2 Malpighian tubules 232, 233 system taxonomy 185 musculoskeletal system amoebocytes testis 214 226–9 Cnidaria 70, 77 typhlosole 203 nephrocytes 233 Porifera 28 antennae nervous system 237–8 ampullae 10 Decapoda 278 ocelli 240 Annelida 185–218 Insecta 301, 315 oral cavity 230 blood vessels 206–8 Myriapoda 264, 275 ovary 238 body wall 189–94 aphodus 38 pedipalps 222–3 calciferous glands 197–200 apodemes 285 pharynx 230 ciliated funnel 204–5 apophallation 87–8 reproductive system 238–40 circulatory system 205–8 apopylar cell 26 respiratory system 236–7 clitellum 192–4 apopyle 38 silk glands 226, 242–3 coelomocytes 208–10 aquiferous system 21–2, 33–8 stercoral sac 231 crop 200–1 Arachnida 221–43 sucking stomach 230 cuticle 189 biomedical applications 222 taxonomy 221 diet 186–7 body wall 226–9 testis 239–40 digestive system 194–203 book lungs 236–7 tracheal tube system 237 dissection 187–9 brain 237 traded species 222 epidermis 189–91 chelicera 222, 229 venom gland 241–2 esophagus 197–200 circulatory system 234–6 walking legs 223 excretory system 203–5 COPYRIGHTEDconnective tissue 228–9 MATERIALzoonosis 222 ganglia 211–13 coxal glands 232, 233–4 archaeocytes 28–9 giant nerve fibers 213–14 cuticle 227–8 Aristotle’s lantern 12–13 gizzard 201–2 cuticular receptors (sensilla) 241 athrocytes 310–11 gross anatomy 187–9 digestive system 229–31 arthrodial membrane 265, 277 hemocytes 208–10 dissection 223, 225–6 atrium histology processing 217–18 endosternite 228–9 Myriapoda 271 immune system 208–11 epidermis 228 Porifera 38 integument 189 esophagus 230 axial complex 13–14 life expectancy 185–6 excretory system 232–4 metanephridium 203, 204–5 eyes 223, 240–1 b Morren’s glands 197 fangs 222 bacteriocytes 29 muscle layers 189 ganglia 237, 238 basophils 208–9, 254 nervous system 211–14 gross anatomy 222–6 basopinacoderm 23 Invertebrate Histology, First Edition. Edited by Elise E.B. LaDouceur. © 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc. 0005034592.INDD 319 12/23/2020 5:15:55 PM 320 Index biomedical applications Echinodermata 6–9 ganglia 153, 154 Arachnida 222 Insecta 302–5 giant fibers 153 Cnidaria 56 Merostomata 249–52 gills 138, 151, 153 Merostomata 247 Myriapoda 265–6 gross anatomy 133–9 Porifera 19 Porifera 31–3 heart 137–8, 146, 149 Bivalvia 163–82 book lungs (gills) hemocytes 151 adductor muscle 170, 179–80 Arachnida 236–7 hemolymph 149 body plan 165–8 Merostomata 257 hepatopancreas 136, 145 circulatory system 169, 176–7 brain immune system 151 connective tissue 170, 179–82 Arachnida 237 ink sac complex 137, 145 diet 163 Cephalopoda 138–9, 153–4 integument 140–1 digestive gland/diverticula 174 Decapoda 293 life expectancy 133 digestive system 168–9, 173–5 Insecta 312–13 mantle 133–4, 140–1 excretory system 169, 177–8 Merostomata 258 musculoskeletal system 140–2 eyes 170, 179 Myriapoda 272 nervous system 138–9, 153–5 eyespots 164 branchial appendage 146, 149 nidamental glands 155 food source 163 branchial gland 153 ovary 155 foot 170, 180–1 budding 80 pancreatic appendages 146 ganglia 170, 179 bursa copulatrix 123–4 pericardial appendages 137, 145 gastric shield 169, 173 prostate 158 gills 168 c radula 135 green gland 169, 177 calciferous glands 197–200 renal appendages 137, 145–6 gross anatomy 163–70 calcium carbonate 40, 197 reproductive system 139, 155–8 heart 169, 177 calicodermis/calicoblasts 70–1 respiratory system 151–3 hemocytes 176–7 carapace, Decapoda 277, 283–5 salivary glands 135–6, 143 hemolymph 169 cardiac stomach shell 134 hydromuscular system 170, 179–82 Decapoda 282, 285–6 siphon 134 integument 170 Echinodermata 11 stomach 144 intestine 173–4 catch connective