Genus GONIODORIS, MURPHYDORIS

Total Page:16

File Type:pdf, Size:1020Kb

Genus GONIODORIS, MURPHYDORIS 01-Onchidorididae 3/6/07 10:30 AM Page 28 28 family GONIODORIDIDAE genus GONIODORIS, MURPHYDORIS, GONIODORIDELLA 29 Goniodoris aspersa Goniodoris sp 1 Goniodoris sp 2 Goniodoridella sp 1 Goniodoridella sp 2 Murphydoris sp 1 Alder & Hancock, 1846 Distribution: southern Qld, Australia. Distribution: NSW, Australia. Distribution: eastern Indonesia. Distribution: eastern Australia. Distribution: NSW, Australia. Distribution: Indian Ocean to Indonesia. Remarks: white with bright orange Remarks: yellowish white with black Remarks: white with black on midline Remarks: white with a narrow dark Remarks: yellowish white with black Remarks: white with dense black margin on mantle and front; mantle blotches and orange ridges; and along sides; ridges bright orange; brown line crossing the body behind blotches and orange ridges; speckling on dorsum, rhinophores and edge serrated; large rhinophores rhinophores and gills as body colour rhinophores translucent white on rhinophores; skin with small tubercles rhinophores and gills as body colour sides; gills white; dorsum ridge high mostly dark purple; gills simple, across with white tips. lower part and white above; gills and long extra-branchial appendages with white tips. around front of rhinophores. dorsum and dark purple. Lives amongst algae in surge zones. translucent white with orange. next to small gills. Lives amongst algae in surge zones. Length: 15 mm. Length: 6 mm. Length: 5 mm. Length: 15 mm. Length: 6 mm. Length: 5 mm. Raja Ampat, West Papua. JBL Southern Queensland, Australia. GCB Heron Island, Qld, Australia. JGM Bali, Indonesia. RHK Southern Queensland, Australia. GCB Bondi, NSW, Australia. RHK Goniodorid sp 1 Goniodoris sp 2 Distribution: Oman, Arabian Sea. Distribution: NSW, Australia. Remarks: white with black blotching Remarks: white with a touch of yellow and orange spots; gills and along edge of foot and on bases of rhinophores close together, high on front tentacles; thick dorsum ridge body, a ridge with short and thick around rhinophores and gills, curving papillae encircling them. inward centrally; rhinophores white Judging from its unusual features, with dusky tips; gills white. probably a burrowing species that hunts under the sand. Represents a Length: 12 mm. Clovelly, NSW, Australia. RHK Botany Bay, NSW, Australia. RHK new genus together with the following species from Red Sea and Japan. Goniodoris sp 3 Goniodoris glabra Baba, 1937 Goniodoris joubini Risbec, 1928 Length: 18 mm. Distribution: NSW, Australia. Distribution: Japan to Taiwan. Distribution: widespread West Pacific. Oman, Arabian Sea. CAZ Oman, Arabian Sea. CAZ Remarks: translucent white with white Remarks: yellowish to pinkish brown Remarks: translucent white with dark Goniodorid sp 2 mantle margin; gills and rhinophores with creamy speckles; gills as body, speckles, usually concentrated on Distribution: Red Sea. white. rhinophores translucent with creamy parts of dorsum and head, including Uncertain genus and species. coloured upper halves. rhinophores and front tentacles. Remarks: white with orange spots, grey bands radiating from top; gills Length: 10 mm. Length: 15 mm. Length: 15 mm. white and rhinophores purplish; latter parts close together and high on body, surrounding ridge with yellow-tipped thick papillae. New genus and species (see sp 1). Length: 20 mm. Eilat, Red Sea. SBK Eilat, Red Sea. SBK Goniodorid sp 3 Port Stephens, NSW, Australia. ATK Osezaki, Japan. KSU Marshall Islands. SCJ Distribution: subtropical Japan. Goniodoridella savignyi Remarks: translucent white with (Pruvot-Fol, 1933) brown and yellow blotching; gills and Distribution: Indo-West Pacific. rhinophores yellowish; latter parts close together and high on body, and Remarks: white with yellow on ridges ridge with thick papillae. and tips of appendages, gills coloured New genus and species (see sp 1). like rhinophores; a distinct median ridge and extra-branchial processes of Length: 20 mm. moderate size, just exceeding gills. Japan. KSU Port Stephens, NSW, Australia. ATK Length: 10 mm. Osezaki, Japan. KSU Osezaki, Japan. KSU.
