The North American Cordillera—An Impediment to Growing the Continent-Wide Laurentide Ice Sheet

Total Page:16

File Type:pdf, Size:1020Kb

The North American Cordillera—An Impediment to Growing the Continent-Wide Laurentide Ice Sheet 1DECEMBER 2015 L Ö FVERSTRÖ METAL. 9433 The North American Cordillera—An Impediment to Growing the Continent-Wide Laurentide Ice Sheet 1 # MARCUS LÖFVERSTRÖM,* JOHAN LIAKKA, AND JOHAN KLEMAN Department of Meteorology, and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden (Manuscript received 14 January 2015, in final form 1 September 2015) ABSTRACT This study examines the evolution of a continental-scale ice sheet on a triangular representation of North America, with and without the influence of the Cordilleran region. Simulations are conducted using a com- prehensive atmospheric general circulation model asynchronously coupled to a three-dimensional thermo- mechanical ice-sheet model. The atmospheric state is updated for every 2 3 106 km3 increase in ice volume, and the coupled model is integrated to steady state. In the first experiment a flat continent with no background topography is used. The ice sheet evolves fairly zonally symmetric, and the equilibrium state is continent-wide and has the highest point in the center of the continent. This equilibrium ice sheet forces an anticyclonic circulation that results in relatively warmer (cooler) summer surface temperatures in the northwest (south- east), owing to warm (cold) air advection and radiative heating due to reduced cloudiness. The second ex- periment includes a simplified representation of the Cordilleran region. The ice sheet’s equilibrium state is here structurally different from the flat continent case; the center of mass is strongly shifted to the east and the interior of the continent remains ice free—an outline broadly resembling the geologically determined ice margin in Marine Isotope Stage 4. The limited glaciation in the continental interior is the result of warm summer surface temperatures primarily due to stationary waves and radiative feedbacks. 1. Introduction suggest that the ice volume increased in a stepwise fashion over the subsequent 90 kyr, with rapid growth The Quaternary period is characterized by the cyclic bursts in stadials—cold periods—centered around expansion and retreat of massive ice sheets in the mid- ;110, ;70, and ;25 kyr BP that were followed by and high-latitude continents (Gibbard and Kolfschoten interstadials—warmer periods—when the ice volume 2004). The last glacial inception occurred about 115 000 remained constant or even decreased slightly (Peltier years before present (115 kyr BP), when ice sheets and Fairbanks 2006; Stokes et al. 2012; Kleman et al. started to form in the central Canadian Arctic; Quebec, 2013). The stadials are commonly referred to as the Canada; Scandinavia; and in the coastal regions of the Marine Isotope Stages 5b, 4, and 2 (MIS5b, MIS4, and Barents and Kara Seas (Svendsen et al. 2004; Kleman MIS2, respectively), where the latter is the culmination et al. 2002, 2013; Stokes et al. 2012). The data records of the glacial cycle at the Last Glacial Maximum (LGM, about 23–19 kyr BP). The incipient Eurasian ice sheet (EIS) is believed to * Current affiliation: Climate Change Research Section, Climate and Global Dynamics Division, NCAR, Boulder, Colorado. have been longitudinally extended along the Arctic 1 Current affiliation: Biodiversity and Climate Research Centre coast, from Scandinavia in the west to central Siberia in (BiK-F), and Senckenberg Gesellschaft für Naturforschung, the east, and the whole footprint of the ice sheet appears Frankfurt, Germany. to have migrated southwestward in time (Fig. 1); see # Current affiliation: Department of Physical Geography and discussion in Svendsen et al. (2004) and Kleman et al. Quaternary Geology, and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden. (2013). Reasons for this migration remain unresolved but the Atlantic storm track was likely the primary moisture source for the ice sheet, hence naturally shift- Corresponding author address: Marcus Löfverström, Climate Change Research Section, Climate and Global Dynamics Division, ing the center of mass toward the European side where NCAR, 1850 Table Mesa Drive, Boulder, CO 80305. the cyclones make landfall. Also, Löfverström et al. E-mail: [email protected] (2014) showed modeling results, suggesting that the DOI: 10.1175/JCLI-D-15-0044.1 Ó 2015 American Meteorological Society Unauthenticated | Downloaded 09/28/21 11:21 PM UTC 9434 JOURNAL OF CLIMATE VOLUME 28 FIG. 1. The Northern Hemisphere topography in the (a) MIS4 and (b) LGM glacial states; the topography is derived from the geologically constrained ice-sheet reconstructions by Kleman et al. (2013). Ice sheets are indicated by shaded areas enclosed by heavy contours. Light contours show the surface elevation in 500-m intervals, starting at 500 m. ice-sheet topography induced warm summer tempera- d Why was the ice invasion in the western Laurentide tures in Siberia that possibly could help explain this area (prairies and interior plains) slow and late development. The North American ice sheet is