tissue 9 suckers 134, 140, 142 larval morphology 163–5 ceca taxonomy 133 mantle 166, 170–2 Decapoda 287 tentacles 134, 141–2 mantle border (edge) 171–2 Echinodermata 12 testis 155 metamorphosis 164–5 central cell 26 venom gland 136 nervous system 170, 179 Cephalopoda 133–61 white bodies 149, 151 osphradium 179 arms 134, 141–2 cerata 106 pallial line 171 beak apparatus 135, 143 chelicera 222, 229 palps 168, 173 body wall 140–2 chelipeds 279 periostracum 172 brain 138–9, 153–4 chloragogen cells 210 pseudofeces 169 branchial appendages 146, 149 choanocyte chambers 36–8 reproductive system 169–70, 178–9 branchial gland 153 choanoderm 26 respiratory system 175–6 buccal mass 135, 143 chromatophores 134, 141 shell 165–6, 172 chromatophores 134, 141 chromophil cells 195, 197 siphon 166, 181 circulatory system 137–8, 146, circulatory system statocysts 164 149–51 Annelida 205–8 stomach 169, 173 circumoral appendages 134, 141–2 Arachnida 234–6 style sac 169, 173 connective tissue 140 Bivalvia 169, 176–7 taxonomy 163 diet 134–5 Cephalopoda 137–8, 146, tentacles 172 digestive gland 136, 145 149–51 vesicular cells 182 digestive system 136, 142–5 Decapoda 288–9 visceral mass 166, 167 dissection and histology Echinodermata 13–14 zooxanthellae 175 processing 139–40 Gastropoda 89, 109–12 body wall esophagus 136, 143–4 Insecta 310–11 Annelida 189–94 excretory system 137, 145–6 Merostomata 255–6 Arachnida 226–9 eyes 134, 158–9, 160 Myriapoda 270–1 Cephalopoda 140–2 funnel 134 clitellum 192–4 0005034592.INDD 320 12/23/2020 5:15:55 PM Index 321 cloaca 231 collar cells 119 ceca 287 cnidae/cnidocytes 66–8 collencytes 26, 28 chelipeds 279 Cnidaria 55–83 compound eyes circulatory system 288–9 amoebocytes 70, 77 Insecta 315 cuticle (carapace) 277, 283–5 anthozoans 57–60 Merostomata 259–60 digestive system 282–3, 285–8 asexual reproduction 80 connective tissue ecdysis (molting) 284 axis 71 Arachnida 228–9 endocrine system 297–8 calicodermis/calicoblasts 70–1 Bivalvia 170, 179–82 excretory system 290–1 cnidae/cnidocytes 66–8 Cephalopoda 140 eyes 296–7 cnidoglandular band 73 Cnidaria 73–6 ganglia 293–4 connective tissue 73–6 Echinodermata 9 gills 280, 291–3 coral acid‐rich proteins 70–1 Gastropoda 91–2 gonadopores 279–80 coral reefs 56 Insecta 305 gross anatomy 277–83 corticocytes 71 Merostomata 252 heart 288–9 cubozoans 61 coral acid‐rich proteins hemocytes 289–90 desmocytes 70, 71 70–1 hepatopancreas 287–8 diet 56 coral reefs 56 immune system 289–90 dissection and histology corallite 57 mandibular organ 298 processing 61–2 corallum 57 melanization 289–90 epidermis 66–70 corpora allata 316 molt‐inhibiting hormone 297–8 epithelium 62–73 cortex 32–3 nervous system 293–4 gastrodermis 65–6, 71–3 corticocytes 71 ovary 281–2, 294–5 granular cells 68–70 coxal glands (organs) pereiopods 279 gross anatomy 56–61 Arachnida 232, 233–4 pyloric stomach 282–3, 286 hydrozoans 61 Merostomata 254–5 reproductive system 281–2, immune system 57, 77 Myriapoda 275 294–6 life expectancy 55 crop respiratory system 291–3 medical applications 56 Annelida 200–1 RI cells 285 medusa 55, 57 Gastropoda 101 setae 285 mesenterial filaments 73 ctenidium see gills sinus gland 297 mesenteries 57, 65–6, 73 cuticle taxonomy 277 mesoglea 73–6 Annelida 189 tegmental glands 285 mesogleal pleats 75–6 Arachnida 227–8 testis 295 mucocytes 66, 73 Decapoda 277, 283–5 Y‐organ 298 muscle 76 Echinodermata 6 dermal membrane 32 myonemes 75 Insecta 303–4 dermal silk glands 316 myxozoan parasites 80 Merostomata 249, 251 dermis nematocysts 66–7 Myriapoda 265 Echinodermata 7–9 nervous system 77 Porifera 32 Merostomata 251–2 ocelli 57, 61 cuticular receptors desmocytes 