Approved Conservation Advice for Denisonia Maculata (Ornamental Snake)

Total Page:16

File Type:pdf, Size:1020Kb

Approved Conservation Advice for Denisonia Maculata (Ornamental Snake) This Conservation Advice was approved by the Minister on 29 Apr 2014 Approved Conservation Advice for Denisonia maculata (Ornamental Snake) (s266B of the Environment Protection and Biodiversity Conservation Act 1999) This Conservation Advice has been developed based on the best available information at the time this Conservation Advice was approved; this includes existing plans, records or management prescriptions for this species. Description Denisonia maculata, Family Elapidae, also known as the Ornamental Snake, is a brown, grey- brown or black snake with lighter coloured body scales often with darker streaks that grows to 50 cm in length. The head is darker brown/black with lighter flecks, distinctly barred lips, white/cream belly with dark spots/flecks on the outer edges (Cogger, 2000). Conservation Status The Ornamental Snake is listed as vulnerable. This species is eligible for listing as vulnerable under the Environment Protection and Biodiversity Conservation Act 1999 (Cwlth) (EPBC Act) as, prior to the commencement of the EPBC Act, it was listed as vulnerable under Schedule 1 of the Endangered Species Protection Act 1992 (Cwlth). The Ornamental Snake is also listed as vulnerable under the Nature Conservation Act 1992 (Queensland). Distribution and Habitat The Ornamental Snake is known only from within the drainage system of the Fitzroy and Dawson Rivers in Queensland (McDonald et al., 1991; Cogger et al., 1993). This species is sparsely distributed across its geographic range and the population size is unknown. However, it is not thought to have experienced range declines, although the extent of habitat clearance in the region suggests that its long term survival is threatened (DERM, 2007). The Ornamental Snake can be found on floodplains, undulating clay pans and along the margins of swamps, lakes and watercourses. It also occurs on adjoining areas of elevated ground and has been recorded in woodlands and open woodlands of coolabah, poplar box, and brigalow, and in fringing vegetation along watercourses (WWF-Australia/QMDC, 2008). The Ornamental Snake feeds almost exclusively on frogs. The Ornamental Snake occurs within the Brigalow Belt Bioregion and the Burdekin and Fitzroy Natural Resource Management Regions. The distribution of this species is associated with the “Brigalow (Acacia harpophylla dominant and co-dominant)” EPBC Act-listed threatened ecological community. Threats The main identified threat to the Ornamental Snake is a continued legacy of past broadscale land clearing and habitat degradation. The Brigalow Belt Bioregion is an area of high human impact (Covacevich et al., 1998) with much of the region modified through agricultural and urban development (McDonald et al., 1991; Cogger et al., 1993). Destruction of wetland habitat by feral pigs (Sus scrofa) is also a threat, along with the associated destruction of frog habitat and direct competition for their food source (frogs) (WWF-Australia/QMDC, 2008). The Ornamental Snake is potentially threatened by poisoning resulting from the ingestion of Cane Toads (Phillips et al., 2003). Denisonia maculata Approved Conservation Advice — Page 1 of 3 This Conservation Advice was approved by the Minister on 29 Apr 2014 Research Priorities • More precisely assess population size, distribution, ecological requirements and the relative impacts of threatening processes. • Design and implement a monitoring program in key habitat and priority conservation areas. • Monitor known populations to identify key threats. • Monitor the progress of recovery, including the effectiveness of management actions and the need to adapt them if necessary. Regional and local Priority Actions The following priority recovery and threat abatement actions can be done to support the recovery of the Ornamental Snake. Habitat Loss, Disturbance and Modification • Identify populations of high conservation priority. • Investigate formal