be- compared to the rapid and repeated expansion of lieved to have had a rather different growth trajectory. the Quebec Dome in the east (Kleman et al. 2002; It initially formed in the northeastern corner of the Stokes et al. 2012)? continent and the center of mass appears to have re- d What caused Alaska and northeastern Siberia to mained in this region from the inception through MIS4 remain largely ice free over the last glacial cycle (Fig. 1a)—roughly the first 75–85 kyr of the glacial (Clague 1989; Svendsen et al. 2004), but at the same 8 cycle, though the exact timing is debated (Kleman time allowed ice-sheet expansion to 40 N over the et al. 2002, 2010; Stokes et al. 2012). The geological eastern North American continent? data further suggests that the continental interior and d To what extent did the evolution of the ice sheets the highland regions in the Cordillera were largely ice influence the atmospheric circulation and induce free over this time period (Kleman et al. 2002; Clague changing mass-balance patterns? Simpler put, did and James 2002; Clague et al. 2005), and the massive the ice sheets create their own growing conditions LGM Laurentide ice sheet (Fig. 1b), covering the (Sanberg and Oerlemans 1983; Lindeman and NorthAmericancontinentfromcoasttocoast,isbe- Oerlemans 1987; Roe and Lindzen 2001b; Liakka lieved to have been present for a mere 5–15 kyr before et al. 2012; Liakka 2012)? the subsequent glacial collapse (Kleman et al. 2002, The zonally asymmetric ice-sheet development in North 2010, 2013). America, in particular the southeastward location of the The strong asymmetry of the ice sheets toward the major mass center (Quebec Dome) and the late ice in- North Atlantic sector is enigmatic (Svendsen et al. vasion of the prairies, points to an atmospheric station- 2004; Kleman et al. 2010) and this configuration ary wave influence on the buildup of the Laurentide ice has also been shown difficult to capture in conven- sheet, that is, large-scale zonal asymmetries in the time- tional numerical ice-sheet modeling experiments mean circulation that are forced by heterogeneities in (Huybrechts and T’siobbel 1995; Marshall et al. 2000; the planetary boundary conditions (Held 1983; Held Zweck and Huybrechts 2005), and in experiments with et al. 2002; Kaspi and Schneider 2011; Ting 1994; White coupled atmosphere–ice-sheet models (Bonelli et al. 1982). The present-day winter circulation is character- 2009; Beghin et al. 2014). Hence, important questions ized by a northwesterly flow of Arctic air over North regarding the ice build-up patterns are prompted by America that gives rise to temperature differences of observations and experiments within both the atmo- several tens of degrees Celsius between the ‘‘cold’’ spheric circulation modeling and the glacial geology eastern and ‘‘warm’’ western sides of the continent research communities: (Löfverström 2014). This circulation pattern is primarily Unauthenticated | Downloaded 09/28/21 11:21 PM UTC 1DECEMBER 2015 L Ö FVERSTRÖ METAL. 9435 induced by the flow interaction with the Cordillera, in et al. 2011; Claussen et al. 2006; Colleoni et al. 2009). conjunction with the thermal forcing over the north- However, in a recent paper, Löfverström et al. (2014) western Atlantic Ocean (Held 1983; Held et al. 2002; studied the interactions between first-order paleo- Kaspi and Schneider 2011). It is tempting to suggest that topography (only considering the general outline and these temperature asymmetries can explain the north- elevation of the paleotopography) and the evolution of eastern location of the glacial inception and the asym- the planetary-scale atmospheric circulation over a se- metric ice-sheet development. However, it is really the quence of snapshots of the buildup of the last glacial. summer temperatures that control where an ice sheet They argued that the extensively studied LGM climate can form, as it is in the warm season that the ablation is only reflects a rather short-lived glacial extreme, not most significant. The recipe for a glacial inception is necessarily typical for most of the glacial cycle (Porter simple: the surface mass balance has to be positive over a 1989). Hence, because ice buildup is a slow precipitation- long period of time (order of a thousand years), which limited cumulative process, the LGM ice configuration requires cool summers and abundant precipitation; with a continent-wide LIS may potentially have been the though straightforward in theory, the triggering mech- result of long periods of ‘‘non-LGM-like’’ circulation anism for the last glacial inception is debated and several conditions (Löfverströmetal.2014). theories have been put forth. For a more complete understanding of the interaction One of the most widely accepted theories is that between topography, stationary waves, and the ice-sheet proposed by Milankovitch, suggesting that glacial cycles evolution, the coupled atmosphere–ice-sheet system are controlled by variability in Earth’s orbital parameters— must be studied over a sequence of conditions that re- eccentricity, obliquity, and axial precession—and the last alistically mimics the whole build-up phase.
