Breeding Status of Tung Tree (Vernicia Sp.) in China, a Multipurpose Oilseed Crop with Industrial Uses

Total Page:16

File Type:pdf, Size:1020Kb

Breeding Status of Tung Tree (Vernicia Sp.) in China, a Multipurpose Oilseed Crop with Industrial Uses Zhan et. al.·Silvae Genetica (2012) 61-6, 265-270 Breeding status of tung tree (Vernicia sp.) in China, a multipurpose oilseed crop with industrial uses By ZHIYONG ZHAN1),3), YANGDONG WANG1),*), J. SHOCKEY2), YICUN CHEN1), ZHICHUN ZHOU1), XIAOHUA YAO1) and HUADONG REN1) (Received 28th May 2012) Abstract Tung (Vernicia fordii H., previously classified as Aleu- As a developing country with the world’s largest popu- rites fordii) oil, extracted from tung tree seeds, contains lation, China faces a serious challenge in satisfying its 80% (w/w) ␣-eleostearic acid, a conjugated trienoic 18- continuously increasing energy demands. Tung trees carbon fatty acid (18:3̅9cis, 11trans, 13trans) that imparts (Vernicia sp., especially V. fordii and V. montana), are useful drying and blending properties to the oil (SONN- multipurpose, perennial plants belonging to the Euphor- TAG, 1979). Tung oil is currently used in paints, high- biaceae family. The unique chemical properties of tung quality printing, plasticisers, and in certain types of seed oil make it one of the best known industrial drying medicines and chemical reagents (PARK et al., 2008; oils. In this review, the breeding status of tung trees in SHANG et al., 2010; CHEN et al., 2010a). China and some factors which limit the development of tung tree breeding will be summarised. Improvements The tung tree is a multipurpose perennial plant in ecological performance and pathogen resistance, belonging to the genus Vernicia. Tung is adaptable to through to improved breeding methods, will help to several soil types, provided that proper drainage and rapidly expand the development and use of tung trees aeration conditions are met (POTTER, 1959). Tung begins and their oil products in China. It is essential for tung to flower approximately three years after planting. Most tree breeding to advance in the future to keep pace with flowers are monoecious, but small percentages are dioe- the increased demand. cious. Tung trees in China typically flower time from Key words: Tung tree; Vernicia spp.; eleostearic acid; bio-ener- late April to early May, (approximately 15 days). Flower gy; cross-breeding. petals range in number from 4–9 and they are white tinged with red and yellow, darker at the base with dark red-branched lines running lengthwise. Individual tung 1. Introduction fruits typically contain multiple (usually 4–5) seeds sur- As a developing country, industry in China has devel- rounded by a thick verrucose seed coat. Seeds contain oped rapidly since the implementation of reform policies approximately 50–70% oil by weight. Seeds are harvest- in 1970, and because of this, the demand for energy in ed at the end of October, having reached the maximum China has increased dramatically. The Global Times oil content. Many tung tree species are native to China, pointed that in the end of 2009, China exceeds US which has a long history of tung tree plantations, which to become Saudi Arabia’s top oil customer (http:// collectively produce about 80,000 tons of oil per year, or www. globaltimes.cn/business/china-economy/2010-02/ about 70–80% of the world market (CHEN et al., 2010a). 507404.html) and had become the largest oil market in However, the output of tung oil in China still will not the world. To meet the increasing demand for petroleum meet the projected requirements of the international products, more than 200 million tons of crude oil and oil market in future years. The ultimate objective of the products (approximately 52% of global market) was tung tree breeding program in China is to create a new imported to China in 2008 (FANG et al., 2009). Such a hybrid species or find improved varieties with enhanced high level of dependence on oil imports could threaten oil yield and quality. This paper summarises the current the stability of the Chinese economy and society (YIN status of tung tree breeding, and provides a critical and LIU, 2006). Therefore, petroleum substitutes must analysis that will assist in the development of new and be developed in China to address this important issue. improved breeding strategies in China. The government has devoted large amounts of money to develop the bioenergy industry. Bioenergy contributes a significant share of global primary energy consumption 2. Breeding status and its importance is likely to increase in future world 2.1. Genetic resources energy scenarios (VASUDEVAN et al., 2005). To assist in future breeding plans, comprehensive 1) Research Institute of Subtropical Foresty, Chinese Academy of efforts have been undertaken to collect, analyse and Foresty, Fuyang 311400, China. classify the variety of tung tree genetic resources (SHEN, 2) United States Department of Agriculture-Agricultural Research 1994). Tung tree plantations have been developed for Service, Southern Regional Research Center, New Orleans thousands of years, dating from the Han dynasty. Over 70124, LA, USA. this length of time, China has developed abundant nat- 3 ) First author: ZHIYONG ZHAN. ural tung tree varieties ( ). In the 1980s, China E-Mail: [email protected] Table 1 started to collect and conserve the tung tree germplasm, *) Corresponding author and Co-first author: YANGDONG WANG. Tel.: +86 571 6310 5072; Fax: +86 571 6332 7982. and constructed 5 gene banks (LING et al., 1991) to pro- E-Mail: [email protected] tect the species diversity. These gene banks are located Silvae Genetica 61, 6 (2012) 265 DOI:10.1515/sg-2012-0033 edited by Thünen Institute of Forest Genetics Zhan et. al.