conservation arrangements, management agreements and covenants on private land, and for crown and private land investigate inclusion in reserve tenure if possible. • Minimise adverse impacts from land use at known sites. Animal Impacts • Control introduced pests such as pigs to manage threats at known sites. • Develop and implement a management plan for the control of Cane Toads in the region. Conservation Information • Raise awareness of the Ornamental Snake and other reptiles found in the Brigalow Belt Bioregion within the local community. This list does not necessarily encompass all actions that may be of benefit to the Ornamental Snake, but highlights those that are considered to be of highest priority at the time of preparing the Conservation Advice. Existing Plans/Management Prescriptions that are Relevant to the Species • Department of the Environment and Heritage (2005). Threat abatement plan for predation, habitat degradation, competition and disease transmission by feral pigs. Canberra. These prescriptions were current at the time of publishing; please refer to the relevant agency’s website for any updated versions. Information Sources: Cogger HG, Cameron EE,. Sadlier RA and Eggler P (1993). The Action Plan for Australian Reptiles. Canberra, ACT: Australian Nature Conservation Agency. Available on the Internet at: http://www.environment.gov.au/biodiversity/threatened/action/reptiles/index.html Cogger HG (2000). Reptiles and Amphibians of Australia – 6th edition. Sydney: Reed New Holland. Covacevich JA, Coupler PJ and McDonald KR (1998). Reptile diversity at risk in the Brigalow Belt, Queensland. Memoirs of the Queensland Museum. 42 (2):475-486. Department of the Environment and Heritage (2005). Threat abatement plan for predation, habitat degradation, competition and disease transmission by feral pigs. Canberra. http://www.environment.gov.au/biodiversity/threatened/publications/tap/pig.html Denisonia maculata Approved Conservation Advice — Page 2 of 3 This Conservation Advice was approved by the Minister on 29 Apr 2014 Department of Environment and Resource Management Queensland (DERM) (2007). Ornamental Snake Denisonia maculata Species Information Sheet. Available on the Internet at: http://www.derm.qld.gov.au/wildlife- ecosystems/wildlife/az_of_animals/ornamental_snake.html McDonald KR, Covacevich JA, Ingram GJ and Couper PJ (1991). The status of frogs and reptiles. In: Ingram GJ and Raven RJ (eds). An Atlas of Queensland's Frogs, Reptiles, Birds and Mammals. Page(s) 338-345. Brisbane: Queensland Museum. Phillips BL, Brown GP and Shine R (2003). Assessing the potential impact of cane toads on Australian snakes. Conservation Biology. 17:171-175. Richardson R. DRAFT – Brigalow Belt Reptile Recovery Plan. Report to the Department of the Environment, Water, Heritage ans the Arts, Canberrra. WWF-Australia, Brisbane. WWF-Australia/Queensland Murray Darling Committee (2008). Ornamental Snake Information Sheet. Available on the Internet at: http://www.qmdc.org.au/publications/download/39/fact-sheets-case-studies/reptile- recovery/ornamental-snake.pdf. Denisonia maculata Approved Conservation Advice — Page 3 of 3 .
Recommended publications
  • Raymond T. Hoser
    32 Australasian Journal of Herpetology Australasian Journal of herpetology 11:32-50. Published 8 April 2012. ISSN 1836-5698 (Print) ISSN 1836-5779 (Online) THE DESCRIPTION OF A NEW GENUS OF WEST AUSTRALIAN SNAKE AND EIGHT NEW TAXA IN THE GENERA PSEUDONAJA GUNTHER, 1858, OXYURANUS KINGHORN, 1923 AND PANACEDECHIS WELLS AND WELLINGTON, 1985 (SERPENTES: ELAPIDAE) RAYMOND T. HOSER 488 Park Road, Park Orchards, Victoria, 3134, Australia. Phone: +61 3 9812 3322 Fax: 9812 3355 E-mail: [email protected] Submitted 20 March 2012, Accepted 30 March 2012, Published 8 April 2012. ABSTRACT This paper defines and names new taxa from Australasia. The taxon Denisonia fasciata Rosen 1905, placed most recently by most authors in the genus Suta, is formally removed from that genus and placed in a monotypic genus formally named and described herein. Other taxa formally named and described for the first time