70, 71 polyp 55, 57 Arachnida 241 digestive gland ptychocysts 66, 67–8 Insecta 315 Bivalvia 174 reproductive system 55, Merostomata 260 Cephalopoda 136, 145 78–80 cystencytes 29 Gastropoda 98, 104–6 scyphozoans 60–1 digestive system spicules 58 d Annelida 194–203 spirocysts 66, 67 dart sac 124–5 Arachnida 229–31 strobilation 55, 80 decalcification 5 Bivalvia 168–9, 173–5 taxonomy 55 Decapoda 277–98 Cephalopoda 136, 142–5 zooxanthellae 66, 72 antennae 278 Decapoda 282–3, 285–8 cnidocil 67 apodemes 285 Echinodermata 11–13 cnidoglandular band 73 arthrodial membrane 277 Gastropoda 89, 98–106 coelomocytes brain 293 Insecta 305–9 Annelida 208–10 branchia 280 Merostomata 252–4 Echinodermata 7, 8, 12, 13, 14 cardiac stomach 282, 285–6 Myriapoda 264, 266–9 0005034592.INDD 321 12/23/2020 5:15:55 PM 322 Index e Tiedemann’s bodies 14 f Echinodermata 1–17 tube feet 2, 10 fat body ampullae 10 water vascular system 9–11 Insecta 308–9 Aristotle’s lantern 12–13 ectosome 20, 31–3 Myriapoda 265–6, 267, 269 axial complex 13–14 endocrine system fission 80 body wall 6–9 Decapoda 297–8 foot cardiac stomach 11 Insecta 316 Bivalvia 170, 180–1 catch connective tissue 9 endopinacoderm 23, 26 Gastropoda 96–7 circulatory system 13–14 endosternite foregut circumoral ring canal 10 Arachnida 228–9 Insecta 306–7 coelomocytes 7, 8, 12, 13, 14 Merostomata 252 Myriapoda 268 cuticle 6 epidermis fragmentation 80 dermis 7–9 Annelida 189–91 funnel diet 1 Arachnida 228 Annelida 204–5 digestive system 11–13 Cnidaria 66–70 Cephalopoda 134 dissection and histology Echinodermata 6–7 processing 4–6 Gastropoda 91 g endoskeleton 8–9 Insecta 304 ganglia epidermis 6–7 Merostomata 251 Annelida 211–13 excretory system 13 Myriapoda 265 Arachnida 237, 238 eyespots 17 epithelium Bivalvia 170, 179 gastrodermis 11–12 Cnidaria 62–73 Cephalopoda 153, 154 gills 15 Gastropoda 91 Decapoda 293–4 gross anatomy 1–6 Porifera 22–6 Gastropoda 116–17,
Recommended publications
  • CEPHALOPODS 688 Cephalopods
    click for previous page CEPHALOPODS 688 Cephalopods Introduction and GeneralINTRODUCTION Remarks AND GENERAL REMARKS by M.C. Dunning, M.D. Norman, and A.L. Reid iving cephalopods include nautiluses, bobtail and bottle squids, pygmy cuttlefishes, cuttlefishes, Lsquids, and octopuses. While they may not be as diverse a group as other molluscs or as the bony fishes in terms of number of species (about 600 cephalopod species described worldwide), they are very abundant and some reach large sizes. Hence they are of considerable ecological and commercial fisheries importance globally and in the Western Central Pacific. Remarks on MajorREMARKS Groups of CommercialON MAJOR Importance GROUPS OF COMMERCIAL IMPORTANCE Nautiluses (Family Nautilidae) Nautiluses are the only living cephalopods with an external shell throughout their life cycle. This shell is divided into chambers by a large number of septae and provides buoyancy to the animal. The animal is housed in the newest chamber. A muscular hood on the dorsal side helps close the aperture when the animal is withdrawn into the shell. Nautiluses have primitive eyes filled with seawater and without lenses. They have arms that are whip-like tentacles arranged in a double crown surrounding the mouth. Although they have no suckers on these arms, mucus associated with them is adherent. Nautiluses are restricted to deeper continental shelf and slope waters of the Indo-West Pacific and are caught by artisanal fishers using baited traps set on the bottom. The flesh is used for food and the shell for the souvenir trade. Specimens are also caught for live export for use in home aquaria and for research purposes.