·Silvae Genetica (2012) 61-6, 265-270 in Guizhou, Hunan, Zhejiang, Guangxi and Henan mary stem and secondary stem quality, fruit yield and provinces to facilitate the provision of these materials to oil yield can be used to study relationships between the other provinces as needed. Tung tree cultivars from growth and oil output in tung trees. CHEN (1998) mea- Zhejiang and Guangxi provinces have been compared sured these factors in 69 clones and classified them into recently in Fuzhou of Jiangxi province. The results four groups relative to the oil output of the control sam- showed that the cultivars from Guangxi outperformed ple. The average oil output percentages were 238.6%, those from Zhejiang due to higher oil yield, stronger 187.7%, 112.3% and 56.1% of the control asexual sam- fruiting potential and better overall growth (ZHOU et al., ple, respectively. Other researchers (WANG and SONG, 1993). 1992) identified superior clones which average 67% higher yield of fruits than the control, after testing the 2.2. Species selection fruit yield, and fruit, stem and oil quality. Plant traits which directly affect oil production can be simply named superior traits. Oil yield, oil quality and 2.3. Asexual Propagation biotic/abiotic stress resistance are the most important The degree of genetic variation in tung trees is higher superior traits in tung tree breeding (Table 2). Improved than in other species from the Vernicia genus because of varieties are those cultivars which have some of these increased occurrences of natural hybridization (FANG superior traits. The focus of cultivar selection is to find and HE, 1998). This process results in gene segregation improved varieties from among all available natural and gene recombination between generations and brings germplasm, using certain testing methods. The selection about character segregation. Character segregation process is quite slow, and achievements in finding greatly reduces the yield of tung oil from earlier genera- improved varieties have been rare. The main tung tions of previously improved varieties. Asexual propaga- species used in China today still lack some superior tion is frequently used to minimise this problem (LI and traits, which ultimately results in a loss of oil yield and FENG, 2005). a failure to fulfill the needs of the tung oil market. Graft breeding and tissue culture are the main tech- In 1985, researchers constructed a tung tree planta- nologies used in asexual propagation of tung tree. tion in Hunan province that contains 50 clones bearing Experiments conducted at the Chinese plantations show superior traits relative to the indigenous cultivars. Of that interspecies grafts within the same genus are often these clones, four showed a two-fold increase in the yield successful. Grafts among species are not only helpful in of individual fruit (HE et al., 1991). Factors such as pri- improving fruit yield, oil quality and stress resistance, Table 1. – Comparison of key oil production traits of Chinese tung tree cultivars. * All cultivars described belong to Vernicia fordii. 266 DOI:10.1515/sg-2012-0033 edited by Thünen Institute of Forest Genetics Zhan et. al.·Silvae Genetica (2012) 61-6, 265-270 Table 2. – The superior traits desired in an improved tung tree variety. but also can reduce age to maturity. Graft compatibility 2.5. Resistance breeding and graft timing are the major factors that affect graft Black spot (GUO, 1992), anthracnose (CAO, 1988) and survival. The survival rate is different between different blight (HUA, 1991) are the main diseases in tung trees, combinations of rootstocks and scions. A previous study and the main insect pests are longicorn beetle, scarab compared the survival rates of different combinations and stinkbug (CHEN et al., 2005). Both disease and of Dami ϫ Xiaomi and Aleurites montana ϫ Aleurites insect pests reduce the yield of tung oil. It is necessary ; results showed that the survival rate in the com- fordii to develop resistance breeding programs in tung trees, bination of Dami Xiaomi was higher (WANG and ϫ as another method to improve the yield and export of XIONG, 2006). Graft timing significantly affects the sur- tung oil. A correlation exists between black spot disease vival rate. The optimal time for grafting in tung trees is and free amino acid content in tung trees (XU et al., March to April (TAN, 1987) due to the sufficient soil 1998).