Recommended publications
  • CW3E AR Outlook for California DWR’S AR Program
    CW3E AR Outlook For California DWR’s AR Program Active weather pattern expected to bring heavy rainfall and snowfall to portions of the Western U.S. • A series of storms and landfalling ARs are forecast to bring significant precipitation to portions of Northern California and the Pacific Northwest over the next 7 days • AR 4/AR 5 conditions (based on the Ralph et al. 2019 AR Scale) are possible over coastal Oregon and Washington in association with the second landfalling AR • The highest 7-day precipitation amounts (5–10 inches) are forecast over the Pacific Coast Ranges and Cascade Mountains • More than 2 feet of snow is possible in the higher elevations of the Washington Cascades during the next 48 hours AR Outlook: 12 Nov 2020 Source: NWS Seattle, https://www.weather.gov/sew/ • Strong winds and heavy rainfall/mountain snowfall are expected Friday and Friday night across western Washington • At least 12” of snow are forecast over the Olympic Mountains and Washington Cascades during the next 48 hours • The highest elevations in the Cascades may receive 2–4 feet of snow by Saturday morning AR Outlook: 12 Nov 2020 For California DWR’s AR Program GFS IVT & SLP Forecasts A) Valid 1200 UTC 13 Nov (F-036) B) Valid 0000 UTC 15 Nov (F-72) C) Valid 0000 UTC 17 Nov (F-120) L L Third AR makes H landfall over British H Columbia/Pacific Northwest 1st AR Brief pulse 2nd AR of IVT • The first AR is forecast make landfall over coastal Oregon before 12Z 13 Nov in association with a weaking frontal boundary (Figure A) • After the first AR dissipates,
    [Show full text]
  • Geologic History of Siletzia, a Large Igneous Province in the Oregon And
    Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot Wells, R., Bukry, D., Friedman, R., Pyle, D., Duncan, R., Haeussler, P., & Wooden, J. (2014). Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot. Geosphere, 10 (4), 692-719. doi:10.1130/GES01018.1 10.1130/GES01018.1 Geological Society of America Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Downloaded from geosphere.gsapubs.org on September 10, 2014 Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot Ray Wells1, David Bukry1, Richard Friedman2, Doug Pyle3, Robert Duncan4, Peter Haeussler5, and Joe Wooden6 1U.S. Geological Survey, 345 Middlefi eld Road, Menlo Park, California 94025-3561, USA 2Pacifi c Centre for Isotopic and Geochemical Research, Department of Earth, Ocean and Atmospheric Sciences, 6339 Stores Road, University of British Columbia, Vancouver, BC V6T 1Z4, Canada 3Department of Geology and Geophysics, University of Hawaii at Manoa, 1680 East West Road, Honolulu, Hawaii 96822, USA 4College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 104 CEOAS Administration Building, Corvallis, Oregon 97331-5503, USA 5U.S. Geological Survey, 4210 University Drive, Anchorage, Alaska 99508-4626, USA 6School of Earth Sciences, Stanford University, 397 Panama Mall Mitchell Building 101, Stanford, California 94305-2210, USA ABSTRACT frames, the Yellowstone hotspot (YHS) is on southern Vancouver Island (Canada) to Rose- or near an inferred northeast-striking Kula- burg, Oregon (Fig.