include subspecies of the following; the broadly recognized species Pseudonaja textilis (known as the Eastern Brown Snake), P. guttata (Speckled Brown Snake) and P. affinis (Dugite), Oxyuranus scutellatus (Taipan) from Irian Jaya and western Papua as well as a second subspecies from north-west Australia and a hitherto unnamed subspecies of Panacedechis papuanus (Papuan Blacksnake) from the same general region. The newly named taxa are: Hulimkai gen. nov., Pseudonaja textilis cliveevatti subsp. nov., Pseudonaja textilis leswilliamsi subsp. nov., Pseudonaja textilis rollinsoni subsp. nov., Pseudonaja textilis jackyhoserae subsp. nov., Pseudonaja guttata
    [Show full text]
  • An Investigation of the Evolution of Australian Elapid Snake Venoms
    toxins Article Rapid Radiations and the Race to Redundancy: An Investigation of the Evolution of Australian Elapid Snake Venoms Timothy N. W. Jackson 1, Ivan Koludarov 1, Syed A. Ali 1,2, James Dobson 1, Christina N. Zdenek 1, Daniel Dashevsky 1, Bianca op den Brouw 1, Paul P. Masci 3, Amanda Nouwens 4, Peter Josh 4, Jonathan Goldenberg 1, Vittoria Cipriani 1, Chris Hay 1, Iwan Hendrikx 1, Nathan Dunstan 5, Luke Allen 5 and Bryan G. Fry 1,* 1 Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia; [email protected] (T.N.W.J.); [email protected] (I.K.); [email protected] (S.A.A.); [email protected] (J.D.); [email protected] (C.N.Z.); [email protected] (D.D.); [email protected] (B.o.d.B.); [email protected] (J.G.); [email protected] (V.C.); [email protected] (C.H.); [email protected] (I.H.) 2 HEJ Research Institute of Chemistry, International Centre for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan 3 Princess Alexandra Hospital, Translational Research Institute, University of Queensland, St Lucia, QLD 4072, Australia; [email protected] 4 School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia; [email protected] (A.N.); [email protected] (P.J.) 5 Venom Supplies, Tanunda, South Australia 5352, Australia; [email protected] (N.D.); [email protected] (L.A.) * Correspondence: [email protected]; Tel.: +61-4-0019-3182 Academic Editor: Nicholas R.
    [Show full text]
  • Brigalow Belt Bioregion – a Biodiversity Jewel
    Brigalow Belt bioregion – a biodiversity jewel Brigalow habitat © Craig Eddie What is brigalow? including eucalypt and cypress pine forests and The term ‘brigalow’ is used simultaneously to refer to; woodlands, grasslands and other Acacia dominated the tree Acacia harpophylla; an ecological community ecosystems. dominated by this tree and often found in conjunction with other species such as belah, wilga and false Along the eastern boundary of the Brigalow Belt are sandalwood; and a broader region where this species scattered patches of semi-evergreen vine thickets with and ecological community are present. bright green canopy species that are highly visible among the more silvery brigalow communities. These The Brigalow Belt bioregion patches are a dry adapted form of rainforest, relics of a much wetter past. The Brigalow Belt bioregion is a large and complex area covering 36,400 000ha. The region is thus recognised What are the issues? by the Australian Government as a biodiversity hotspot. Nature conservation in the region has received increasing attention because of the rapid and extensive This hotspot contains some of the most threatened loss of habitat that has occurred. Since World War wildlife in the world, including populations of the II the Brigalow Belt bioregion has become a major endangered bridled nail-tail wallaby and the only agricultural and pastoral area. Broad-scale clearing for remaining wild population of the endangered northern agriculture and unsustainable grazing has fragmented hairy-nosed wombat. The area contains important the original vegetation in the past, particularly on habitat for rare and threatened species including the, lowland areas. glossy black-cockatoo, bulloak jewel butterfl y, brigalow scaly-foot, red goshawk, little pied bat, golden-tailed geckos and threatened community of semi evergreen Biodiversity hotspots are areas that support vine thickets.