    [Show full text]
  • Common Name: Chiton Class: Polyplacophora
    Common Name: Chiton Class: Polyplacophora Scrapes algae off rock with radula 8 Overlapping Plates Phylum? Mollusca Class? Gastropoda Common name? Brown sea hare Class? Scaphopoda Common name? Tooth shell or tusk shell Mud Tentacle Foot Class? Gastropoda Common name? Limpet Phylum? Mollusca Class? Bivalvia Class? Gastropoda Common name? Brown sea hare Phylum? Mollusca Class? Gastropoda Common name? Nudibranch Class? Cephalopoda Cuttlefish Octopus Squid Nautilus Phylum? Mollusca Class? Gastropoda Most Bivalves are Filter Feeders A B E D C • A: Mantle • B: Gill • C: Mantle • D: Foot • E: Posterior adductor muscle I.D. Green: Foot I.D. Red Gills Three Body Regions 1. Head – Foot 2. Visceral Mass 3. Mantle A B C D • A: Radula • B: Mantle • C: Mouth • D: Foot What are these? Snail Radulas Dorsal HingeA Growth line UmboB (Anterior) Ventral ByssalC threads Mussel – View of Outer Shell • A: Hinge • B: Umbo • C: Byssal threads Internal Anatomy of the Bay Mussel A B C D • A: Labial palps • B: Mantle • C: Foot • D: Byssal threads NacreousB layer Posterior adductorC PeriostracumA muscle SiphonD Mantle Byssal threads E Internal Anatomy of the Bay Mussel • A: Periostracum • B: Nacreous layer • C: Posterior adductor muscle • D: Siphon • E: Mantle Byssal gland Mantle Gill Foot Labial palp Mantle Byssal threads Gill Byssal gland Mantle Foot Incurrent siphon Byssal Labial palp threads C D B A E • A: Foot • B: Gills • C: Posterior adductor muscle • D: Excurrent siphon • E: Incurrent siphon Heart G F H E D A B C • A: Foot • B: Gills • C: Mantle • D: Excurrent siphon • E: Incurrent siphon • F: Posterior adductor muscle • G: Labial palps • H: Anterior adductor muscle Siphon or 1.
    [Show full text]
  • Online Dictionary of Invertebrate Zoology Parasitology, Harold W
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Armand R. Maggenti Online Dictionary of Invertebrate Zoology Parasitology, Harold W. Manter Laboratory of September 2005 Online Dictionary of Invertebrate Zoology: S Mary Ann Basinger Maggenti University of California-Davis Armand R. Maggenti University of California, Davis Scott Gardner University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/onlinedictinvertzoology Part of the Zoology Commons Maggenti, Mary Ann Basinger; Maggenti, Armand R.; and Gardner, Scott, "Online Dictionary of Invertebrate Zoology: S" (2005). Armand R. Maggenti Online Dictionary of Invertebrate Zoology. 6. https://digitalcommons.unl.edu/onlinedictinvertzoology/6 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Armand R. Maggenti Online Dictionary of Invertebrate Zoology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Online Dictionary of Invertebrate Zoology 800 sagittal triact (PORIF) A three-rayed megasclere spicule hav- S ing one ray very unlike others, generally T-shaped. sagittal triradiates (PORIF) Tetraxon spicules with two equal angles and one dissimilar angle. see triradiate(s). sagittate a. [L. sagitta, arrow] Having the shape of an arrow- sabulous, sabulose a. [L. sabulum, sand] Sandy, gritty. head; sagittiform. sac n. [L. saccus, bag] A bladder, pouch or bag-like structure. sagittocysts n. [L. sagitta, arrow; Gr. kystis, bladder] (PLATY: saccate a. [L. saccus, bag] Sac-shaped; gibbous or inflated at Turbellaria) Pointed vesicles with a protrusible rod or nee- one end. dle. saccharobiose n.