Recommended publications
  • Tropical Range Extension for the Temperate, Endemic South-Eastern Australian Nudibranch Goniobranchus Splendidus (Angas, 1864)
    diversity Article Tropical Range Extension for the Temperate, Endemic South-Eastern Australian Nudibranch Goniobranchus splendidus (Angas, 1864) Nerida G. Wilson 1,2,*, Anne E. Winters 3 and Karen L. Cheney 3 1 Western Australian Museum, 49 Kew Street, Welshpool WA 6106, Australia 2 School of Animal Biology, University of Western Australia, Crawley 6009 WA, Australia 3 School of Biological Sciences, The University of Queensland, St Lucia QLD 4072, Australia; [email protected] (A.E.W.); [email protected] (K.L.C.) * Correspondence: [email protected]; Tel.: +61-08-9212-3844 Academic Editor: Michael Wink Received: 25 April 2016; Accepted: 15 July 2016; Published: 22 July 2016 Abstract: In contrast to many tropical animals expanding southwards on the Australian coast concomitant with climate change, here we report a temperate endemic newly found in the tropics. Chromodorid nudibranchs are bright, colourful animals that rarely go unnoticed by divers and underwater photographers. The discovery of a new population, with divergent colouration is therefore significant. DNA sequencing confirms that despite departures from the known phenotypic variation, the specimen represents northern Goniobranchus splendidus and not an unknown close relative. Goniobranchus tinctorius represents the sister taxa to G. splendidus. With regard to secondary defences, the oxygenated terpenes found previously in this specimen are partially unique but also overlap with other G. splendidus from southern Queensland (QLD) and New South Wales (NSW). The tropical specimen from Mackay contains extracapsular yolk like other G. splendidus. This previously unknown tropical population may contribute selectively advantageous genes to cold-water species threatened by climate change.
    [Show full text]
  • Diversity of Norwegian Sea Slugs (Nudibranchia): New Species to Norwegian Coastal Waters and New Data on Distribution of Rare Species
    Fauna norvegica 2013 Vol. 32: 45-52. ISSN: 1502-4873 Diversity of Norwegian sea slugs (Nudibranchia): new species to Norwegian coastal waters and new data on distribution of rare species Jussi Evertsen1 and Torkild Bakken1 Evertsen J, Bakken T. 2013. Diversity of Norwegian sea slugs (Nudibranchia): new species to Norwegian coastal waters and new data on distribution of rare species. Fauna norvegica 32: 45-52. A total of 5 nudibranch species are reported from the Norwegian coast for the first time (Doridoxa ingolfiana, Goniodoris castanea, Onchidoris sparsa, Eubranchus rupium and Proctonotus mucro- niferus). In addition 10 species that can be considered rare in Norwegian waters are presented with new information (Lophodoris danielsseni, Onchidoris depressa, Palio nothus, Tritonia griegi, Tritonia lineata, Hero formosa, Janolus cristatus, Cumanotus beaumonti, Berghia norvegica and Calma glau- coides), in some cases with considerable changes to their distribution. These new results present an update to our previous extensive investigation of the nudibranch fauna of the Norwegian coast from 2005, which now totals 87 species. An increase in several new species to the Norwegian fauna and new records of rare species, some with considerable updates, in relatively few years results mainly from sampling effort and contributions by specialists on samples from poorly sampled areas. doi: 10.5324/fn.v31i0.1576. Received: 2012-12-02. Accepted: 2012-12-20. Published on paper and online: 2013-02-13. Keywords: Nudibranchia, Gastropoda, taxonomy, biogeography 1. Museum of Natural History and Archaeology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway Corresponding author: Jussi Evertsen E-mail: [email protected] IntRODUCTION the main aims.