Recommended publications
  • Landscaping and Gardening with Native Plants in Georgia's Coastal
    Dry woodlands with scattered canopy trees WHAT ARE NATIVE PLANTS? often support a profusion of fall blooming & Native Plants, species that grew naturally in this wildflowers such as sunflowers, goldenrods, region prior to the colonial era, are uniquely G with and blazing stars. The upland forest with adapted to local conditions. They are suited to both the highest soil moisture occurs on slopes the physical and biological conditions of their native Native Plants where resistance to fire allows a variety of areas. trees such as American beech, white oak, BENEFITS OF NATIVES Georgia’s spruce pine, and southern magnolia to Promote biodiversity grow, as well as shrubs like Carolina Lower landscape & garden maintenance once Coastal buckthorn, needle palm, red buckeye, horse established by reducing the need for fertilizer, sugar, fringe tree, and native azaleas. pesticides and watering. Where soils have higher moisture and Foster appreciation of our natural mineral levels, the ground layer is rich and heritage and the beauty of our native reminiscent of the Southern Appalachians landscape with spring flowering plants like bloodroot, Native flora provide food and shelter tailored May apple, trout lily, doll’s eyes and to wildlife Solomon’s seal. By maintaining natural habitats and mending Coastal Plain of G LOWLANDS AND WETLANDS are areas those that are fragmented, you can make a Climate Zone: 8B Eco-regions 65 - 75 where the soil is inundated or saturated for a difference whether working at the landscape portion of each year, and include both riverine level or planting in containers. THE COASTAL PLAIN OF GEORGIA in this BASICS FOR USING NATIVES and isolated wetlands.
    [Show full text]
  • The Quantitative Importance of Stemflow: an Evaluation of Past Research and Results from a Study in Lodgepole Pine (Pinus Contorta Var
    THE QUANTITATIVE IMPORTANCE OF STEMFLOW: AN EVALUATION OF PAST RESEARCH AND RESULTS FROM A STUDY IN LODGEPOLE PINE (PINUS CONTORTA VAR. LATIFOLIA) STANDS IN SOUTHERN BRITISH COLUMBIA by Adam Jon McKee B.A. Thompson Rivers University, 2008 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE (ENVIRONMENTAL SCIENCE) Thesis examining committee: Darryl Carlyle-Moses (Ph.D.), Thesis Supervisor, Assistant Professor, Dept. of Geography, Thompson Rivers University Karl Larsen (Ph.D.), Committee Member, Associate Professor, Dept. of Natural Resource Sciences, Thompson Rivers University Rita Winkler (Ph.D., R.P.F.), Committee Member, Adjunct Professor, Dept. of Natural Resource Sciences and Research Hydrologist, BC Ministry of Forests and Range Delphis F. Levia (Ph.D.), External Examiner, Associate Professor, Depts. of Geography & Plant and Soil Science, University of Delaware Spring Convocation 2011 Thompson Rivers University © Adam Jon McKee, 2010 Thesis Supervisory Committee ________________________ Dr. Darryl Carlyle-Moses, Supervisor ________________________ Dr. Karl Larsen, Committee Member ________________________ Dr. Rita Winkler, Committee Member This thesis by Adam Jon McKee was defended successfully in an oral examination on December 9, 2010 by a committee comprising: ________________________ Dr. Delphis F. Levia, External Examiner ________________________ Dr. Darryl Carlyle-Moses, Supervisor ________________________ Dr. Karl Larsen, Committee Member ________________________ Dr. Rita Winkler, Committee Member ii ________________________ Dr. Lauchlan Fraser, Chair/Coordinator of Graduate Program Committee ________________________ Dr. Tom Dickinson, Dean of Science ________________________ Dr. Peter Tsigaris, Chair of the Examining Committee This thesis is accepted in its present form by the Office of the Associate Vice President, Research and Graduate Studies as satisfying the thesis requirements for the degree Master of Science, Environmental Science.