    [Show full text]
  • Mineral Industries and Geology of Certain Areas
    REPORT -->/ OF TFIE STATE GEOLOGIST ON THE S 7 (9 Mineral Industries and Geology 12 of Certain Areas OF -o VERMONT. 'I 6 '4 4 7 THIRD OF THIS SERIES, 1901-1902. 4 0 4 S GEORGE H. PERKINS, Ph. D., 2 5 State Geologist and Professor of Geology, University of Vermont 7 8 9 0 2 4 9 1 T. B. LYON C0MI'ANV, I'RINTERS, ALILiNY, New VORK. 1902. CONTENTS. PG K 1NTRODFCTION 5 SKETCH OF THE LIFE OF ZADOCK THOMPSON, G. H. Perkins ----------------- 7 LIST OF OFFICIAL REPORTS ON VERMONT GEOLOGY ----------------- -- -- ----- 14 LIST OF OTHER PUBLICATIONS ON VERMONT GEOLOGY ------- - ---------- ----- 19 SKETCH OF THE LIFE OF AUGUSTUS WING, H. M. Seely -------------------- -- 22 REPORT ON MINERAL INDUSTRIES, G. H. Perkins ............................ 35 Metallic Products ------------------------------------------------------ 32 U seful Minerals ------------------------------------------------------- 35 Building and Ornamental Stone ----------------------------------------- 40 THE GRANITE AREA OF BAItRE, G. I. Finlay------------------------------ --- 46 Topography and Surface Geology ------------------------------------ - -- 46 General Geology, Petrography of the Schists -------------------------- - -- 48 Description and Petrography of Granite Areas ----------------------------51 THE TERRANES OF ORANGE COUNTY, VERMONT, C. H. Richardson ------------ 6i Topography---------------------------- -............................. 6z Chemistry ------------------------------------------------------------66 Geology --------------------------------------------------------------
    [Show full text]
  • Effects of Sediment and Suspended Solids on Freshwater Mussels
    Effects of Sediment and Suspended Solids on Freshwater Mussels Jim Stoeckel School of Fisheries, Aquaculture, and Aquatic Sciences Auburn University Why is sediment a problem? Mussels are adapted to live in sediments Not all sediments are the same • Firm, stable sediment = GOOD • Unstable or Flocculent sediment = BAD Dislodgement Mussels sink into sediment Sediments taken in or during filtering Sediments are easily suspended activities Potential Impacts • Clearance rates tend to decrease • Pseudofeces production tends to increase • Feeding • Spawning How do Bivalves Sort Particles? Pseudofeces Sorted by: 1) inorganic vs. organic 2) Nitrogen vs Carbon rich 3) Algal species ? Site: 1) Gills – maybe 2) Palps – Yes! Feces: Passed Pseudofeces: Rejected particles bound in mucus through 1) “non-food” digestive 2) Excess food system Ingestion: Particles pass into stomach Selection Efficiency Varies Among Species and Habitat Good Poor What about unionid mussels? Payne et al. 1995 High TSS LOW TSS Palp area : Gill area = 3.78 +/- 0.95 Palp area : Gill area = 11.5 +/- 1.3 Two General Causes of High Suspended Solids Poor land use practices Eutrophication Inorganic: Organic: sand, silt, phytoplankton clay bacteria Eutrophication experiments in a semi-natural setting • Created eutrophication gradient • 6, 0.1 ha ponds South Auburn • 2 – no fertilization Fisheries • 2 – moderate fertilization Research • 2 – high fertilization Station • Monitored weekly – Secchi – Total suspended solids (TSS) • Organic and Inorganic Experimental mussel • Ligumia subrostrata
    [Show full text]
  • The Cephalopoda