    [Show full text]
  • British Columbia Coastal Range and the Chilkotins
    BRITISH COLUMBIA COASTAL RANGE AND THE CHILKOTINS The Coast Mountains of British Columbia are remote with limited accessibility by float plane, helicopter or boating up its deep inlets along the coast and hiking in. The mountains along British Columbia and SE Alaska intermix with the sea in a complex maze of fjords, with thousands of islands. It is a true wilderness where not exploited by logging and salmon farming pens. But there are some areas accessible from roads that can be explored, including west of Lillooet, the Chilcotins, and the Garibaldi Range. The Coast Mountains extend approximately 1,600 kilometres (1,000 mi) long from the southeastern boundaries are surrounded by the Fraser River and the Interior Plateau while its far northwestern edge is delimited by the Kelsall and Tatshenshini Rivers at the north end of the Alaska Panhandle, beyond which are the Saint Elias Mountains. The western mountain slopes are covered by dense temperate rainforest with heavily glaciated peaks and icefields that include Mt Waddington and Mt Silverthrone. Mount Waddington is the highest mountain of the Coast Mountains and the highest that lies entirely within British Columbia, located northeast of the head of Knight Inlet with an elevation of 4,019 metres (13,186 ft). The range along its eastern flanks tapers to the dry Interior Plateau and the boreal forests of the southern Chilkotins north to the Spatsizi Plateau Wilderness Provincial Park. The mountain range's name derives from its proximity to the sea coast, and it is often referred to as the Coast Range. The range includes volcanic and non-volcanic mountains and the extensive ice fields of the Pacific and Boundary Ranges, and the northern end of the volcanic system known as the Cascade Volcanoes.
    [Show full text]
  • 147 Occurrence and Distribution of Flash
    NOAA Technical Memorandum NWS WR- 147 OCCURRENCE AND DISTRIBUTION OF FLASH FLOODS IN THE WESTERN REGION Thomas L. Dietrich Western Region Headquarters Hydrology Division Salt Lake City, Utah December 1979 UNITED STATES / NATIONAL OCEANIC AND / National Weather DEPARTMENT OF COMMERCE / ATMOSPHERIC ADMINISTRATION // Service Juanita M. Kreps, Secretary Richard A. Frank, Admtnistrator Richard E. Hallgren. Director This Technical Memorandum has been reviewed and is approved for pub! ication by Scientific Services Division, Western Region. L. W. Snellman, Chief Scientific Services Division Western Region Headquarters Salt Lake City, Utah ii TABLE OF CONTENTS Tables and Figures iv I. Introduction 1 II. Climatology of the Western Region by Geographical Divisions 1 a. Pacific Coast .. 1 b. Cascade ~ Sierra Nevada Mountains. 4 c. Intermountain Plateau. 4 d. Rocky Mountain Region. 4 e. Great Plains (eastern Montana) 8 III. Meteorology of Flash Floods .... 8 IV. Geographical Properties influencing Flash Floods. 10 a. Topography, Soils and Surface Cover. 10 b. Urbanization 10 V. Data Analysis .. 10 VI. Geographical Areas of Significant Concentrations of Flash Flood Events .... 17 a. Wasatch Front, Utah. 17 b. Central and Southern Arizona 19 c. Utah - Southern Mountains, Sevier Valley and Cedar City Area 19 VII. Brief Description of Flash Floods in the Western Region, 1950- 1969, as reported in the USGS Annual Flood Summaries. 23 VIII. References. iii TABLES AND FIGURES Table 1. Flash Floods by Geographical Region 16 Table 2. Flash Floods by Month and State . • 17 Figure 1. Geographic Regions of the United States 2 Figure 2. Coastal Valley, south of Eureka, California 3 Figure 3. Mean Annual Number of Days with Thunderstorms .
