Cross-Protective Immunity Against Influenza A/H1N1 Virus Challenge in Mice Immunized with Recombinant Vaccine Expressing HA Gene

Total Page:16

File Type:pdf, Size:1020Kb

Cross-Protective Immunity Against Influenza A/H1N1 Virus Challenge in Mice Immunized with Recombinant Vaccine Expressing HA Gene Yang et al. Virology Journal 2013, 10:291 http://www.virologyj.com/content/10/1/291 RESEARCH Open Access Cross-protective immunity against influenza A/H1N1 virus challenge in mice immunized with recombinant vaccine expressing HA gene of influenza A/H5N1 virus Song Yang1,2, Shumeng Niu1, Zhihua Guo1, Ye Yuan1, Kun Xue1, Sinan Liu1 and Hong Jin1* Abstract Background: Influenza virus undergoes constant antigenic evolution, and therefore influenza vaccines must be reformulated each year. Time is necessary to produce a vaccine that is antigenically matched to a pandemic strain. A goal of many research works is to produce universal vaccines that can induce protective immunity to influenza A viruses of various subtypes. Despite intensive studies, the precise mechanisms of heterosubtypic immunity (HSI) remain ambiguous. Method: In this study, mice were vaccinated with recombinant virus vaccine (rL H5), in which the hemagglutinin (HA) gene of influenza A/H5N1 virus was inserted into the LaSota Newcastle disease virus (NDV) vaccine strain. Following a challenge with influenza A/H1N1 virus, survival rates and lung index of mice were observed. The antibodies to influenza virus were detected using hemagglutination inhibition (HI). The lung viral loads, lung cytokine levels and the percentages of both IFN-γ+CD4+ and IFN-γ+CD8+ T cells in spleen were detected using real-time RT-PCR, ELISA and flow cytometry respectively. Results: In comparison with the group of mice given phosphate-buffered saline (PBS), the mice vaccinated with rL H5 showed reductions in lung index and viral replication in the lungs after a challenge with influenza A/H1N1 virus. The antibody titer in group 3 (H1N1-H1N1) was significantly higher than that in other groups which only low levels of antibody were detected. IFN-γ levels increased in both group 1 (rL H5-H1N1) and group 2 (rL H5 + IL-2-H1N1). And the IFN-γ level of group 2 was significantly higher than that of group 1. The percentages of both IFN-γ+CD4+ and IFN-γ+CD8+ T cells in group 1 (rL H5-H1N1) and group 2 (rL H5 + IL-2-H1N1) increased significantly, as measured by flow cytometry. Conclusion: After the mice were vaccinated with rL H5, cross-protective immune response was induced, which was against heterosubtypic influenza A/H1N1 virus. To some extent, cross-protective immune response can be enhanced by IL-2 as an adjuvant. Cellular immune responses may play an important role in HSI against influenza virus. Keywords: Influenza virus, Heterosubtypic immunity, Vaccine, Cellular immune response, Cytotoxic T-lymphocytes * Correspondence: [email protected] 1Department of Pathogen Biology, China Medical University, Shenyang, Liaoning, PR China Full list of author information is available at the end of the article © 2013 Yang et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Yang et al. Virology Journal 2013, 10:291 Page 2 of 8 http://www.virologyj.com/content/10/1/291 Introduction 14 post-infection (p.i.). The mice in group 4 (PBS-H1N1) Influenza A virus (IAV), a member of the Orthomyxoviridae were all dead at day 7 p.i. (Figure 1A). The survival rate of family, possesses a negative strand RNA genome made group 2 (rL H5 + IL-2-H1N1) was higher than the survival up of eight gene segments. Based on surface proteins rate of group 1 (rL H5-H1N1). Mice vaccinated with NDV hemagglutinin (HA) and neuraminidase (NA), IAV are were all dead at day 7 p.i. (data not shown). These results classified 17 HA and 10 NA subtypes [1,2]. Influenza demonstrated that there was cross-protection between the virus undergoes rapid antigenic evolution by accumula- H5 and H1 subtypes of influenza virus and that IL-2 as tion of mutations and through genetic reassortments of adjuvant could increase the survival rate of mice. NDV segments. and IAV had not cross-protection. IAV causes frequent epidemics, occasional pandemics The low lung index correlated well with strong pro- and yearly seasonal outbreaks in humans, resulting in tection during IAV infection. The lung index of group 1 significant morbidity and mortality worldwide [3-5]. (rL H5-H1N1) was 0.87%, group 2 (rL H5 + IL-2-H1N1) Vaccination has been one of the most effective means of was 0.74%, and group 4 (PBS-H1N1) was 1.51% at day 7 p.i.. protection against IAV. Due to the constant antigenic The lung indexes of group 1 and group 2 were lower than evolution of IAV, influenza vaccines