Development of Universal Influenza Vaccine in Chicken with Insights On
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Family of Mammalian E3 Ubiquitin Ligases That Contain the UBR Box Motif and Recognize N-Degrons Takafumi Tasaki,1 Lubbertus C
MOLECULAR AND CELLULAR BIOLOGY, Aug. 2005, p. 7120–7136 Vol. 25, No. 16 0270-7306/05/$08.00ϩ0 doi:10.1128/MCB.25.16.7120–7136.2005 Copyright © 2005, American Society for Microbiology. All Rights Reserved. A Family of Mammalian E3 Ubiquitin Ligases That Contain the UBR Box Motif and Recognize N-Degrons Takafumi Tasaki,1 Lubbertus C. F. Mulder,2 Akihiro Iwamatsu,3 Min Jae Lee,1 Ilia V. Davydov,4† Alexander Varshavsky,4 Mark Muesing,2 and Yong Tae Kwon1* Center for Pharmacogenetics and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 152611; Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York 100162; Protein Research Network, Inc., Yokohama, Kanagawa 236-0004, Japan3; and Division of Biology, California Institute of Technology, Pasadena, California 911254 Received 15 March 2005/Returned for modification 27 April 2005/Accepted 13 May 2005 A subset of proteins targeted by the N-end rule pathway bear degradation signals called N-degrons, whose determinants include destabilizing N-terminal residues. Our previous work identified mouse UBR1 and UBR2 as E3 ubiquitin ligases that recognize N-degrons. Such E3s are called N-recognins. We report here that while double-mutant UBR1؊/؊ UBR2؊/؊ mice die as early embryos, the rescued UBR1؊/؊ UBR2؊/؊ fibroblasts still retain the N-end rule pathway, albeit of lower activity than that of wild-type fibroblasts. An affinity assay for proteins that bind to destabilizing N-terminal residues has identified, in addition to UBR1 and UBR2, a huge (570 kDa) mouse protein, termed UBR4, and also the 300-kDa UBR5, a previously characterized mammalian E3 known as EDD/hHYD. -
A Picorna-Like Virus Suppresses the N-End Rule Pathway to Inhibit Apoptosis
RESEARCH ARTICLE A picorna-like virus suppresses the N-end rule pathway to inhibit apoptosis Zhaowei Wang1,2†, Xiaoling Xia1,2,3†, Xueli Yang1, Xueyi Zhang1,2, Yongxiang Liu1,2, Di Wu1,2, Yuan Fang1,2, Yujie Liu1,2, Jiuyue Xu2, Yang Qiu2, Xi Zhou1,2* 1State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China; 2State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; 3Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China Abstract The N-end rule pathway is an evolutionarily conserved proteolytic system that degrades proteins containing N-terminal degradation signals called N-degrons, and has emerged as a key regulator of various processes. Viruses manipulate diverse host pathways to facilitate viral replication and evade antiviral defenses. However, it remains unclear if viral infection has any impact on the N-end rule pathway. Here, using a picorna-like virus as a model, we found that viral infection promoted the accumulation of caspase-cleaved Drosophila inhibitor of apoptosis 1 (DIAP1) by inducing the degradation of N-terminal amidohydrolase 1 (NTAN1), a key N-end rule component that identifies N-degron to initiate the process. The virus-induced NTAN1 degradation is independent of polyubiquitylation but dependent on proteasome. Furthermore, the virus- induced N-end rule pathway suppression inhibits apoptosis and benefits viral replication. Thus, our findings demonstrate that a virus can suppress the N-end rule pathway, and uncover a new *For correspondence: mechanism for virus to evade apoptosis. -
A SARS-Cov-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing
A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing Supplementary Information Supplementary Discussion All SARS-CoV-2 protein and gene functions described in the subnetwork appendices, including the text below and the text found in the individual bait subnetworks, are based on the functions of homologous genes from other coronavirus species. These are mainly from SARS-CoV and MERS-CoV, but when available and applicable other related viruses were used to provide insight into function. The SARS-CoV-2 proteins and genes listed here were designed and researched based on the gene alignments provided by Chan et. al. 1 2020 . Though we are reasonably sure the genes here are well annotated, we want to note that not every protein has been verified to be expressed or functional during