    [Show full text]
  • Petrogenesis of Siletzia: the World’S Youngest Oceanic Plateau
    Results in Geochemistry 1 (2020) 100004 Contents lists available at ScienceDirect Results in Geochemistry journal homepage: www.elsevier.com/locate/ringeo Petrogenesis of Siletzia: The world’s youngest oceanic plateau T.Jake R. Ciborowski a,∗, Bethan A. Phillips b,1, Andrew C. Kerr b, Dan N. Barfod c, Darren F. Mark c a School of Environment and Technology, University of Brighton, Brighton BN2 4GJ, UK b School of Earth and Ocean Science, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK c Natural Environment Research Council Argon Isotope Facility, Scottish Universities Environmental Research Centre, East Kilbride G75 0QF, UK a r t i c l e i n f o a b s t r a c t Keywords: Siletzia is an accreted Palaeocene-Eocene Large Igneous Province, preserved in the northwest United States and Igneous petrology southern Vancouver Island. Although previous workers have suggested that components of Siletzia were formed Geochemistry in tectonic settings including back arc basins, island arcs and ocean islands, more recent work has presented Geochemical modelling evidence for parts of Siletzia to have formed in response to partial melting of a mantle plume. In this paper, we Mantle plumes integrate geochemical and geochronological data to investigate the petrogenetic evolution of the province. Oceanic plateau Large igneous provinces The major element geochemistry of the Siletzia lava flows is used to determine the compositions of the primary magmas of the province, as well as the conditions of mantle melting. These primary magmas are compositionally similar to modern Ocean Island and Mid-Ocean Ridge lavas. Geochemical modelling of these magmas indicates they predominantly evolved through fractional crystallisation of olivine, pyroxenes, plagioclase, spinel and ap- atite in shallow magma chambers, and experienced limited interaction with crustal components.
    [Show full text]
  • California Coastal Commission Staff Report and Recommendation
    STATE OF CALIFORNIA – THE RESOURCES AGENCY ARNOLD SCHWARZENEGGE R, Governor CALIFORNIA COASTAL COMMISSION CENTRAL COAST DISTRICT OFFICE 725 FRONT STREET, SUITE 300 SANTA CRUZ, CA 95060 (831) 427-4863 F11a Filed: 3/29/2006 49th day: Waived Staff: Katie Morange Staff report: 11/1/2007 Hearing date: 11/16/2007 Hearing item number: F11a STAFF REPORT: APPEAL SUBSTANTIAL ISSUE DETERMINATION AND DE NOVO HEARING Application number.......A-3-MCO-06-018 Applicant.........................Steven Foster Trust (Mark Blum and Rick Zbur, Representatives) Appellants .......................Coastal Commissioners Mike Reilly and Mary Shallenberger Local government ..........Monterey County Local decision .................Approval with conditions (Monterey County file number PLN040569). Project location ..............4855 Bixby Creek Road (Lot 7 of Rocky Creek Ranch, off of and southwesterly of Rocky Creek Road and Palo Colorado Road) in the Big Sur Coast area of Monterey County (APNs 418-132-005, 418- 132-006, and 418-132-007). Project description.........Construction of a new 3,975 square foot single-family residence and multiple accessory structures including a 3,200 square foot barn with solar panels, a 1,200 square foot studio (“Steven’s studio”), a 1,150 square foot studio (“Gillian’s studio”), a 425 square foot guesthouse, an 850 square foot caretaker’s unit, a 225 square foot shed, and an 800 square foot garage; a swimming pool; five septic systems; a hookup to existing well; retaining walls; underground utilities, including an underground water tank; tree removal (14 coast live oaks, 4 canyon oaks, and one redwood); development within 100 feet of an environmentally sensitive habitat area (central maritime chaparral); and about 2,500 cubic yards grading (approximately 1,850 cubic yards of cut and 625 cubic yards of fill).