    Carl Chun THE CEPHALOPO PART I: OEGOPSIDA PART II: MYOPSIDA, OCTOPODA ATLAS Carl Chun THE CEPHALOPODA NOTE TO PLATE LXVIII Figure 7 should read Figure 8 Figure 9 should read Figure 7 GERMAN DEEPSEA EXPEDITION 1898-1899. VOL. XVIII SCIENTIFIC RESULTS QF THE GERMAN DEEPSEA EXPEDITION ON BOARD THE*STEAMSHIP "VALDIVIA" 1898-1899 Volume Eighteen UNDER THE AUSPICES OF THE GERMAN MINISTRY OF THE INTERIOR Supervised by CARL CHUN, Director of the Expedition Professor of Zoology , Leipzig. After 1914 continued by AUGUST BRAUER Professor of Zoology, Berlin Carl Chun THE CEPHALOPODA PART I: OEGOPSIDA PART II: MYOPSIDA, OCTOPODA ATLAS Translatedfrom the German ISRAEL PROGRAM FOR SCIENTIFIC TRANSLATIONS Jerusalem 1975 TT 69-55057/2 Published Pursuant to an Agreement with THE SMITHSONIAN INSTITUTION and THE NATIONAL SCIENCE FOUNDATION, WASHINGTON, D.C. Since the study of the Cephalopoda is a very specialized field with a unique and specific terminology and phrase- ology, it was necessary to edit the translation in a technical sense to insure that as accurate and meaningful a represen- tation of Chun's original work as possible would be achieved. We hope to have accomplished this responsibility. Clyde F. E. Roper and Ingrid H. Roper Technical Editors Copyright © 1975 Keter Publishing House Jerusalem Ltd. IPST Cat. No. 05452 8 ISBN 7065 1260 X Translated by Albert Mercado Edited by Prof. O. Theodor Copy-edited by Ora Ashdit Composed, Printed and Bound by Keterpress Enterprises, Jerusalem, Israel Available from the U. S. DEPARTMENT OF COMMERCE National Technical Information Service Springfield, Va. 22151 List of Plates I Thaumatolampas diadema of luminous o.rgans 95 luminous organ 145 n.gen.n.sp.
    [Show full text]
  • In Bahia, Brazil
    Volume 52(40):515‑524, 2012 A NEW GENUS AND SPECIES OF CAVERNICOLOUS POMATIOPSIDAE (MOLLUSCA, CAENOGASTROPODA) IN BAHIA, BRAZIL 1 LUIZ RICARDO L. SIMONE ABSTRACT Spiripockia punctata is a new genus and species of Pomatiopsidae found in a cave from Serra Ramalho, SW Bahia, Brazil. The taxon is troglobiont (restricted to subterranean realm), and is characterized by the shell weakly elongated, fragile, translucent, normally sculptured by pus‑ tules with periostracum hair on tip of pustules; peristome highly expanded; umbilicus opened; radular rachidian with 6 apical and 3 pairs of lateral cusps; osphradium short, arched; gill filaments with rounded tip; prostate flattened, with vas deferens inserting subterminally; penis duct narrow and weakly sinuous; pallial oviduct simple anteriorly, possessing convoluted by‑ pass connecting base of bulged portion of transition between visceral and pallial oviducts with base of seminal receptacle; spermathecal duct complete, originated from albumen gland. The description of this endemic species may raise protective environmental actions to that cave and to the Serra Ramalho Karst area. Key-Words: Pomatiopsidae; Spiripockia punctata gen. nov. et sp. nov.; Brazil; Cave; Tro- globiont; Anatomy. INTRODUCTION An enigmatic tiny gastropod has been collected in caves from the Serra Ramalho Kars area, southwestern The family Pomatiopsidae is represented in the Bahia state, Brazil. It has a pretty, fragile, translucent Brazilian region by only two species of the genus Id‑ shell in such preliminary gross anatomy, which already iopyrgus Pilsbry, 1911 (Simone, 2006: 94). However, reveals troglobiont adaptations, i.e., depigmentation, the taxon is much richer in remaining mainland ar- lack of eyes and small size. The sample has been brought eas, with both freshwater and semi-terrestrial habits by Maria Elina Bichuette, who is specialized in subter- (Ponder & Keyzer, 1998; Kameda & Kato, 2011).