    [Show full text]
  • Threatened Reptiles of the Brigalow Belt Management Needs Knowledge
    Threatened Reptiles of the Brigalow Belt Management Needs Knowledge Dr Simon Hudson, CEnvP EIANZ Threatened Species Forum, Townsville, 6 Sep 2013 Why Reptiles? Often a focus on charismatic megafauna – “iconic” (usually meaning furred or feathered) Many reptiles are also iconic Many are very poorly known Many species are cryptic and difficult to survey Present some special difficulties Threatened Brigalow Belt Reptiles # # Terrestrial reptiles (i.e. not freshwater turtles or saltwater crocodile) Common Name EPBC Act NC Act LIZARDS Retro slider EE five-clawed worm-skink VE collared delma VV yakka skink VV Darling Downs earless dragon E striped-tailed delma* V brigalow scaly-foot* V golden-tailed gecko NT SNAKES ornamental snake VV Dunmall’s snake VV grey snake E woma NT common death adder NT yellow-naped snake NT *De-listed from the EPBC Act in May 2013 The Brigalow Belt and the modelled distribution of the EPBC-listed Brigalow Belt reptiles. Source: SEWPAC 2011 Threatened Brigalow Belt Reptiles yakka skink, Egernia rugosa Dunmall’s snake, Furina dumalli brigalow scaly-foot, Paradelma orientalis ornamental snake, Denisonia maculata Photos by Stewart Macdonald: Used with permission. SEWPAC conditions Examples from recent EPBC approval conditions for large Qld projects Disturbance limits (ha) imposed on potential habitat for EPBC-listed threatened reptiles Common Name APLNG QCLNG GLNG Alpha Mine Alpha Rail brigalow scaly-foot 774.22 # 235 205.3 TBD* 189 yakka skink 73.44 343 119.9 8,152 812 Dunmall’s snake 262.49 - 205.3 ornamental snake - - 44.0 1,543 251* Retro slider TBD* TBD* collared delma - - 41.6 TOTAL PROJECT AREA 572,700 450,000 688,700 20,603 3,450 Values taken from EPBC approvals 2009/4974 (APLNG), 2008/4398 (QCLNG, including referral) and 2008/4059 (GLNG) and 2008/4648 (Alpha mine & rail).
    [Show full text]
  • Structure±Function Properties of Venom Components from Australian Elapids
    PERGAMON Toxicon 37 (1999) 11±32 Review Structure±function properties of venom components from Australian elapids Bryan Grieg Fry * Peptide Laboratory, Centre for Drug Design and Development, University of Queensland, St. Lucia, Qld, 4072, Australia Received 9 December 1997; accepted 4 March 1998 Abstract A comprehensive review of venom components isolated thus far from Australian elapids. Illustrated is that a tremendous structural homology exists among the components but this homology is not representative of the functional diversity. Further, the review illuminates the overlooked species and areas of research. # 1998 Elsevier Science Ltd. All rights reserved. 1. Introduction Australian elapids are well known to be the most toxic in the world, with all of the top ten and nineteen of the top 25 elapids with known LD50s residing exclusively on this continent (Broad et al., 1979). Thus far, three main types of venom components have been characterised from Australian elapids: prothrombin activating enzymes; lipases with a myriad of potent activities; and powerful peptidic neurotoxins. Many species have the prothrombin activating enzymes in their venoms, the vast majority contain phospholipase A2s and all Australian elapid venoms are suspected to contain peptidic neurotoxins. In addition to the profound neurological eects such as disorientation, ¯accid paralysis and respiratory failure, characteristic of bites by many species of Australian elapids is hemorrhaging and incoagulable blood. As a result, these elapids can be divided into two main classes: species with procoagulant venom (Table 1) and species with non-procoagulant venoms (Table 2) (Tan and * Author to whom correspondence should be addressed. 0041-0101/98/$ - see front matter # 1998 Elsevier Science Ltd.