    [Show full text]
  • Active Mountain Building and the Distribution of “Core” Maxillariinae Species in Tropical Mexico and Central America
    LANKESTERIANA 11(3): 275—291. 2011. ACTIVE MOUNTAIN BUILDING AND THE DISTRIBUTION OF “CORE” MAXILLARIINAE SPECIES IN TROPICAL MEXICO AND CENTRAL AMERICA STEPHEN H. KIRBY U.S. Geological Survey, 345 Middlefield Road, Menlo Park, California 94025, U.S.A. ABSTRACT. The observation that southeastern Central America is a hotspot for orchid diversity has long been known and confirmed by recent systematic studies and checklists. An analysis of the geographic and elevation distribution demonstrates that the most widespread species of “core” Maxillariinae are all adapted to life near sea level, whereas the most narrowly endemic species are largely distributed in wet highland environments. Drier, hotter lowland gaps exist between these cordilleras and evidently restrict the dispersal of the species adapted to wetter, cooler conditions. Among the recent generic realignments of “core” Maxillariinae based on molecular phylogenetics, the Camaridium clade is easily the most prominent genus in Central America and is largely restricted to the highlands of Costa Rica and Panama, indicating that this region is the ancestral home of this genus and that its dispersal limits are drier, lowland cordilleran gaps. The mountains of Costa Rica and Panama are among the geologically youngest topographic features in the Neotropics, reflecting the complex and dynamic interactions of numerous tectonic plates. From consideration of the available geological evidence, I conclude that the rapid growth of the mountain ranges in Costa Rica and Panama during the late Cenozoic times created, in turn, very rapid ranges in ecological life zones and geographic isolation in that part of the isthmus. Thus, I suggest that these recent geologic events were the primary drivers for accelerated orchid evolution in southeastern Central America.
    [Show full text]
  • Lesson 9: California Ecosystem and Geography
    Lesson 9: California Ecosystem and Geography California Education Standards: Kindergarten, Earth Sciences 3. Earth is composed of land air, and water. As a basis for understanding this concept: b. Students know changes in weather occur from day to day and across seasons, affecting ​ ​ Earth and its inhabitants. c. Students know how to identify major structures of common plants and animals (e.g., ​ ​ stems, leaves, roots, arms, wings, legs). Grade One, Life Sciences 2. Plants and animals meet their needs in different ways. As a basis for understanding this concept: a. Students know different plants and animals inhabit different kinds of environments and ​ ​ have external features that help them thrive in different kinds of places. c. Students know animals eat plants or other animals for food and may also use plants or ​ ​ even other animals for shelter and nesting. Grade Two, Life Sciences 2. Plants and animals have predictable life cycles. As a basis for understanding this concept: c. Students know many characteristics of an organism are inherited from the parents. ​ ​ Some characteristics are caused or influenced by the environment. Grade Three, Life Sciences 3. Adaptations in physical structure or behavior may improve an organism’s chance for survival. As a basis for understanding this concept: Lesson 9: California Ecosystem and Geography 1 b. Students know examples of diverse life forms in different environments, such as ​ ​ oceans, deserts, tundra, forests, grasslands, and wetlands. c. Students know living things cause changes in the environment in which they live: some ​ ​ of these changes are detrimental to the organism or other organisms, and some are beneficial.
    [Show full text]
  • Nr 222 Native Tree, Shrub, & Herbaceous Plant
    NR 222 NATIVE TREE, SHRUB, & HERBACEOUS PLANT IDENTIFICATION BY RONALD L. ALVES FALL 2014 NR 222 by Ronald L. Alves Note to Students NOTE TO STUDENTS: THIS DOCUMENT IS INCOMPLETE WITH OMISSIONS, ERRORS, AND OTHER ITEMS OF INCOMPETANCY. AS YOU MAKE USE OF IT NOTE THESE TRANSGRESSIONS SO THAT THEY MAY BE CORRECTED AND YOU WILL RECEIVE A CLEAN COPY BY THE END OF TIME OR THE SEMESTER, WHICHEVER COMES FIRST!! THANKING YOU FOR ANY ASSISTANCE THAT YOU MAY GIVE, RON ALVES. Introduction This manual was initially created by Harold Whaley an MJC Agriculture and Natural Resources instruction from 1964 – 1992. The manual was designed as a resource for a native tree and shrub identification course, Natural Resources 222 that was one of the required courses for all forestry and natural resource majors at the college. The course and the supporting manual were aimed almost exclusively for forestry and related majors. In addition to NR 222 being taught by professor Whaley, it has also been taught by Homer Bowen (MJC 19xx -), Marlies Boyd (MJC 199X – present), Richard Nimphius (MJC 1980 – 2006) and currently Ron Alves (MJC 1974 – 2004). Each instructor put their own particular emphasis and style on the course but it was always oriented toward forestry students until 2006. The lack of forestry majors as a result of the Agriculture Department not having a full time forestry instructor to recruit students and articulate with industry has resulted in a transformation of the NR 222 course. The clientele not only includes forestry major, but also landscape designers, environmental horticulture majors, nursery people, environmental science majors, and people interested in transforming their home and business landscapes to a more natural venue.