    [Show full text]
  • On the Origin, Nature, and Function of the Crystalline Style of Lamellibranchsi Thurlow C
    AUTHOR’S AFJSTRA~OF THIB PAPER IESUED BY THE BIBLIOQRAPEIC BERVICE, APRIL 20 ON THE ORIGIN, NATURE, AND FUNCTION OF THE CRYSTALLINE STYLE OF LAMELLIBRANCHSI THURLOW C. NELSON From the Zoological Laboratory 01 the University of Wisconsin SEVENTEEN FIGURES CONTENTS I. Introduction ........................................................... 53 The crystalline style.. ................................................ 54 Historical.. ... ............................................ 57 Materials and methods.. ............................................. 63 ................................... 65 g organs ........................... 65 ................................... 71 ................................... 73 Histology of the style sac.. ............................................ 74 The ciliary mechanism ............................... 76 The secretion and fo le .............................. 80 Embryology of the style-bearing organs.. ............................. 87 3. Nature .............................................. 89 Description of the style.. .................... .................... 89 Composition of the style.. ........ ............... 90 Nature of the gastric shield.. ............... 96 The Spirochaetes of the cryst ............... 97 4. Function ....................... ............... 98 5. Summary and conclusions...... ............................... 107 Bibliography. ........... ........................................... 108 1. INTRODUCTION “What has not been written concerning the crystallinestyle, and in how many ways
    [Show full text]
  • Histological Changes and Biochemical Parameters in the Hepatopancreas of Terrestrial Gastropod Helix Aspersa As Biomarkers of Neonicotinoid Insecticide Exposure
    African Journal of Biotechnology Vol. 11(96), pp. 16277-16283, 29 November, 2012 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB12.1696 ISSN 1684–5315 ©2012 Academic Journals Full Length Research Paper Histological changes and biochemical parameters in the hepatopancreas of terrestrial gastropod Helix aspersa as biomarkers of neonicotinoid insecticide exposure Smina Ait Hamlet1*, Samira Bensoltane1,2, Mohamed Djekoun3, Fatiha Yassi2 and Houria Berrebbah1 1Cellular Toxicology Laboratory, Department of Biology, Faculty of Sciences, Badji-Mokhtar University, Annaba, P.O. Box 12, 23000, Algeria. 2Faculty of Medicine, Badji-Mokhtar University, Annaba, 23000, Algeria. 3Department of Biology, Faculty of Sciences and the Universe, University of May 08th, 1945, Guelma, 24000, Algeria. Accepted 22 June, 2012 In this study, adult snails, Helix aspersa were used to estimate the effect of aneonicotinoid insecticide (thiametoxam) on biochemical parameters and histological changes in the hepatopancreas of this gastropod after a treatment of six weeks. During this period, snails were exposed by ingestion and contact to fresh lettuce leaves which were soaked with an insecticide solution. The thiametoxam test solutions were 0, 25, 50, 100 and 200 mg/L. The results of the biochemical dosages (total carbohydrates, total proteins and total lipids) showed significant decreases at two concentrations (100 and 200 mg/L) of thiametoxam. However, the histological examination of the hepatopancreas of the treated snails showed alterations as a response to all the treatments, and revealed the degeneration of the digestive tubules and the breakdown of the basement membrane in a dose-dependent manner, leading to a severe deterioration of the tissues in the concentration of 200 mg/L thiametoxam.
    [Show full text]
  • Freshwater Mussels of the Pacific Northwest
    Freshwater Mussels of the Pacifi c Northwest Ethan Nedeau, Allan K. Smith, and Jen Stone Freshwater Mussels of the Pacifi c Northwest CONTENTS Part One: Introduction to Mussels..................1 What Are Freshwater Mussels?...................2 Life History..............................................3 Habitat..................................................5 Role in Ecosystems....................................6 Diversity and Distribution............................9 Conservation and Management................11 Searching for Mussels.............................13 Part Two: Field Guide................................15 Key Terms.............................................16 Identifi cation Key....................................17 Floaters: Genus Anodonta.......................19 California Floater...................................24 Winged Floater.....................................26 Oregon Floater......................................28 Western Floater.....................................30 Yukon Floater........................................32 Western Pearlshell.................................34 Western Ridged Mussel..........................38 Introduced Bivalves................................41 Selected Readings.................................43 www.watertenders.org AUTHORS Ethan Nedeau, biodrawversity, www.biodrawversity.com Allan K. Smith, Pacifi c Northwest Native Freshwater Mussel Workgroup Jen Stone, U.S. Fish and Wildlife Service, Columbia River Fisheries Program Offi ce, Vancouver, WA ACKNOWLEDGEMENTS Illustrations,
    [Show full text]
  • Food Handling and Mastication in the Carp (Cyprinus Carpio L.)