    [Show full text]
  • Code of Practice Captive Reptile and Amphibian Husbandry Nature Conservation Act 1992
    Code of Practice Captive Reptile and Amphibian Husbandry Nature Conservation Act 1992 ♥ The State of Queensland, Department of Environment and Science, 2020 Copyright protects this publication. Except for purposes permitted by the Copyright Act, reproduction by whatever means is prohibited without prior written permission of the Department of Environment and Science. Requests for permission should be addressed to Department of Environment and Science, GPO Box 2454 Brisbane QLD 4001. Author: Department of Environment and Science Email: [email protected] Approved in accordance with section 174A of the Nature Conservation Act 1992. Acknowledgments: The Department of Environment and Science (DES) has prepared this code in consultation with the Department of Agriculture, Fisheries and Forestry and recreational reptile and amphibian user groups in Queensland. Human Rights compatibility The Department of Environment and Science is committed to respecting, protecting and promoting human rights. Under the Human Rights Act 2019, the department has an obligation to act and make decisions in a way that is compatible with human rights and, when making a decision, to give proper consideration to human rights. When acting or making a decision under this code of practice, officers must comply with that obligation (refer to Comply with Human Rights Act). References referred to in this code- Bustard, H.R. (1970) Australian lizards. Collins, Sydney. Cann, J. (1978) Turtles of Australia. Angus and Robertson, Australia. Cogger, H.G. (2018) Reptiles and amphibians of Australia. Revised 7th Edition, CSIRO Publishing. Plough, F. (1991) Recommendations for the care of amphibians and reptiles in academic institutions. National Academy Press: Vol.33, No.4.
    [Show full text]
  • A Preliminary Assessment of Faunal Values Within and Adjacent EPC 1029, Styx Basin, Central-East Queensland
    A preliminary assessment of faunal values within and adjacent EPC 1029, Styx Basin, central-east Queensland ) Prepared for Yeats Consulting Engineers by Ed Meyer, Ecological Consultant,S Luscombe Street, Runcorn QLD 4113 ([email protected]) Conditions of use This report may only be used for the purposes for which it was commissioned. The use of this report, or part thereof, for any other reason or purpose is prohibited without the written consent of the author. Front cover: Fauna recorded from EPC 1029 during March 2011 surveys. Clockwise from upper left: ornamental snake (Denisonia maculata); squatter pigeon (southern race) (Geophaps scripta scripta); metallic snake-eyed skink (Cryptoblepharus metal/icus); and eastern sedgefrog (Litoria tal/ax). ©Edward Meyer 2011 5 Luscombe Street, Runcorn QLD 4113 E-mail:[email protected] Version 2 _ 3 August 2011 2 Table of contents 1. Summary 4 2. Background 6 Description of study area 6 Nomenclature 6 Abbreviations and acronyms 7 3. Methodology 9 General approach 9 ) Desktop assessment 9 Likelihood of occurrence assessments 10 Field surveys 11 Survey conditions 15 Survey limitations 15 4. Results 17 Desktop assessment findings 17 Likelihood of occurrence assessments 17 Field survey results -fauna 20 Field survey results - fauna habitat 22 Habitat for conservation significant species 28 ) 5. Summary and conclusions 37 6. References 38 Appendix A: Fauna previously recorded from Desktop Assessment Study Area 41 Appendix B: likelihood of occurrence assessments for conservation significant fauna 57 Appendix C: March 2011 survey results 73 Appendix D: Habitat photos 85 Appendix E: Habitat assessment proforma 100 3 1. Summary The faunal values of land within and adjacent Exploration Permit for Coal (EPe) 1029 were investigated by way of desktop review of existing information as well as field surveys carried out in late March 201l.