SARS-CoV-2 infections, either in vitro or in vivo. In an effort to be as comprehensive and transparent as possible, we are reporting the sub-networks of these functionally unverified proteins along with the other SARS-CoV-2 proteins. In such cases, we have made notes within the text below, and on the corresponding subnetwork figures, and would advise that more caution be taken when examining these proteins and their molecular interactions. Due to practical limits in our sample preparation and data collection process, we were unable to generate data for proteins corresponding to Nsp3, Orf7b, and Nsp16. Therefore these three genes have been left out of the following literature review of the SARS-CoV-2 proteins and the protein-protein interactions (PPIs) identified in this study. -
Symposium on Viral Membrane Proteins
Viral Membrane Proteins ‐ Shanghai 2011 交叉学科论坛 Symposium for Advanced Studies 第二十七期:病毒离子通道蛋白的结构与功能研讨会 Symposium on Viral Membrane Proteins 主办单位:中国科学院上海交叉学科研究中心 承办单位:上海巴斯德研究所 1 Viral Membrane Proteins ‐ Shanghai 2011 Symposium on Viral Membrane Proteins Shanghai Institute for Advanced Studies, CAS Institut Pasteur of Shanghai,CAS 30.11. – 2.12 2011 Shanghai, China 2 Viral Membrane Proteins ‐ Shanghai 2011 Schedule: Wednesday, 30th of November 2011 Morning Arrival Thursday, 1st of December 2011 8:00 Arrival 9:00 Welcome Bing Sun, Co-Director, Pasteur Institute Shanghai 9: 10 – 9:35 Bing Sun, Pasteur Institute Shanghai Ion channel study and drug target fuction research of coronavirus 3a like protein. 9:35 – 10:00 Tim Cross, Tallahassee, USA The proton conducting mechanism and structure of M2 proton channel in lipid bilayers. 10:00 – 10:25 Shy Arkin, Jerusalem, IL A backbone structure of SARS Coronavirus E protein based on Isotope edited FTIR, X-ray reflectivity and biochemical analysis. 10:20 – 10:45 Coffee Break 10:45 – 11:10 Rainer Fink, Heidelberg, DE Elektromechanical coupling in muscle: a viral target? 11:10 – 11:35 Yechiel Shai, Rehovot, IL The interplay between HIV1 fusion peptide, the transmembrane domain and the T-cell receptor in immunosuppression. 11:35 – 12:00 Christoph Cremer, Mainz and Heidelberg University, DE Super-resolution Fluorescence imaging of cellular and viral nanostructures. 12:00 – 13:30 Lunch Break 3 Viral Membrane Proteins ‐ Shanghai 2011 13:30 – 13:55 Jung-Hsin Lin, National Taiwan University Robust Scoring Functions for Protein-Ligand Interactions with Quantum Chemical Charge Models. 13:55 – 14:20 Martin Ulmschneider, Irvine, USA Towards in-silico assembly of viral channels: the trials and tribulations of Influenza M2 tetramerization. -
Thiopurines Activate an Antiviral Unfolded Protein Response That
bioRxiv preprint doi: https://doi.org/10.1101/2020.09.30.319863; this version posted October 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Thiopurines activate an antiviral unfolded protein response that blocks viral glycoprotein 2 accumulation in cell culture infection model 3 Patrick Slaine1, Mariel Kleer 2, Brett Duguay 1, Eric S. Pringle 1, Eileigh Kadijk 1, Shan Ying 1, 4 Aruna D. Balgi 3, Michel Roberge 3, Craig McCormick 1, #, Denys A. Khaperskyy 1, # 5 6 1Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax 7 NS, Canada B3H 4R2 8 2Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 9 Hospital Drive NW, Calgary AB, Canada T2N 4N1 10 3Department of Biochemistry and Molecular Biology, 2350 Health Sciences Mall, University of 11 British Columbia, Vancouver BC, Canada V6T 1Z3 12 13 14 #Co-corresponding authors: C.M., [email protected], D.A.K., [email protected] 15 16 17 Running Title: Drug-induced antiviral unfolded protein response 18 Keywords: virus, influenza, coronavirus, SARS-CoV-2, thiopurine, 6-thioguanine, 6- 19 thioguanosine, unfolded protein response, hemagglutinin, neuraminidase, glycosylation, host- 20 targeted antiviral 21 22 23 ABSTRACT 24 Enveloped viruses, including influenza A viruses (IAVs) and coronaviruses (CoVs), utilize the 25 host cell secretory pathway to synthesize viral glycoproteins and direct them to sites of assembly. 26 Using an image-based high-content screen, we identified two thiopurines, 6-thioguanine (6-TG) 27 and 6-thioguanosine (6-TGo), that selectively disrupted the processing and accumulation of IAV 28 glycoproteins hemagglutinin (HA) and neuraminidase (NA). -