    [Show full text]
  • Aleurites Fordii Hemsl.) (Euphorbiaceae): New to the Arkansas Flora Brett Es Rviss Henderson State University, [email protected]
    Journal of the Arkansas Academy of Science Volume 61 Article 24 2007 Tungoil Tree (Aleurites fordii Hemsl.) (Euphorbiaceae): New to the Arkansas Flora Brett eS rviss Henderson State University, [email protected] Nicole Freeman Henderson State University Joslyn Hernandez Henderson State University Allen Leible Henderson State University Chris Talley Henderson State University Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Plant Biology Commons Recommended Citation Serviss, Brett; Freeman, Nicole; Hernandez, Joslyn; Leible, Allen; and Talley, Chris (2007) "Tungoil Tree (Aleurites fordii Hemsl.) (Euphorbiaceae): New to the Arkansas Flora," Journal of the Arkansas Academy of Science: Vol. 61 , Article 24. Available at: http://scholarworks.uark.edu/jaas/vol61/iss1/24 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This General Note is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected]. - Journal of the Arkansas Academy of Science, Vol. 61 [2007], Art. 24 Tungoil Tree (Alellritesfordii Hemsl.) (Euphorbiaceae) New to the Arkansas Flora !Henderson State University, Biology Department, P.O Box H-7570, Arkadelphia, AR 71999-0001 ICorrespondence: [email protected] The problems associated with the introduction, subsequent and become invasive in Arkansas and elsewhere in the United establishment, and naturalization ofnon-native plant species in States following intentional introduction.
    [Show full text]
  • Valorisation of Reutealis Trisperma Seed from Papua for the Production of Non-Edible Oil and Protein-Rich Biomass
    International Proceedings of Chemical, Biological and Environmental Engineering, V0l. 93 (2016) DOI: 10.7763/IPCBEE. 2016. V93. 3 Valorisation of Reutealis Trisperma Seed from Papua for the Production of Non-Edible Oil and Protein-Rich Biomass Robert Manurung 1, Muhammad Yusuf Abduh 1, Mochammad Hirza Nadia 1, Kardina Sari Wardhani 1, and Khalilan Lambangsari 1 1 School of Life Sciences and Technology, Institut Teknologi Bandung, Indonesia Abstract. The valorisation of Reutealis trisperma seed for the production of non-edible oil and protein was investigated. Reutealis trisperma fruits contain approximately 60-61 wt%, d.b. mesocarp, 26-28 wt%, d.b. endosperm and 13 wt%, d.b. endocarp. The endosperm of ripe Reutealis trisperma fruit contains about 54-59 wt%, d.b. non-edible oil whereas the mesocarp contains only 3-9 wt%, d.b. oil. The cake obtained after the extraction of oil from the endosperm was mixed with the endocarp (20 wt% cake and 80 wt% endocarp) and used as feed (50 mg/larva/d) for the cultivation of Hermetia illucens larvae in a rearing container. The feed contains 39.2 wt%, d.b. hemicellulose, 10.9 wt%, d.b. cellulose and 29.9 wt%, d.b. lignin and 0.2 wt%, d.b. ash. The protein content of the feed was 19.1 wt%, d.b. A prepupal dry weight of approximately 50 3 mg/larvae was obtained after 12 d of treatment with an estimated productivity of 10.2 kgprepupae/m container.d. The estimated efficiency of black solider fly larvae in converting digested food was 21.6% with an assimilation efficiency of 27.7%.