    [Show full text]
  • Article (Published Version)
    Article Identifying the snake: First scoping review on practices of communities and healthcare providers confronted with snakebite across the world BOLON, Isabelle, et al. Abstract Background Snakebite envenoming is a major global health problem that kills or disables half a million people in the world’s poorest countries. Biting snake identification is key to understanding snakebite eco-epidemiology and optimizing its clinical management. The role of snakebite victims and healthcare providers in biting snake identification has not been studied globally. Objective This scoping review aims to identify and characterize the practices in biting snake identification across the globe. Methods Epidemiological studies of snakebite in humans that provide information on biting snake identification were systematically searched in Web of Science and Pubmed from inception to 2nd February 2019. This search was further extended by snowball search, hand searching literature reviews, and using Google Scholar. Two independent reviewers screened publications and charted the data. Results We analysed 150 publications reporting 33,827 snakebite cases across 35 countries. On average 70% of victims/bystanders spotted the snake responsible for the bite and 38% captured/killed it and brought it to the healthcare facility. [...] Reference BOLON, Isabelle, et al. Identifying the snake: First scoping review on practices of communities and healthcare providers confronted with snakebite across the world. PLOS ONE, 2020, vol. 15, no. 3, p. e0229989 PMID : 32134964 DOI : 10.1371/journal.pone.0229989 Available at: http://archive-ouverte.unige.ch/unige:132992 Disclaimer: layout of this document may differ from the published version. 1 / 1 PLOS ONE RESEARCH ARTICLE Identifying the snake: First scoping review on practices of communities and healthcare providers confronted with snakebite across the world 1 1 1 1,2 Isabelle BolonID *, Andrew M.
    [Show full text]
  • Secretary of State's Standards of Modern Zoo Practice (Made Under Section 9 of the Zoo Licensing Act 1981)
    www.defra.gov.uk Secretary of State’s Standards of Modern Zoo Practice Secretary of State’s Standards of Modern Zoo Practice © Crown copyright 2012 You may re-use this information (not including logos) free of charge in any format or medium, under the terms of the Open Government Licence. To view this licence, visit www.nationalarchives.gov.uk/doc/open-government-licence/ or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or e-mail: [email protected] This document/publication is also available on our website at: http://www.defra.gov.uk/wildlife-pets/zoos/ Any enquiries regarding this document/publication should be sent to us at: Zoos Branch, Wildlife Species Conservation Department for Environment, Food and Rural Affairs Zone 1/14b Temple Quay House 2 The Square Temple Quay Bristol BS1 6EB Telephone: 0117 372 3606 Email: [email protected] PB Number PB13806 Secretary of State’s Standards of Modern Zoo Practice Contents Introduction .......................................................................................................................... 1 Interpretation of terms used ................................................................................................. 1 Animal welfare in the zoo environment ................................................................................ 2 Section 1 - Provision of food and water ............................................................................... 4 Section 2 - Provision of a suitable environment ..................................................................
    [Show full text]
  • Mud in the Blood Novel Potent Anticoagulant Coagulotoxicity in The
    Toxicology Letters 302 (2019) 1–6 Contents lists available at ScienceDirect Toxicology Letters journal homepage: www.elsevier.com/locate/toxlet Mud in the blood: Novel potent anticoagulant coagulotoxicity in the venoms T of the Australian elapid snake genus Denisonia (mud adders) and relative antivenom efficacy Nicholas J. Youngmana, Christina N. Zdeneka, James S. Dobsona, Matyas A. Bittenbindera, Amber Gillettb, Brett Hamiltonc, Nathan Dunstand, Luke Allend, Andrew Vearye, Elle Vearye, ⁎ Bryan G. Fryb, a Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, 4072, Australia b FaunaVet Wildlife Consultancy, Glass House Mountains, QLD, 4518, Australia c Centre of Advanced Imaging & Centre for Microscopy and Microanalysis, University of Queensland, St Lucia, QLD, 4072, Australia d Venom Supplies, Tanunda, South Australia, Australia e Footprints Environmental Consultants Pty Ltd, P.O. Box 246, Bribie Island, QLD, 4507, Australia ARTICLE INFO ABSTRACT Keywords: Due to their potent coagulotoxicity, Australian elapid venoms are unique relative to non-Australian members of Venom the Elapidae snake family. The majority of Australian elapids possess potent procoagulant venom, while only a Antivenom few species have been identified as possessing anticoagulant venoms. The majority of research to-date has Coagulation concentrated on large species with range distributions overlapping major city centres, such as brown snakes Prothrombinase (Pseudonaja spp.) and taipans (Oxyuranus spp.). We investigated the venom from the poorly studied genus Anticoagulation Denisonia and documented anticoagulant activities that were differentially potent on amphibian, avian, and Denisonia human plasmas. Both species were potently anticoagulant upon amphibian plasma, consistent with these snakes preying upon frogs as their primary food source.