    [Show full text]
  • Nudibranch Range Shifts Associated with the 2014 Warm Anomaly in the Northeast Pacific
    Bulletin of the Southern California Academy of Sciences Volume 115 | Issue 1 Article 2 4-26-2016 Nudibranch Range Shifts associated with the 2014 Warm Anomaly in the Northeast Pacific Jeffrey HR Goddard University of California, Santa Barbara, [email protected] Nancy Treneman University of Oregon William E. Pence Douglas E. Mason California High School Phillip M. Dobry See next page for additional authors Follow this and additional works at: https://scholar.oxy.edu/scas Part of the Marine Biology Commons, Population Biology Commons, and the Zoology Commons Recommended Citation Goddard, Jeffrey HR; Treneman, Nancy; Pence, William E.; Mason, Douglas E.; Dobry, Phillip M.; Green, Brenna; and Hoover, Craig (2016) "Nudibranch Range Shifts associated with the 2014 Warm Anomaly in the Northeast Pacific," Bulletin of the Southern California Academy of Sciences: Vol. 115: Iss. 1. Available at: https://scholar.oxy.edu/scas/vol115/iss1/2 This Article is brought to you for free and open access by OxyScholar. It has been accepted for inclusion in Bulletin of the Southern California Academy of Sciences by an authorized editor of OxyScholar. For more information, please contact [email protected]. Nudibranch Range Shifts associated with the 2014 Warm Anomaly in the Northeast Pacific Cover Page Footnote We thank Will and Ziggy Goddard for their expert assistance in the field, Jackie Sones and Eric Sanford of the Bodega Marine Laboratory for sharing their observations and knowledge of the intertidal fauna of Bodega Head and Sonoma County, and David Anderson of the National Park Service and Richard Emlet of the University of Oregon for sharing their respective observations of Okenia rosacea in northern California and southern Oregon.
    [Show full text]
  • Last Reprint Indexed Is 004480
    17 September 2009 Nudibranch Systematic Index page - 1 NUDIBRANCH SYSTEMATIC INDEX Second Online Edition compiled by Gary McDonald 17 September 2009 Gary McDonald, Long Marine Lab, 100 Shaffer Rd., Santa Cruz, Cal. 95060 17 September 2009 Nudibranch Systematic Index page - 2 This is an index of the more than 7,000 nudibranch reprints and books in my collection. I have indexed them only for information concerning systematics, taxonomy, nomenclature, & description of taxa (as these are my areas of interest, and to have tried to index for areas such as physiology, behavior, ecology, neurophysiology, anatomy, etc. would have made the job too large and I would have given up long ago). This is a working list and as such may contain errors, but it should allow you to quickly find information concerning the description, taxonomy, or systematics of almost any species of nudibranch. The phylogenetic hierarchy used is based on Traite de Zoologie, with a few additions and changes (since this is intended to be an index, and not a definitive classification, I have not attempted to update the hierarchy to reflect recent changes). The full citation for any of the authors and dates listed may be found in the nudibranch bibliography at http://repositories.cdlib.org/ims/Bibliographia_Nudibranchia_second_edition/. Names in square brackets and preceded by an equal sign are synonyms which were listed as such in at least one of the cited papers. If only a generic name is listed in square brackets after a species name, it indicates that the generic allocation of the species has changed, but the specific epithet is the same.
    [Show full text]
  • NEAT Mollusca
    NEAT (North East Atlantic Taxa): Scandinavian marine Mollusca Check-List compiled at TMBL (Tjärnö Marine Biological Laboratory) by: Hans G. Hansson 1994-02-02 / small revisions until February 1997, when it was published on Internet as a pdf file and then republished August 1998.. Citation suggested: Hansson, H.G. (Comp.), NEAT (North East Atlantic Taxa): Scandinavian marine Mollusca Check-List. Internet Ed., Aug. 1998. [http://www.tmbl.gu.se]. Denotations: (™) = Genotype @ = Associated to * = General note PHYLUM, CLASSIS, SUBCLASSIS, SUPERORDO, ORDO, SUBORDO, INFRAORDO, Superfamilia, Familia, Subfamilia, Genus & species N.B.: This is one of several preliminary check-lists, covering S Scandinavian marine animal (and partly marine protoctistan) taxa. Some financial support from (or via) NKMB (Nordiskt Kollegium för Marin Biologi), during the last years of the existence of this organization (until 1993), is thankfully acknowledged. The primary purpose of these checklists is to faciliate for everyone, trying to identify organisms from the area, to know which species that earlier have been encountered there, or in neighbouring areas. A secondary purpose is to faciliate for non-experts to put as correct names as possible on organisms, including names of authors and years of description. So far these checklists are very preliminary. Due to restricted access to literature there are (some known, and probably many unknown) omissions in the lists. Certainly also several errors may be found, especially regarding taxa like Plathelminthes and Nematoda, where the experience of the compiler is very rudimentary, or. e.g. Porifera, where, at least in certain families, taxonomic confusion seems to prevail. This is very much a small modernization of T.