must be reformulated in group 4 at day 7 p.i. (P < 0.05) (Figure 1B). These data each year. Although these vaccines are efficacious, they showed that rL H5 vaccine could prevent the mice from arrive late and after the peak of a pandemic. Therefore, we weights loss and inflammation of lung when they were wish to investigate universal vaccines that can induce challenged with influenza A/H1N1 virus. protective immunity to IAV of various subtypes [6]. Heterosubtypic immunity (HSI)isthebasisofcreating Viral load in the lungs of mice universal influenza vaccines. Evidence supports that The viral loads in the lungs of the mice were assessed cytokines and T cell responses play crucial roles in HSI using a real-time RT-PCR method at day 5 p.i. (Figure 1C). to influenza virus [7,8]. Despite intensive studies, the The lung viral loads of group 1 (rL H5-H1N1) and group precise mechanisms of HSI remain ambiguous. 2 (rL H5 + IL-2-H1N1) were significantly lower than In this study, mice were vaccinated with recombinant group 4 (P < 0.05). The lung viral loads of group 2 were virus vaccine (rL H5), in which the HA gene of influenza lower than group 1 (P < 0.05). These data demonstrated A/H5N1 virus was inserted into LaSota Newcastle disease that rL H5 induced cross-protection against A/H1N1 virus virus(NDV)vaccinestrain.Themicewerethenchal- infection which may be enhanced by IL-2. lenged with influenza A/H1N1 virus. Furthermore, we co-administered intraperitoneally recombinant murine Hemagglutination inhibition antibody responses interleukin-2 (rIL-2) with the rL H5 to enhance HSI. To determine whether the antibody had the protective We found that vaccination with rL H5 provided cross- effect against influenza A/H1N1 virus, we detected the protection against a lethal challenge with an antigeni- levels of antibodies against influenza A/H1N1 virus in cally distinct influenza A/H1N1 virus and produced sera of mice by Hemagglutination inhibition (HI) assay significant changes in the levels of some cytokines and (Table 1). The antibody titer in group 3 (H1N1-H1N1) the percentages of both IFN-γ+CD4+ and IFN-γ+CD8+ was 640 at day 14 p.i.. It was significantly higher compared T cells in lung and spleen. We also found that rIL-2 co- with the other groups that only low levels of antibody administered with the rL H5 could increase the survival were detected. These data demonstrated that the levels of rate of mice, reduce viral replication in lung and improve antibody might play a critical role in homologous influ- the IFN-γ production. enza virus infection, but showed a negative correlation between HSI and antibody levels. Results Clinical outcome and lung index following influenza A/H1N1 Cytokine expression in the lungs of mice virus infection Lung suspensions were analyzed for Th1-type and Th2- To determine whether primary immunization with the type cytokine levels using ELISA. High levels of IFN-γ rL H5 vaccine can protect against a subsequent infection were detected in group 1 (rL H5-H1N1) and group 2 (rL with heterosubtypic influenza virus, female 6–8 weeks- H5 + IL-2-H1N1). The IFN-γ and IL-10 levels of group 1 old C57BL/6 mice were immunized with the rL H5 (rL H5-H1N1) were significantly higher than in group 3 vaccine and infected with influenza A/H1N1 virus with (H1N1-H1N1) at day 7 p.i. (P < 0.05). The IFN-γ level of or without IL-2. The mice were monitored for body group 2 (rL H5 + IL-2-H1N1) was significantly higher weight loss and survival rates. than in group 1 (rL H5-H1N1) at day 7 p.i. (P < 0.05). The mice in group 2 (rL H5 + IL-2-H1N1) and group The IFN-γ and IL-10 levels of group 1 and group 2 were 3 (H1N1-H1N1) all survived after infection. The survival significantly elevated after infection as compared to day rate of mice in group 1 (rL H5-H1N1) was 58% at day 0 (P < 0.05) (Figure 2A and D). Yang et al. Virology Journal 2013, 10:291 Page 3 of 8 http://www.virologyj.com/content/10/1/291 Figure 1 Clinical outcome and lung index following influenza A/H1N1 virus infection. (A) Survival rate of mice after infection with influenza A/H1N1 virus, which was significantly higher after day 6 for the rL H5-primed mice. n = 12/group. (B) The lung index of mice after infection with influenza A/H1N1 virus (*, as compare with group 4 [PBS-H1N1], P < 0.05). n = 3/group. (C) Lung viral loads on day 5 p.i. with influenza A/H1N1 virus (a, as compare with group 1 [rL H5-H1N1], P < 0.05; b, as compare with group 3 [H1N1- H1N1], P < 0.05; c, as compare with group 4 [PBS-H1N1], P < 0.05). n = 3/group. The IL-2 and IL-4 levels were not significantly different that rL H5 vaccine induced high frequencies of Th1 in all groups of mice (Figure 2B and C).