    KJAJA2Ö*)O)Ó Food handling and mastication in the carp (Cyprinus carpio L.) ««UB***1* WIT1 TUOSW«- «* omslag tekening : Wim Valen -2- Promotor: dr. J.W.M. Osse, hoogleraar in de algemene dierkunde ^iJOttO^ 1oID Ferdinand A. Sibbing FOOD HANDLING AND MASTICATION IN THE CARP (Cyprinus carpio L.) Proefschrift ter verkrijging van de graad van doctor in de landbouwwetenschappen, op gezag van de rector magnificus, dr. C.C.Oosterlee, in het openbaar te verdedigen op dinsdag 11 december 1984 des namiddags te vier uur in de aula van de Landbouwhogeschool te Wageningen. l^V-, ^v^biS.oa BIBLIOTHEEK ^LANDBOUWHOGESCHOOL WAGENINGEN ^/y/of^OÏ, fOtO STELLINGEN 1. De taakverdeling tussen de kauwspieren van de karper is analoog aan die tussen vliegspieren van insekten: grote lichaamsspieren leveren indirekt het vermogen, terwijl direkt aangehechte kleinere spieren de beweging vooral sturen. Deze analogie komt voort uit architekturale en kinematische principes. 2. Naamgeving van spieren op grond van hun verwachte rol (b.v. levator, retractor) zonder dat deze feitelijk is onderzocht leidt tot lang doorwerkende misvattingen over hun funktie en geeft blijk van een onderschatting van de plasticiteit waarmee spieren worden ingezet. Een nomenclatuur die gebaseerd is op origo en insertie van de spier verdient de voorkeur. 3. De uitstulpbaarheid van de gesloten bek bij veel cypriniden maakt een getrapte zuivering van het voedsel mogelijk en speelt zo een wezenlijke rol in de selektie van bodemvoedsel. Dit proefschrift. 4. Op grond van de vele funkties die aan slijm in biologische systemen worden toegeschreven is meer onderzoek naar zijn chemische en fysische eigenschappen dringend gewenst. Dit proefschrift.
    [Show full text]
  • CHAPTER 10 MOLLUSCS 10.1 a Significant Space A
    PART file:///C:/DOCUME~1/ROBERT~1/Desktop/Z1010F~1/FINALS~1.HTM CHAPTER 10 MOLLUSCS 10.1 A Significant Space A. Evolved a fluid-filled space within the mesoderm, the coelom B. Efficient hydrostatic skeleton; room for networks of blood vessels, the alimentary canal, and associated organs. 10.2 Characteristics A. Phylum Mollusca 1. Contains nearly 75,000 living species and 35,000 fossil species. 2. They have a soft body. 3. They include chitons, tooth shells, snails, slugs, nudibranchs, sea butterflies, clams, mussels, oysters, squids, octopuses and nautiluses (Figure 10.1A-E). 4. Some may weigh 450 kg and some grow to 18 m long, but 80% are under 5 centimeters in size. 5. Shell collecting is a popular pastime. 6. Classes: Gastropoda (snails…), Bivalvia (clams, oysters…), Polyplacophora (chitons), Cephalopoda (squids, nautiluses, octopuses), Monoplacophora, Scaphopoda, Caudofoveata, and Solenogastres. B. Ecological Relationships 1. Molluscs are found from the tropics to the polar seas. 2. Most live in the sea as bottom feeders, burrowers, borers, grazers, carnivores, predators and filter feeders. 1. Fossil evidence indicates molluscs evolved in the sea; most have remained marine. 2. Some bivalves and gastropods moved to brackish and fresh water. 3. Only snails (gastropods) have successfully invaded the land; they are limited to moist, sheltered habitats with calcium in the soil. C. Economic Importance 1. Culturing of pearls and pearl buttons is an important industry. 2. Burrowing shipworms destroy wooden ships and wharves. 3. Snails and slugs are garden pests; some snails are intermediate hosts for parasites. D. Position in Animal Kingdom (see Inset, page 172) E.
    [Show full text]