    [Show full text]
  • Acute Toxicity of Extract of Sunan Candlenut (Reutealis Trisperma (Blanco) Airy Shaw) Seeds Nyi Mekar Saptarini*, Resmi Mustarichie
    Research Article Acute Toxicity of Extract of Sunan candlenut (Reutealis trisperma (Blanco) Airy Shaw) Seeds Nyi Mekar Saptarini*, Resmi Mustarichie ABSTRACT Background: Extract of Sunan candlenut (Reutealis trisperma (Blanco) Airy Shaw) seed, the Euphorbiaceae family, has been shown to have anti-alopecia activity. Extract safety must be determined so that the extract can be developed into herbal preparations. Aim: The purpose of this study was to determine the acute toxicity and toxic symptoms of Sunan candlenut seed extract. Materials and Methods: Acute toxicity assay was conducted on female Swiss Webster mice with various concentrations of Sunan candlenut seed extract (70, 700, 1400, 3500, and 7000 mg/kg BW mice), then observed the toxic symptoms for 14 days. Results: The LD50 value of Sunan candlenut seed extract was 4954 mg/kg BW mice. This extract has a significant effect on the central nervous system by reducing the motoric activity (P = 2 × 10-4) and retablisment (P = 0.002), and the autonomic nervous system by disturbing ptosis (P = 0.032) and breathing (P = 0.001). Conclusion: The Sunan candlenut seed extract was 6th category, i.e., relatively harmless, based on the Hodge and Sterner toxicity scale. KEY WORDS: Acute toxicity, LD50 value, Relatively harmless, Toxic symptoms INTRODUCTION MATERIALS AND METHODS Sunan candlenut (Reutealis trisperma (Blanco) Materials Airy Shaw), the Euphorbiaceae family, is a plant Sunan candlenut seed was collected from 7-year-old from Southeast Asia. This plant grows in lowland tree from the Center for Agricultural Post Harvest [1] to 1000 m asl at 24–30°C. Sunan candlenut seed, Research, Bogor District, West Java Province, empirically, has efficacy as a laxative, anti-lice, Indonesia.
    [Show full text]
  • Plant Life of Western Australia
    INTRODUCTION The characteristic features of the vegetation of Australia I. General Physiography At present the animals and plants of Australia are isolated from the rest of the world, except by way of the Torres Straits to New Guinea and southeast Asia. Even here adverse climatic conditions restrict or make it impossible for migration. Over a long period this isolation has meant that even what was common to the floras of the southern Asiatic Archipelago and Australia has become restricted to small areas. This resulted in an ever increasing divergence. As a consequence, Australia is a true island continent, with its own peculiar flora and fauna. As in southern Africa, Australia is largely an extensive plateau, although at a lower elevation. As in Africa too, the plateau increases gradually in height towards the east, culminating in a high ridge from which the land then drops steeply to a narrow coastal plain crossed by short rivers. On the west coast the plateau is only 00-00 m in height but there is usually an abrupt descent to the narrow coastal region. The plateau drops towards the center, and the major rivers flow into this depression. Fed from the high eastern margin of the plateau, these rivers run through low rainfall areas to the sea. While the tropical northern region is characterized by a wet summer and dry win- ter, the actual amount of rain is determined by additional factors. On the mountainous east coast the rainfall is high, while it diminishes with surprising rapidity towards the interior. Thus in New South Wales, the yearly rainfall at the edge of the plateau and the adjacent coast often reaches over 100 cm.
    [Show full text]
  • ISTA List of Stabilized Plant Names 7Th Edition
    ISTA List of Stabilized Plant Names th 7 Edition ISTA Nomenclature Committee Chair: Dr. M. Schori Published by All rights reserved. No part of this publication may be The Internation Seed Testing Association (ISTA) reproduced, stored in any retrieval system or transmitted Zürichstr. 50, CH-8303 Bassersdorf, Switzerland in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior ©2020 International Seed Testing Association (ISTA) permission in writing from ISTA. ISBN 978-3-906549-77-4 ISTA List of Stabilized Plant Names 1st Edition 1966 ISTA Nomenclature Committee Chair: Prof P. A. Linehan 2nd Edition 1983 ISTA Nomenclature Committee Chair: Dr. H. Pirson 3rd Edition 1988 ISTA Nomenclature Committee Chair: Dr. W. A. Brandenburg 4th Edition 2001 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 5th Edition 2007 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 6th Edition 2013 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 7th Edition 2019 ISTA Nomenclature Committee Chair: Dr. M. Schori 2 7th Edition ISTA List of Stabilized Plant Names Content Preface .......................................................................................................................................................... 4 Acknowledgements ....................................................................................................................................... 6 Symbols and Abbreviations ..........................................................................................................................