    [Show full text]
  • Beiträge Zu Einer Monographie Der Polyceraden. In
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Verhandlungen der Zoologisch-Botanischen Gesellschaft in Wien. Frueher: Verh.des Zoologisch-Botanischen Vereins in Wien. seit 2014 "Acta ZooBot Austria" Jahr/Year: 1884 Band/Volume: 33 Autor(en)/Author(s): Bergh Rudolph Sophus Ludvig Artikel/Article: Beiträg zu einer Monographie der Polyceraden. (Tafel 6- 10) 135-180 © Zool.-Bot. Ges. Österreich, Austria; download unter www.biologiezentrum.at135 Beiträge zu einer Monographie der Polyceraden. in. <) Von Dr. Rudolph Bergh (Kopenhagen). Mit Tafel VI—X. (Vorgelegt in der Versammlung am 7. März 1883.) I. Aegires Lovén. — R. Bergh, Beitr. II, 1880, p. 649 — 658. Ae. Leuckartii Verr. Taf. X. Fig. 11-13. Einer Nachuntersuchung der Mundtheile wegen habe ich später ein 8 min. ]ange3, von der Station von Triest stammendes Individuum secirt. Die Mundröhre 1 mm. lang. Der Schlundkopf 125 mm. lang. Die, wie es schien, in einer einzelnen (Fig. 11&&) Reihe gestellten Stäbchen des Lippen- gürtels schwach gelblich, bis O'l mm. hoch bei einem Durchmesser von 0'004 bis 0'005 mm. (Fig. 12), mit kleiner, rundlicher Grundfläche, nur den unteren Theil der Mundspalte einfassend. Die Bewaffnung geht in die Cuticula der Lippenscheibe über und die Cuticula oben wieder in die (obere) Mandibel- platte, die mit ihrem freien Rande oben in der (Fig. lloa) Mundspalte hervor- ragt, während ihre Fortsetzung nach hinten die breite obere Wand der Mund- höhle deckt. — Die Zunge mit zehn Zahnplattenreihen, weiter nach hinten fünf entwickelte und zwei nicht entwickelte Reihen ; die Gesammtzahl derselben somit siebzehn. In der dritten Reihe der Zunge fünfzehn, in der neunten sech- zehn Zahnplatten (jederseits), und die Anzahl weiter nach hinten nicht steigend.
    [Show full text]
  • From the Marshall Islands, Including 57 New Records 1
    Pacific Science (1983), vol. 37, no. 3 © 1984 by the University of Hawaii Press. All rights reserved Notes on Some Opisthobranchia (Mollusca: Gastropoda) from the Marshall Islands, Including 57 New Records 1 SCOTT JOHNSON2 and LISA M. BOUCHER2 ABSTRACT: The rich opisthobranch fauna of the Marshall Islands has re­ mained largely unstudied because of the geographic remoteness of these Pacific islands. We report on a long-term collection ofOpisthobranchia assembled from the atolls of Bikini, Enewetak, Kwajalein, Rongelap, and Ujelang . Fifty-seven new records for the Marshall Islands are recorded, raising to 103 the number of species reported from these islands. Aspects ofthe morphology, ecology, devel­ opment, and systematics of 76 of these species are discussed. THE OPISTHOBRANCH FAUNA OF THE Marshall viously named species are discussed, 57 of Islands, a group of 29 atolls and five single which are new records for the Marshall islands situated 3500 to 4400 km west south­ Islands (Table 1). west of Honolulu, Hawaii, is rich and varied but has not been reported on in any detail. Pre­ vious records of Marshall Islands' Opistho­ METHODS branchia record only 36 species and are largely restricted to three studies. Opisthobranchs The present collections were made on inter­ collected in the northern Marshalls during the tidal reefs and in shallow water by snorkeling period of nuclear testing (1946 to 1958) and and by scuba diving to depths of 25 m, both now in the U.S. National Museum, along with by day and night. additional material from Micronesia, were Descriptions, measurements, and color studied by Marcus (1965).