Recommended publications
  • Characterizing Immunogenetic Factors Associated with Influenza Cross- Reactive Responses and Disease Severity
    Characterizing immunogenetic factors associated with Influenza cross- reactive responses and disease severity By Dr. Yoav Keynan M.D A Thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfilment of the requirements of the degree of DOCTOR OF PHILOSOPHY Department of Medical Microbiology University of Manitoba Winnipeg Copyright © 2013 by Yoav Keynan Acknowledgements: To my committee members: Dr. Coombs, Dr. Aoki, Dr. Soussi-gounni for your patience and invaluable advice, with diverse backgrounds, your input has been instrumental to the completion of this project. To my mentor, Dr. Fowke- for making my decision to migrate to your lab the best career decision I have made; for guiding me in this research project and for being an advocate and supporter along the course of the years. The most important lessons I have learned from you are not limited to science or grant writing, but more importantly, the optimism and positive attitude (sometimes bordering with delusion) that instills belief and motivation. To Dr. Rubinstein- for your advice and mentoring during the combined infectious diseases and PhD training. For the open doors, listening and support along the frequently bifurcating paths. To the Fowke lab team past and present- that make this lab a second home. Special thanks to Steve for your assistance over the past 8 years. To Dr. Plummer, for giving me the initial opportunity to embark on a research career in Winnipeg. To Dr. Ball for your support and collaboration. To the Ball Lab members, for the numerous fruitful discussions. To Dr. Meyers for the numerous projects and continued collaboration.
    [Show full text]
  • ESCMID Online Lecture Library © by Author
    Albert Osterhaus Head Dept Virology Chairman ESWI CSO Viroclinics-Biosciences BV Library Pandemic flu and the anti-H1N1 vaccine: Lecture a retrospective view. author Onlineby © ESCMID ESCMID conference on the impact of vaccines on Public Health Prague, 2nd April 2011 Human influenza: three appearances Library Seasonal influenza (A: H3N2, H1N1; B) Lecture Avian influenza author (A: H7N7, H5N1…)Online by © PandemicESCMID influenza (A: H1N1, H2N2, H3N2, H1N1…?) INFLUENZA A VIRUS Recent zoonotic transmissions Library Subtype Country Year # Cases # Deaths H7N7 UK Lecture1996 1 0 H5N1 Hongkong 1997 18 6 H9N2 SE-Asia 1999author >2 0 H5N1 HongkongOnlineby 2003 2? 1 H7N7 Netherlands© 2003 89 1 H7N2 USA 2003 1 0 H7N3 Canada 2004 2 0 H5N1ESCMIDSE-Asia/M-East/ 2003-11 .>500 >300* Europe/W-Africa *CFR ~ 60% Library Lecture author Onlineby © ESCMID Confirmed H5N1 avian influenza virus endemic areas (poultry and wild birds) since 2003 Avian influenza A H5N1 virus - HA: Receptor specificity - Library Shinya et al., Nature 440, 2006 Lecture Van Riel et al., Science 2006 author Van Riel et al., Online Am J Pathol 2007 by Van Riel et al., © Am J Pathol 2009 Van Riel et al., ESCMID Am J Pathol 2010 Library Lecture author Onlineby © ESCMID Introduction - Attachment to the upper respiratory tract - Seasonal H3N2 Pandemic H1N1 HPAIV H5N1 Last four pandemics Library Lecture Credit: US National Museum of Health and Medicine author 1918 1957Online 1968 2009 “Spanish Flu” “Asian Flu” by “Hong Kong Flu” © ”Swine Flu” >40 million deaths 1-4 million deaths 1-4million deaths ??? A(H1N1)ESCMIDA(H2N2) A(H3N2) A(H1N1) Library Lecture author Onlineby © ESCMID Air traffic from Mexico ~ 1998 PB2,PA: Triple reassortant ~ 1968 ~ 1998 PB1: LibraryN-America ~ 1918 Classical swine HA, NP, NS: Lecture ~ 1979 NA, MA: authorEurasian swine Eurasia Onlineby A/California/4/2009 © PB2 PB1 The H1N1v flu virus PA Courtesy: Ron Fouchier HA NP ESCMID NA MA NS Library Lecture author Onlineby © ESCMID The Mexican flu virus..