    [Show full text]
  • Cane Toad (Bufo Marinus) (Linnaeus, 1758)
    RISK ASSESSMENTS FOR EXOTIC REPTILES AND AMPHIBIANS INTRODUCED TO AUSTRALIA – Cane Toad (Bufo marinus) (Linnaeus, 1758) Class - Amphibia, Order - Anura, Family - Bufonidae (Gray, 1825), Genus - Bufo (Laurenti, 1768); (The Reptile Database 2007, Catalogue of Life 2008) Score Sheet SPECIES: Cane Toad (Bufo marinus) Species Description – Largest of the toads, short, squat body with short legs. Up to 15 cm snout-vent length, females are noticeably larger than the males. Grey, brown, olive-brown or reddish-brown above, adults rarely with Other common names include: Marine Toad; Giant Toad. any marked pattern other than dark brown caps to the wards, whereas juveniles have a series of narrow dark bars, Synonyms: dashes or lines on the head and back. Whitish or yellow below, usually speckled or mottled with dark brown. Skin very dry and warty above, granular below. A prominent pair of parotoid glands, located behind each eye. The Rana marina supraocular region is warty and is separated from the smooth interorbital region by a high bony ridge, the ridge on Chaunus marinus each side continuing forward to meet on the snout between the nostrils. Fingers free, toes with a tough leather webbing. Tadpoles are less than 3.5 cm long, are jet black above and silvery white with black spots below (Cogger (Christy et al 2007b, Catalogue of Life 2008). 2000, Lever 2001, Cameron 2002, Robinson 2002, Churchill 2003). General Information – The species is very flexible in regards to breeding sites, with eggs and larvae developing in most slow or still shallow waters of ponds, ditches, temporary pools, reservoirs, canals and streams, and it can tolerate salinity levels of up to 15%.
    [Show full text]
  • Taxonomy of Denisonia Punctata and Denisonia Fasciata (Serpentes: Elapidae) 327
    Rec. West. Aust. Mus., 1980, 8 (2) TAXONOMY OF DENISONIA PUNCTA TA AND DENISONIA FASCIA TA (SERPENTES: ELAPIDAE) L.A. SMITH* ABSTRACT The two species ofDenisonia (sensu stricto) in Western Australia, namely Denisonia punctata Boulenger and D. (asciata RosEm, are described and their distribution given. INTRODUCTION Until 1960 most students followed Boulenger (1896) in placing all Australian elapid snakes with smooth scales and undivided subcaudals (excluding Rhino­ plocephalus, Brachyaspis and Notechis) in Denisonia. Worrell (1961a, 1961b and 1963) used dental, cranial and other morphological characters to describe the genera Drepanodontis, Drysdalia, Unechis, Suta, Parasuta, Cryptophis and Austrelaps, restricting Denisonia to four species: maculata (Steindachner) 1867, punctata Boulenger 1896, devisi Waite & Longman 1920, and fasciata Rosen 1905. This paper describes the two species ofDenisonia (sensu stricto) which occur in Western Australia. The following descriptions are based on material from the Western Australian Museum, Northern Territory Museums and Art Galleries, Aust­ ralian Museum, South Australian Museum, National Museum of Victoria and Queensland Museum. Registered numbers of these specimens are prefixed with WAM, NTM, AM, SAM, NMV and QM respectively. SPECIES Dellisollia pUllctata Boulenger, 1896 Diagnosis Distinguished from other Denisonia by having 15, rather than 17 rows of scales at midbody. *Western Australian Museum, Francis Street, Perth Western Australia, 6000. 327 Plate 1: Photograph of specimen of Denisonia punctata from Coongan homestead, Western Australia. Description A small, moderately slender snake up to 523 mm (465 + 58). Tail 9.6-16.2% ofSVL (N 32, mean 13.0). Head depressed; no canthus rostralis. Rostral about twice as wide as high, barely penetrating between internasals.
    [Show full text]