    [Show full text]
  • Aspects of Ecology and Conservation of the Pygmy Loris Nycticebus Pygmaeus in Vietnam
    Aus dem Institut für Zoologie, Fischkrankheiten und Fischereibiologie der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München Angefertigt am Endangered Primate Rescue Center Cuc Phuong National Park Vietnam Aspects of Ecology and Conservation of the Pygmy Loris Nycticebus pygmaeus in Vietnam Inaugural-Dissertation zur Erlangung der tiermedizinischen Doktorwürde der Tierärztlichen Fakultät der Ludwig-Maximilians Universität München vorgelegt von Ulrike Streicher aus Bamberg München, Oktober 2004 Dem Andenken meines Vaters Preface The first pygmy lorises came to the Endangered Primate Rescue Center in 1995 and were not much more than the hobby of the first animal keeper, Manuela Klöden. They were at that time, even by Vietnamese scientists or foreign primate experts, considered not very important. They were abundant in the trade and there was little concern about their wild status. It has often been the fate of animals that are considered common not to be considered worth detailed studies. But working with confiscated pygmy lorises we discovered a number of interesting facts about them. They seasonally changed the pelage colour, they showed regular weight variations, and they did not eat in certain times of the year. And I met people interested in lorises and told them, what I had observed and realized these facts were not known. So I started to collect data more or less to proof what we had observed at the centre. Due to the daily veterinary tasks data collection was rather randomly and unfocussed. But the more we got to know about the pygmy lorises, the more interesting it became. The answer to one question immediately generated a number of consecutive questions.
    [Show full text]
  • Two-Step Contractions of Inverted Repeat Region and Psai Gene Duplication from the Plastome of Croton Tiglium (Euphorbiaceae)
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 November 2018 doi:10.20944/preprints201807.0458.v2 Two-Step Contractions of Inverted Repeat Region and psaI Gene Duplication from the Plastome of Croton tiglium (Euphorbiaceae) Sangjin Jo and Ki-Joong Kim School of Life Sciences, Korea University, Seoul 02841, Korea Corresponding author Ki-Joong Kim Anam-ro, Seoul, 02841, Korea Email address: [email protected] Abstract Croton L. (Euphorbiaceae) is a very specious genus and consists of about 1,250 species, mainly distributed in the New World. The first complete plastome sequence from the genus, Croton tiglium, is reported in this study (NCBI acc. no. MH394334). The plastome is 150,021 bp in length. The lengths of LSC and SSC are 111,654 bp and 18,167 bp, respectively. However, the length of the IR region is only 10,100 bp and includes only four rrn and four trn genes, and a small part of the ycf1 gene. We propose two-step IR contractions to explain this unique IR region of the C. tiglium plastome. First, the IR contracted from rps19-rpl2 to ycf2-trnL-CAA on the LSC/IRb boundary. Second, the IR contracted from ycf2-trnL-CAA to rrn16-trnV-GAC on the LSC/IRa boundary. In addition, duplicated copies of psaI genes were discovered in the C. tiglium plastome. Both copies were located side by side between accD and ycf4 genes, but one copy was pseudogenized because of a five-basepair (TAGCT) insertion in the middle of the gene and following frameshift mutation. The plastome contains 112 genes, of which 78 are protein-coding genes, 30 are tRNA genes, and four are rRNA genes.
    [Show full text]
  • Viburnum L. Viburnum
    VWYZ genera Layout 1/31/08 1:11 PM Page 1154 V Ericaceae—Heath family Vaccinium L. blueberry, cranberry Jason J. Griffin and Frank A. Blazich Dr. Griffin is assistant professor at Kansas State University’s Department of Horticulture, Forestry, and Recreation Resources, Manhatten, Kansas; Dr. Blazich is alumni distinguished graduate professor of plant propagation and tissue culture at North Carolina State University’s Department of Horticultural Science, Raleigh, North Carolina Occurrence, growth habit, and uses. There are about Although cranberry has been introduced successfully 150 to 450 species (the number varies by authority) of into cultivation in British Columbia, Washington, and deciduous or evergreen shrubs (rarely trees or vines) in Oregon, Wisconsin and Massachusetts remain the largest Vaccinium (Huxley 1992b; LHBH 1976; Vander Kloet producers; the crops for 2000 were estimated at 2.95 and 1988). The majority of species are native to North and South 1.64 million barrels, respectively (NASS 2001). America and eastern Asia (LHBH 1976; Vander Kloet Evergreen huckleberry grows along the Pacific Coast 1988). Some of the more commonly cultivated North and is valued for its attractive foliage, which is often used in American species are listed in table 1. Like other members flower arrangements (Everett 1981). Species of Vaccinium of the Ericaceae, Vaccinium species require an acidic (pH also are prized as landscape plants. Lowbush forms are used 4.0 to 5.2) soil that is moist, well drained, and high in organ- to form attractive ground covers or shrubs. Two cultivars of ic matter (3 to 15%). Symptoms of mineral nutrient defi- creeping blueberry (V.