    [Show full text]
  • Pre-Existing Immunity Provides a Barrier to Airborne Transmission of Influenza Viruses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.15.103747; this version posted June 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Pre-existing immunity provides a barrier to airborne transmission of influenza viruses Valerie Le Sage1, Jennifer E. Jones1, Karen A. Kormuth1^, William J. Fitzsimmons2, Eric Nturibi1, Gabriella H. Padovani1, Claudia P. Arevalo4, Andrea J. French1, Annika J. Avery1, Richard Manivanh1, Elizabeth E. McGrady1, Amar R. Bhagwat1^, Adam S. Lauring2,3, Scott E. Hensley4, Seema S. Lakdawala1,5* 1 - Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 2 – Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 3 – Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 4 – Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 5 - Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219 * Send all correspondence to [email protected] ^ Current position - KAK is an Assistant Professor at Bethany College, Bethany, WV and ARB is a Senior Project Engineer at II-VI Aerospace & Defense in Dayton, OH. Abstract Human-to-human transmission of influenza viruses is a serious public health threat, yet the precise role of immunity from previous infections on the susceptibility to airborne viruses is still unknown. Using human seasonal influenza viruses in a ferret model, we examined the roles of exposure duration and heterosubtypic immunity on influenza transmission. We found that airborne transmission of seasonal influenza strains is abrogated in recipient animals with pre-existing non- neutralizing immunity, indicating that transmissibility of a given influenza virus strain should be examined in the context of ferrets that are not immunologically naïve.
    [Show full text]
  • B Cell Responses Against Influenza Viruses
    viruses Review B Cell Responses against Influenza Viruses: Short-Lived Humoral Immunity against a Life-Long Threat Jenna J. Guthmiller 1,* , Henry A. Utset 1 and Patrick C. Wilson 1,2 1 Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; [email protected] (H.A.U.); [email protected] (P.C.W.) 2 Committee on Immunology, University of Chicago, Chicago, IL 60637, USA * Correspondence: [email protected] Abstract: Antibodies are critical for providing protection against influenza virus infections. However, protective humoral immunity against influenza viruses is limited by the antigenic drift and shift of the major surface glycoproteins, hemagglutinin and neuraminidase. Importantly, people are exposed to influenza viruses throughout their life and tend to reuse memory B cells from prior exposure to generate antibodies against new variants. Despite this, people tend to recall memory B cells against constantly evolving variable epitopes or non-protective antigens, as opposed to recalling them against broadly neutralizing epitopes of hemagglutinin. In this review, we discuss the factors that impact the generation and recall of memory B cells against distinct viral antigens, as well as the immunological limitations preventing broadly neutralizing antibody responses. Lastly, we discuss how next-generation vaccine platforms can potentially overcome these obstacles to generate robust and long-lived protection against influenza A viruses. Keywords: influenza viruses; humoral immunity; broadly neutralizing antibodies; imprinting; Citation: Guthmiller, J.J.; Utset, H.A.; hemagglutinin; germinal center; plasma cells Wilson, P.C. B Cell Responses against Influenza Viruses: Short-Lived Humoral Immunity against a Life-Long Threat. Viruses 2021, 13, 1.