Characterizing Immunogenetic Factors Associated with Influenza Cross- Reactive Responses and Disease Severity
Characterizing immunogenetic factors associated with Influenza cross- reactive responses and disease severity By Dr. Yoav Keynan M.D A Thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfilment of the requirements of the degree of DOCTOR OF PHILOSOPHY Department of Medical Microbiology University of Manitoba Winnipeg Copyright © 2013 by Yoav Keynan Acknowledgements: To my committee members: Dr. Coombs, Dr. Aoki, Dr. Soussi-gounni for your patience and invaluable advice, with diverse backgrounds, your input has been instrumental to the completion of this project. To my mentor, Dr. Fowke- for making my decision to migrate to your lab the best career decision I have made; for guiding me in this research project and for being an advocate and supporter along the course of the years. The most important lessons I have learned from you are not limited to science or grant writing, but more importantly, the optimism and positive attitude (sometimes bordering with delusion) that instills belief and motivation. To Dr. Rubinstein- for your advice and mentoring during the combined infectious diseases and PhD training. For the open doors, listening and support along the frequently bifurcating paths. To the Fowke lab team past and present- that make this lab a second home. Special thanks to Steve for your assistance over the past 8 years. To Dr. Plummer, for giving me the initial opportunity to embark on a research career in Winnipeg. To Dr. Ball for your support and collaboration. To the Ball Lab members, for the numerous fruitful discussions. To Dr. Meyers for the numerous projects and continued collaboration. -
How Influenza Virus Uses Host Cell Pathways During Uncoating
cells Review How Influenza Virus Uses Host Cell Pathways during Uncoating Etori Aguiar Moreira 1 , Yohei Yamauchi 2 and Patrick Matthias 1,3,* 1 Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; [email protected] 2 Faculty of Life Sciences, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; [email protected] 3 Faculty of Sciences, University of Basel, 4031 Basel, Switzerland * Correspondence: [email protected] Abstract: Influenza is a zoonotic respiratory disease of major public health interest due to its pan- demic potential, and a threat to animals and the human population. The influenza A virus genome consists of eight single-stranded RNA segments sequestered within a protein capsid and a lipid bilayer envelope. During host cell entry, cellular cues contribute to viral conformational changes that promote critical events such as fusion with late endosomes, capsid uncoating and viral genome release into the cytosol. In this focused review, we concisely describe the virus infection cycle and highlight the recent findings of host cell pathways and cytosolic proteins that assist influenza uncoating during host cell entry. Keywords: influenza; capsid uncoating; HDAC6; ubiquitin; EPS8; TNPO1; pandemic; M1; virus– host interaction Citation: Moreira, E.A.; Yamauchi, Y.; Matthias, P. How Influenza Virus Uses Host Cell Pathways during 1. Introduction Uncoating. Cells 2021, 10, 1722. Viruses are microscopic parasites that, unable to self-replicate, subvert a host cell https://doi.org/10.3390/ for their replication and propagation. Despite their apparent simplicity, they can cause cells10071722 severe diseases and even pose pandemic threats [1–3]. -
Opportunistic Intruders: How Viruses Orchestrate ER Functions to Infect Cells
REVIEWS Opportunistic intruders: how viruses orchestrate ER functions to infect cells Madhu Sudhan Ravindran*, Parikshit Bagchi*, Corey Nathaniel Cunningham and Billy Tsai Abstract | Viruses subvert the functions of their host cells to replicate and form new viral progeny. The endoplasmic reticulum (ER) has been identified as a central organelle that governs the intracellular interplay between viruses and hosts. In this Review, we analyse how viruses from vastly different families converge on this unique intracellular organelle during infection, co‑opting some of the endogenous functions of the ER to promote distinct steps of the viral life cycle from entry and replication to assembly and egress. The ER can act as the common denominator during infection for diverse virus families, thereby providing a shared principle