    [Show full text]
  • Mollusc World Magazine
    IssueMolluscWorld 24 November 2010 Glorious sea slugs Our voice in mollusc conservation Comparing Ensis minor and Ensis siliqua THE CONCHOLOGICAL SOCIETY OF GREAT BRITAIN AND IRELAND From the Hon. President Peter has very kindly invited me to use his editorial slot to write a piece encouraging more members to play an active part in the Society. A few stalwarts already give very generously of their time and energy, and we are enormously grateful to them; but it would be good to spread the load and get more done. Some of you, I know, don’t have enough time - at least at the moment - and others can’t for other reasons; but if you do have time and energy, please don’t be put off by any reluctance to get involved, or any feeling that you don’t know enough. There are many ways in which you can take part – coming to meetings, and especially field meetings; sending in records; helping with the records databases and the website; writing for our publications; joining Council; and taking on one of the officers’ jobs. None of us know enough when we start; but there’s a lot of experience and knowledge in the Society, and fellow members are enormously helpful in sharing what they know. Apart from learning a lot, you will also make new friends, and have a lot of fun. The Society plays an important part in contributing to our knowledge of molluscs and to mollusc conservation, especially through the database on the National Biodiversity Network Gateway (www.nbn.org.uk); and is important also in building positive links between professional and amateur conchologists.
    [Show full text]
  • The Chemistry and Chemical Ecology of Nudibranchs Cite This: Nat
    Natural Product Reports View Article Online REVIEW View Journal | View Issue The chemistry and chemical ecology of nudibranchs Cite this: Nat. Prod. Rep.,2017,34, 1359 Lewis J. Dean and Mich`ele R. Prinsep * Covering: up to the end of February 2017 Nudibranchs have attracted the attention of natural product researchers due to the potential for discovery of bioactive metabolites, in conjunction with the interesting predator-prey chemical ecological interactions that are present. This review covers the literature published on natural products isolated from nudibranchs Received 30th July 2017 up to February 2017 with species arranged taxonomically. Selected examples of metabolites obtained from DOI: 10.1039/c7np00041c nudibranchs across the full range of taxa are discussed, including their origins (dietary or biosynthetic) if rsc.li/npr known and biological activity. Creative Commons Attribution-NonCommercial 3.0 Unported Licence. 1 Introduction 6.5 Flabellinoidea 2 Taxonomy 6.6 Tritonioidea 3 The origin of nudibranch natural products 6.6.1 Tethydidae 4 Scope of review 6.6.2 Tritoniidae 5 Dorid nudibranchs 6.7 Unassigned families 5.1 Bathydoridoidea 6.7.1 Charcotiidae 5.1.1 Bathydorididae 6.7.2 Dotidae This article is licensed under a 5.2 Doridoidea 6.7.3 Proctonotidae 5.2.1 Actinocyclidae 7 Nematocysts and zooxanthellae 5.2.2 Cadlinidae 8 Conclusions 5.2.3 Chromodorididae 9 Conicts of interest Open Access Article. Published on 14 November 2017. Downloaded 9/28/2021 5:17:27 AM. 5.2.4 Discodorididae 10 Acknowledgements 5.2.5 Dorididae 11
    [Show full text]
  • Zootaxa, Trapania
    Zootaxa 514: 1–12 (2004) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 514 Copyright © 2004 Magnolia Press ISSN 1175-5334 (online edition) A new species of Trapania (Nudibranchia: Goniodorididae) from Western Australia with comparisons to other Indo-West Pacific Trapania SHIREEN J. FAHEY1 The Queensland Museum, P.O. 3300, South Bank, Brisbane, Queensland, Australia 4101 Abstract A new species of Trapania Pruvot-Fol, 1931 is described from near Rottnest Island, Western Aus- tralia. The new species Trapania safracornia shares several characteristics with other species of Indo-West Pacific Trapania. Those characters include a soft elongate body, no distinct mantle edge, two sets of curved dorsal lateral processes, non-retractile gill and rhinophores with no pockets, a radular formula of N x 1.0.1, a long tubular prostate and both a bursa copulatrix and a receptaculum seminis on the exogenous sperm duct. Characters that distinguish this as a new species include external red-brown coloration without any white spots, symmetrical white patches overlaid with yellow pigment, a yellow-tipped tail and lateral processes and a translucent red rhinophore club. Trapania safracornia also differs from the most externally similar species T. brunnea Rudman, 1987 in the radular morphology. Trapania safracornia has 10-14 main denticles per lateral tooth and up to eight additional small denticles between these. There is one small triangular denticle on the outside of the largest cusp at the base. The jaw rodlets of this new species are straight and pointed. A comparison between Trapania safracornia and other Indo-Pacific species of Trapania is presented.