    [Show full text]
  • Cellular Responses to 2009 Pandemic H1n1 Influenza in A
    Characterisation of Cellular Responses to Pandemic Influenza in Naturally Infected Individuals Shaima Begom Imperial College London National Heart and Lung Institute Submitted for the degree of PhD February 2015 I DECLARATION OF ORIGINALITY I certify that this thesis, and the research to which it refers, are the product of my own work, conducted during the years 2010 and 2014 of the PhD in the Section of Respiratory Medicine at Imperial College London. Any ideas or quotations from the work of other people published or otherwise, or from my own previous work are fully acknowledged in accordance with the standard referencing practices of the discipline. Furthermore, I would like to acknowledge Professor Ajit Lalvani and Dr Saranya Sridhar who designed the ImmunoFlu study cohort. Dr Sridhar recruited subjects for the ImmunoFlu study, and I participated in collection and bio-banking of biological samples during the PhD period. Dr Sridhar and I equally contributed to the laboratory work presented in Results sections 3.2 and 3.3 of this thesis. II COPYRIGHT DECLARATION “The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work.” Registry, Imperial College London. “Since 2003, ownership of copyright in original research articles remains with the Authors*, and provided that, when reproducing the Contribution or extracts from it, the Authors acknowledge first and reference publication in the Journal, the Authors retain the following non-exclusive rights: a.
    [Show full text]
  • The Compelling Need for Game-Changing Influenza Vaccines
    THE COMPELLING NEED FOR GAME-CHANGING INFLUENZA VACCINES AN ANALYSIS OF THE INFLUENZA VACCINE ENTERPRISE AND RECOMMENDATIONS FOR THE FUTURE OCTOBER 2012 The Compelling Need for Game-Changing Influenza Vaccines An Analysis of the Influenza Vaccine Enterprise and Recommendations for the Future Michael T. Osterholm, PhD, MPH Nicholas S. Kelley, PhD Jill M. Manske, PhD, MPH Katie S. Ballering, PhD Tabitha R. Leighton, MPH Kristine A. Moore, MD, MPH The Center for Infectious Disease Research and Policy (CIDRAP), founded in 2001, is a global leader in addressing public health preparedness and emerging infectious disease response. Part of the Academic Health Center at the University of Minnesota, CIDRAP works to prevent illness and death from targeted infectious disease threats through research and the translation of scientific information into real-world, practical applications, policies, and solutions. For more information, visit: www.cidrap.umn.edu. This report was made possible in part by a grant from the Alfred P. Sloan Foundation. This report is available at: www.cidrap.umn.edu This report was produced and designed by Betsy Seeler Design. © 2012 Regents of the University of Minnesota. All rights reserved. Contents Preface...............................................................................................................................................................2 Executive Summary..........................................................................................................................................5 Chapter.1.
    [Show full text]
  • Development of Universal Influenza Vaccine in Chicken with Insights On
    Development of universal Influenza vaccine in chicken with insights on the extracellular domain of Matrix protein 2 DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Mohamed Elaish, B.V.Sc, M.V.Sc Graduate Program in Comparative and Veterinary Medicine The Ohio State University 2016 Dissertation Committee: Dr. Chang Won Lee (Advisor) Dr. Yehia M. Saif Dr. Daral Jackwood Dr. Renukaradhya Gourapura Dr. Quihong Wang Copyrighted by Mohamed Elaish 2016 Abstract Avian influenza (AI) is an infectious disease of avian species caused by type A influenza viruses with a significant economic impact on the poultry industry. In addition to affecting poultry, different subtypes of AI viruses can infect other species, thus complicating prevention and control. Vaccination is one of the main disease prevention strategies in many countries worldwide. Current influenza vaccines based on the highly variable hemagglutinin (HA) protein can provide effective protection against specific, antigenically matching virus, but little protection against more distant strains, even those belonging to the same subtype, and they do not provide heterosubtypic immunity. Therefore, to protect chickens against new strain of AI virus, as well as control and prevent virus spread among farms, new vaccines needed to be designed to overcome the limitations of conventional vaccines. One of the approaches for new vaccine design is targeting conserved regions of the influenza genome as possible universal vaccines to induce cross protective immunity against different strains and to eliminate constant vaccine updates based on circulating virus. The extracellular domain of ion channel M2 protein (M2e) is highly conserved among different AI strains suggesting that it would be a promising candidate for developing a universal influenza vaccine.