that underlies the apparent complexity of relationships between viruses and host cells. As a plethora of information illuminating the molecular and cellular basis of virus–ER interactions has become available, these insights may lead to the development of crucial therapeutic agents. Morphogenesis Viruses have evolved sophisticated strategies to establish The ER is a membranous system consisting of the The process by which a virus infection. Some viruses bind to cellular receptors and outer nuclear envelope that is contiguous with an intri‑ particle changes its shape and initiate entry, whereas others hijack cellular factors that cate network of tubules and sheets1, which are shaped by structure. disassemble the virus particle to facilitate entry. After resident factors in the ER2–4. The morphology of the ER SEC61 translocation delivering the viral genetic material into the host cell and is highly dynamic and experiences constant structural channel the translation of the viral genes, the resulting proteins rearrangements, enabling the ER to carry out a myriad An endoplasmic reticulum either become part of a new virus particle (or particles) of functions5. -
NSP4)-Induced Intrinsic Apoptosis
viruses Article Viperin, an IFN-Stimulated Protein, Delays Rotavirus Release by Inhibiting Non-Structural Protein 4 (NSP4)-Induced Intrinsic Apoptosis Rakesh Sarkar †, Satabdi Nandi †, Mahadeb Lo, Animesh Gope and Mamta Chawla-Sarkar * Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road Scheme-XM, Beliaghata, Kolkata 700010, India; [email protected] (R.S.); [email protected] (S.N.); [email protected] (M.L.); [email protected] (A.G.) * Correspondence: [email protected]; Tel.: +91-33-2353-7470; Fax: +91-33-2370-5066 † These authors contributed equally to this work. Abstract: Viral infections lead to expeditious activation of the host’s innate immune responses, most importantly the interferon (IFN) response, which manifests a network of interferon-stimulated genes (ISGs) that constrain escalating virus replication by fashioning an ill-disposed environment. Interestingly, most viruses, including rotavirus, have evolved numerous strategies to evade or subvert host immune responses to establish successful infection. Several studies have documented the induction of ISGs during rotavirus infection. In this study, we evaluated the induction and antiviral potential of viperin, an ISG, during rotavirus infection. We observed that rotavirus infection, in a stain independent manner, resulted in progressive upregulation of viperin at increasing time points post-infection. Knockdown of viperin had no significant consequence on the production of total Citation: Sarkar, R.; Nandi, S.; Lo, infectious virus particles. Interestingly, substantial escalation in progeny virus release was observed M.; Gope, A.; Chawla-Sarkar, M. upon viperin knockdown, suggesting the antagonistic role of viperin in rotavirus release. Subsequent Viperin, an IFN-Stimulated Protein, studies unveiled that RV-NSP4 triggered relocalization of viperin from the ER, the normal residence Delays Rotavirus Release by Inhibiting of viperin, to mitochondria during infection. -
Functional Studies of the Coronavirus Nonstructural Proteins Yanglin QIU and Kai XU*
REVIEW ARTICLE Functional studies of the coronavirus nonstructural proteins Yanglin QIU and Kai XU* Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China. *Correspondence: [email protected] https://doi.org/10.37175/stemedicine.v1i2.39 ABSTRACT Coronaviruses, including SARS-CoV, SARS-CoV-2, and MERS-CoV, have caused contagious and fatal respiratory diseases in humans worldwide. Notably, the coronavirus disease 19 (COVID-19) caused by SARS-CoV-2 spread rapidly in early 2020 and became a global pandemic. The nonstructural proteins of coronaviruses are critical components of the viral replication machinery. They function in viral RNA transcription and replication, as well as counteracting the host innate immunity. Studies of these proteins not only revealed their essential role during viral infection but also help the design of novel drugs targeting the viral replication and immune evasion machinery. In this review, we summarize the functional studies of each nonstructural proteins and compare the similarities and differences between nonstructural proteins from different