    [Show full text]
  • Associations Between Nutrition, Gut Microbial Communities, and Health in Nonhuman Primates
    Associations Between Nutrition, Gut Microbial Communities, and Health in Nonhuman Primates A Dissertation SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY Jonathan Brent Clayton IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Advised by Drs. Timothy J. Johnson and Michael P. Murtaugh December 2015 © Jonathan Brent Clayton 2015 Acknowledgements I would like to thank my advisors, Drs. Timothy Johnson and Michael Murtaugh, for believing in my abilities from day one, and helping me to design a thesis project based on my research interests and passion for nonhuman primate health. I would like to thank my aforementioned advisors and remaining committee members, Drs. Ken Glander, Herbert Covert and Dominic Travis for their daily guidance, unwavering support, and embarking on this journey with me. I would also like to thank Dr. Mark Rutherford, Lisa Hubinger, and Kate Barry for taking care of administrative matters. I am thankful for the incredible group of colleagues in the Johnson lab for their support, helpfulness, and friendship; Jessica Danzeisen, Kyle Case, Dr. Bonnie Youmans, Dr. Elicia Grace, and Dr. Kevin Lang. I am also thankful to the members of the Knights lab, Pajau Vangay and Tonya Ward for their help with data analysis and copious constructive feedback. I would like to thank Dr. Steve Ross and the Lester E. Fisher Center for the Study and Conservation of Apes staff for training me on behavioral data collection methodology, which was a critical step in preparation for data collection in Vietnam. I am also thankful to Francis Cabana for helping to analyze the feeding ecology and nutritional analysis data.
    [Show full text]
  • The Evolutionary Fate of Rpl32 and Rps16 Losses in the Euphorbia Schimperi (Euphorbiaceae) Plastome Aldanah A
    www.nature.com/scientificreports OPEN The evolutionary fate of rpl32 and rps16 losses in the Euphorbia schimperi (Euphorbiaceae) plastome Aldanah A. Alqahtani1,2* & Robert K. Jansen1,3 Gene transfers from mitochondria and plastids to the nucleus are an important process in the evolution of the eukaryotic cell. Plastid (pt) gene losses have been documented in multiple angiosperm lineages and are often associated with functional transfers to the nucleus or substitutions by duplicated nuclear genes targeted to both the plastid and mitochondrion. The plastid genome sequence of Euphorbia schimperi was assembled and three major genomic changes were detected, the complete loss of rpl32 and pseudogenization of rps16 and infA. The nuclear transcriptome of E. schimperi was sequenced to investigate the transfer/substitution of the rpl32 and rps16 genes to the nucleus. Transfer of plastid-encoded rpl32 to the nucleus was identifed previously in three families of Malpighiales, Rhizophoraceae, Salicaceae and Passiforaceae. An E. schimperi transcript of pt SOD-1- RPL32 confrmed that the transfer in Euphorbiaceae is similar to other Malpighiales indicating that it occurred early in the divergence of the order. Ribosomal protein S16 (rps16) is encoded in the plastome in most angiosperms but not in Salicaceae and Passiforaceae. Substitution of the E. schimperi pt rps16 was likely due to a duplication of nuclear-encoded mitochondrial-targeted rps16 resulting in copies dually targeted to the mitochondrion and plastid. Sequences of RPS16-1 and RPS16-2 in the three families of Malpighiales (Salicaceae, Passiforaceae and Euphorbiaceae) have high sequence identity suggesting that the substitution event dates to the early divergence within Malpighiales.
    [Show full text]