    [Show full text]
  • A New Species of Adalaria (Nudibranchia: Onchidorididae) from the Northeastern Pacific
    Reprinted from PCAS, ser. 4, vol. 57 (April 2006) PROCEEDINGS OF THE CALIFORNIA ACADEMY OF SCIENCES Fourth Series Volume 57, No. 8, pp. 357–364, 3 figs. April 18, 2006 A New Species of Adalaria (Nudibranchia: Onchidorididae) from the Northeastern Pacific Sandra V. Millen Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, B.C., Canada, V6T 1Z4. Email: [email protected] A new species of Adalaria Bergh, 1878 is described from the northeastern Pacific. It is white, characterized by highly spiculose, rounded tubercles with narrow bases, 4- 6 tubercles on the rhinophore sheath, and separate gill leaves inserted in a circlet. This species is known to range from Alaska to Oregon. A comparison is made between this new species and others in the genus. KEY WORDS: Adalaria, Arctadalaria, Onchidorididae, phanerobranch, Nudibranchia, Northeastern Pacific The genus Adalaria, in the family Onchidorididae, is composed of small white, off-white, or yellow phanerobranch dorid nudibranchs with a spiculose dorsum and tubercles, an ample mantle margin, lamellate rhinophores and a veil-like head. They are bryozoan feeders and are similar to another bryozoan feeding genus, Onchidoris, which are usually white or brown in colour. Both gen- era have a reduced or absent, rectangular central tooth, a large, flat, beak-like first lateral tooth, which may have a few inner denticles, and small, oval, outer lateral teeth with a small hook. Adalaria are distinguished by having more than one outer lateral tooth and by usually having a smooth rather than a papillate lip disk, although A. jannae Millen, 1987 has a papillate lip disk.
    [Show full text]
  • Abstract Volume
    ABSTRACT VOLUME August 11-16, 2019 1 2 Table of Contents Pages Acknowledgements……………………………………………………………………………………………...1 Abstracts Symposia and Contributed talks……………………….……………………………………………3-226 Poster Presentations…………………………………………………………………………………227-292 3 Venom Evolution of West African Cone Snails (Gastropoda: Conidae) Samuel Abalde*1, Manuel J. Tenorio2, Carlos M. L. Afonso3, and Rafael Zardoya1 1Museo Nacional de Ciencias Naturales (MNCN-CSIC), Departamento de Biodiversidad y Biologia Evolutiva 2Universidad de Cadiz, Departamento CMIM y Química Inorgánica – Instituto de Biomoléculas (INBIO) 3Universidade do Algarve, Centre of Marine Sciences (CCMAR) Cone snails form one of the most diverse families of marine animals, including more than 900 species classified into almost ninety different (sub)genera. Conids are well known for being active predators on worms, fishes, and even other snails. Cones are venomous gastropods, meaning that they use a sophisticated cocktail of hundreds of toxins, named conotoxins, to subdue their prey. Although this venom has been studied for decades, most of the effort has been focused on Indo-Pacific species. Thus far, Atlantic species have received little attention despite recent radiations have led to a hotspot of diversity in West Africa, with high levels of endemic species. In fact, the Atlantic Chelyconus ermineus is thought to represent an adaptation to piscivory independent from the Indo-Pacific species and is, therefore, key to understanding the basis of this diet specialization. We studied the transcriptomes of the venom gland of three individuals of C. ermineus. The venom repertoire of this species included more than 300 conotoxin precursors, which could be ascribed to 33 known and 22 new (unassigned) protein superfamilies, respectively. Most abundant superfamilies were T, W, O1, M, O2, and Z, accounting for 57% of all detected diversity.
    [Show full text]