coronaviruses. Keywords: Coronavirus · SARS-CoV-2 · COVID-19 · Nonstructural proteins · Drug discovery Introduction genes (18). The first two major ORFs (ORF1a, ORF1ab) The coronavirus (CoV) outbreaks among human are the replicase genes, and the other four encode viral populations have caused three major epidemics structural proteins that comprise the essential protein worldwide, since the beginning of the 21st century. These components of the coronavirus virions, including the spike are the epidemics of the severe acute respiratory syndrome surface glycoprotein (S), envelope protein (E), matrix (SARS) in 2003 (1, 2), the Middle East respiratory protein (M), and nucleocapsid protein (N) (14, 19, 20). -
Mechanisms of Action of Novel Influenza A/M2 Viroporin Inhibitors Derived from Hexamethylene Amiloride S
Supplemental material to this article can be found at: http://molpharm.aspetjournals.org/content/suppl/2016/05/18/mol.115.102731.DC1 1521-0111/90/2/80–95$25.00 http://dx.doi.org/10.1124/mol.115.102731 MOLECULAR PHARMACOLOGY Mol Pharmacol 90:80–95, August 2016 Copyright ª 2016 by The American Society for Pharmacology and Experimental Therapeutics Mechanisms of Action of Novel Influenza A/M2 Viroporin Inhibitors Derived from Hexamethylene Amiloride s Pouria H. Jalily, Jodene Eldstrom, Scott C. Miller, Daniel C. Kwan, Sheldon S. -H. Tai, Doug Chou, Masahiro Niikura, Ian Tietjen, and David Fedida Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver (P.H.J., J.E., S.C.M., D.C.K., D.C., I.T., D.F.), and Faculty of Health Sciences, Simon Fraser University, Burnaby (S.S.-H.T., M.N., I.T.), British Columbia, Canada Received December 7, 2015; accepted May 12, 2016 Downloaded from ABSTRACT The increasing prevalence of influenza viruses with resistance to [1,19-biphenyl]-4-carboxylate (27) acts both on adamantane- approved antivirals highlights the need for new anti-influenza sensitive and a resistant M2 variant encoding a serine to asparagine therapeutics. Here we describe the functional properties of hexam- 31 mutation (S31N) with improved efficacy over amantadine and – 5 m m ethylene amiloride (HMA) derived compounds that inhibit the wild- HMA (IC50 0.6 Mand4.4 M, respectively). Whereas 9 inhibited molpharm.aspetjournals.org type and adamantane-resistant forms of the influenza A M2 ion in vitro replication of influenza virus encoding wild-type M2 (EC50 5 channel. -
Hepatitis C Virus P7—A Viroporin Crucial for Virus Assembly and an Emerging Target for Antiviral Therapy
Viruses 2010, 2, 2078-2095; doi:10.3390/v2092078 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Review Hepatitis C Virus P7—A Viroporin Crucial for Virus Assembly and an Emerging Target for Antiviral Therapy Eike Steinmann and Thomas Pietschmann * TWINCORE †, Division of Experimental Virology, Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Str. 7, 30625 Hannover, Germany; E-Mail: [email protected] † TWINCORE is a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI). * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-511-220027-130; Fax: +49-511-220027-139. Received: 22 July 2010; in revised form: 2 September 2010 / Accepted: 6 September 2010 / Published: 27 September 2010 Abstract: The hepatitis C virus (HCV), a hepatotropic plus-strand RNA virus of the family Flaviviridae, encodes a set of 10 viral proteins. These viral factors act in concert with host proteins to mediate virus entry, and to coordinate RNA replication and virus production. Recent evidence has highlighted the complexity of HCV assembly, which not only involves viral structural proteins but also relies on host factors important for lipoprotein synthesis, and a number of viral assembly co-factors. The latter include the integral membrane protein p7, which oligomerizes and forms cation-selective pores. Based on these properties, p7 was included into the family of viroporins comprising viral proteins from multiple virus families which share the ability to manipulate membrane permeability for ions and to facilitate virus production. Although the precise mechanism as to how p7 and its ion channel function contributes to virus production is still elusive, recent structural and functional studies have revealed a number of intriguing new facets that should guide future efforts to dissect the role and function of p7 in the viral replication cycle.