    [Show full text]
  • Antivirals Publications, 2010–2011
    APPENDIX 12 Antivirals publications, 2010–2011 1. 2009. [Black triangle down] Tamiflu – the wrong message? Drug Ther.Bull. 47:97. doi:47/9/97 [pii];10.1136/dtb.2009.08.0034 [doi]. 2. 2009. A caution about giving Tamiflu to children. Child Health Alert. 27:4–5. 3. 2009. Antiviral drugs for influenza. Med.Lett.Drugs Ther. 51:89–92. 4. 2009. Campus response to novel influenza H1N1. J.Am.Coll.Health 58:281–289. doi:U6265414166J437M [pii];10.1080/07448480903482510 [doi]. 5. 2009. Case management for influenza. J.Indian Med.Assoc. 107:528–530. 6. 2009. Epidemiology of seasonal, avian and pandemic influenza. J.Indian Med.Assoc. 107:506–507. 7. 2009. Foreword: this issue of the Seton Hall Law Review presents contributions to Preparing for Pharmaceutical Response to Pandemic Influenza, a two-day Symposium held at Seton hall University School of Law in the fall of 2008. Seton.Hall.Law Rev. 39:1103–1109. 8. 2009. Pandemic preparedness. Alta.RN. 65:20–27. 9. 2009. Update on oseltamivir-resistant pandemic A (H1N1) 10. 2009 influenza virus: January 2010. Wkly.Epidemiol.Rec. 85:37–40. 11. 2010. [Technical report on the 2009 influenza A (H1N1) pandemic]. An.Pediatr.(Barc.) 72:81–35. doi:S1695-4033(09)00614-6 [pii];10.1016/j.anpedi.2009.11.002 [doi]. 12. 2010. [Treatment with antiviral agents]. An.Pediatr.(Barc.) 72:81–85. doi:S1695-4033(09)00621-3 [pii];10.1016/j.anpedi.2009.11.009 [doi]. 13. 2010. 2009 pandemic influenza A (H1N1) in pregnant women requiring intensive care – New York City, 2009.
    [Show full text]
  • Protection Against Influenza A(H5N1) by Primary Infection with Influenza A(H3N2) and MVA-Based Vaccination
    Protection Against Influenza A(H5N1) by Primary Infection with Influenza A(H3N2) and MVA-based Vaccination Bescherming Tegen Influenza A(H5N1) door Primaire Infectie met Influenza A(H3N2) en op MVA gebaseerde Vaccinatie Proefschrift ter verkrijging van de graad van doctor aan de Erasmus Universiteit Rotterdam op gezag van de rector magnificus Prof.dr. H.G. Schmidt en volgens besluit van het College voor Promoties. De openbare verdediging zal plaatsvinden op donderdag 3 september 2009 om 13:30 uur door Johannes Henricus Cornelus Maria Kreijtz geboren te Vorstenbosch Protection Against Influenza A(H5N1) by Primary Infection with Influenza A(H3N2) and MVA-based Vaccination Thesis, Erasmus University, Rotterdam, the Netherlands. With summary in Dutch ISBN: 978-94-9032-001-0 ©J.H.C.M. Kreijtz, 2009 All rights reserved. Save exceptions stated by law, no part of this publication may be produced or transmitted in any form or by any means, electronic or mechanical, without prior written permission of the author, or where appropriate, of the publisher of the articles Voor ons pap en mam Promotie commissie Promotor: Prof.dr. A.D.M.E. Osterhaus Co-promotor: Dr. G.F. Rimmelzwaan Overige leden: Prof.dr. T. Kuiken Prof.dr. G. Sutter Prof.dr. B.N. Lambrecht The research described in this thesis was financially supported byZonMW Grant 91402008 (Netherlands Influenza Vaccine Research Consortium (NIVAREC)) Financial support by the following companies and foundations is gratefully acknowledged: Viroclinics Solvay Biologicals Nobilon International BV Roche
    [Show full text]
  • Narcolepsy and Influenza Vaccination—The Inappropriate Awakening of Immunity
    Editorial Page 1 of 6 Narcolepsy and influenza vaccination—the inappropriate awakening of immunity Anoma Nellore1, Troy D. Randall2,3 1Department of Medicine, Division of Infectious Diseases; 2Division of Clinical Immunology, 3Division of Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA Correspondence to: Troy D. Randall. Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Birmingham, 1720 2nd AVE S. SHEL 507, Birmingham, AL 35294, USA. Email: [email protected]. Submitted Sep 24, 2016. Accepted for publication Sep 27, 2016. doi: 10.21037/atm.2016.10.60 View this article at: http://dx.doi.org/10.21037/atm.2016.10.60 Introduction are associated with the onset of narcolepsy symptoms. However, the way these infections promote the onset of Narcolepsy is a chronic neurological disorder characterized narcolepsy is not entirely clear. by an inability to regulate sleep/wake cycles leading to abruptly occurring periods of daytime sleepiness, cataplexy, hypnogogic hallucinations and disrupted nocturnal sleep (1). Link with influenza vaccination The symptoms of narcolepsy often emerge over time and The appearance of the H1N1 pandemic strain of influenza a definitive diagnosis requires a combination of behavioral in 2009 prompted the rapid development and distribution and biochemical tests. As a result, the identification of of vaccines containing antigens from the new virus. These narcolepsy in any particular patient is difficult and is often delayed by up to a decade following the initial onset of vaccines included (among others), Pandemrix, which was symptoms. administered to approximately 30M patients in Europe, The symptoms of narcolepsy are due to impaired Focetria, which was administered to approximately 25M signaling by the neuropeptide, hypocretin (HCRT— patients globally, including Europe, and Arepanrix, which also known as orexin) (2-4).