    [Show full text]
  • Interpreting the Timberline: an Aid to Help Park Naturalists to Acquaint Visitors with the Subalpine-Alpine Ecotone of Western North America
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1966 Interpreting the timberline: An aid to help park naturalists to acquaint visitors with the subalpine-alpine ecotone of western North America Stephen Arno The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Arno, Stephen, "Interpreting the timberline: An aid to help park naturalists to acquaint visitors with the subalpine-alpine ecotone of western North America" (1966). Graduate Student Theses, Dissertations, & Professional Papers. 6617. https://scholarworks.umt.edu/etd/6617 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. INTEKFRETING THE TIMBERLINE: An Aid to Help Park Naturalists to Acquaint Visitors with the Subalpine-Alpine Ecotone of Western North America By Stephen F. Arno B. S. in Forest Management, Washington State University, 196$ Presented in partial fulfillment of the requirements for the degree of Master of Forestry UNIVERSITY OF MONTANA 1966 Approved by: Chairman, Board of Examiners bean. Graduate School Date Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: EP37418 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • Soils of Temperate Rainforests of the North American Pacific Coast
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Department of Agriculture: Agricultural Publications from USDA-ARS / UNL Faculty Research Service, Lincoln, Nebraska 2014 Soils of temperate rainforests of the North American Pacific Coast Dunbar N. Carpenter University of Wisconsin-Madison, [email protected] James G. Bockheim University of Wisconsin-Madison,, [email protected] Paul F. Reich USDA Natural Resources Conservation Service, Beltsville, MD, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub Part of the Forest Biology Commons, and the Other Ecology and Evolutionary Biology Commons Carpenter, Dunbar N.; Bockheim, James G.; and Reich, Paul F., "Soils of temperate rainforests of the North American Pacific Coast" (2014). Publications from USDA-ARS / UNL Faculty. 1413. https://digitalcommons.unl.edu/usdaarsfacpub/1413 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Geoderma 230–231 (2014) 250–264 Contents lists available at ScienceDirect Geoderma journal homepage: www.elsevier.com/locate/geoderma Soils of temperate rainforests of the North American PacificCoast Dunbar N. Carpenter a, James G. Bockheim b,⁎,PaulF.Reichc a Department of Forest
    [Show full text]
  • The Spatial and Temporal Evolution of the Portland and Tualatin Basins, Oregon, USA
    The Spatial and Temporal Evolution of the Portland and Tualatin Basins, Oregon, USA by Darby Patrick Scanlon A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geology Thesis Committee: John Bershaw, Chair Ashley R. Streig Ray E. Wells Portland State University 2019 © 2019 Darby Patrick Scanlon ABSTRACT The Portland and Tualatin basins are part of the Puget-Willamette Lowland in the Cascadia forearc of Oregon and Washington. The Coast Range to the west has undergone Paleogene transtension and Neogene transpression, which is reflected in basin stratigraphy. To better understand the tectonic evolution of the region, I modeled three key stratigraphic horizons and their associated depocenters (areas of maximum sediment accumulation) through space and time using well log, seismic, outcrop, aeromagnetic, and gravity data. Three isochore maps were created to constrain the location of Portland and Tualatin basin depocenters during 1) Pleistocene to mid-Miocene (0-15 Ma), 2) eruption of the Columbia River Basalt Group (CRBG, 15.5-16.5 Ma), and 3) Mid- Miocene to late Eocene time (~17-35 Ma). Results show that the two basins each have distinct mid-Miocene to Pleistocene depocenters. The depth to CRBG in the Portland basin reaches a maximum of ~1,640 ft, 160 ft deeper than the Tualatin basin. Although the Portland basin is separated from the Tualatin basin by the Portland Hills, inversion of gravity data suggests that the two were connected as one continuous basin prior to CRBG deposition. Local thickening of CRBG flows over a gravity low coincident with the Portland Hills suggests that Neogene transpression in the forearc reactivated the Sylvan- Oatfield and Portland Hills faults as high angle reverse faults.
    [Show full text]