    [Show full text]
  • T Cell Immunity Against Influenza
    viruses Review T Cell Immunity against Influenza: The Long Way from Animal Models Towards a Real-Life Universal Flu Vaccine Anna Schmidt and Dennis Lapuente * Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; [email protected] * Correspondence: [email protected] Abstract: Current flu vaccines rely on the induction of strain-specific neutralizing antibodies, which leaves the population vulnerable to drifted seasonal or newly emerged pandemic strains. Therefore, universal flu vaccine approaches that induce broad immunity against conserved parts of influenza have top priority in research. Cross-reactive T cell responses, especially tissue-resident memory T cells in the respiratory tract, provide efficient heterologous immunity, and must therefore be a key component of universal flu vaccines. Here, we review recent findings about T cell-based flu immunity, with an emphasis on tissue-resident memory T cells in the respiratory tract of humans and different animal models. Furthermore, we provide an update on preclinical and clinical studies evaluating T cell-evoking flu vaccines, and discuss the implementation of T cell immunity in real-life vaccine policies. Keywords: influenza; vaccine; influenza vaccine; T cells; tissue-resident memory T cells; TRM; universal flu vaccine Citation: Schmidt, A.; Lapuente, D. T Cell Immunity against Influenza: The 1. Introduction Long Way from Animal Models Influenza viruses are a constant threat to the world community. Globally, 290,000– Towards a Real-Life Universal Flu 650,000 seasonal influenza-associated deaths are estimated with the highest mortality rate Vaccine. Viruses 2021, 13, 199. in sub-Saharan Africa and southeast Asia [1].
    [Show full text]
  • Towards a Universal Influenza Vaccine: Different Approaches for One Goal Giuseppe A
    Sautto et al. Virology Journal (2018) 15:17 DOI 10.1186/s12985-017-0918-y REVIEW Open Access Towards a universal influenza vaccine: different approaches for one goal Giuseppe A. Sautto1, Greg A. Kirchenbaum1 and Ted M. Ross1,2* Abstract Influenza virus infection is an ongoing health and economic burden causing epidemics with pandemic potential, affecting 5–30% of the global population annually, and is responsible for millions of hospitalizations and thousands of deaths each year. Annual influenza vaccination is the primary prophylactic countermeasure aimed at limiting influenza burden. However, the effectiveness of current influenza vaccines are limited because they only confer protective immunity when there is antigenic similarity between the selected vaccine strains and circulating influenza isolates. The major targets of the antibody response against influenza virus are the surface glycoprotein antigens hemagglutinin (HA) and neuraminidase (NA). Hypervariability of the amino acid sequences encoding HA and NA is largely responsible for epidemic and pandemic influenza outbreaks, and are the consequence of antigenic drift or shift, respectively. For this reason, if an antigenic mismatch exists between the current vaccine and circulating influenza isolates, vaccinated people may not be afforded complete protection. There is currently an unmet need to develop an effective “broadly-reactive” or “universal” influenza vaccine capable of conferring protection against both seasonal and newly emerging pre-pandemic strains. A number of novel influenza vaccine approaches are currently under evaluation. One approach is the elicitation of an immune response against the “Achille’s heel” of the virus, i.e. conserved viral proteins or protein regions shared amongst seasonal and pre- pandemic strains.
    [Show full text]