California Coastal Commission Staff Report and Recommendation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Qty Size Name 6 1G Abies Bracteata 10 1G Abutilon Palmeri 1 1G Acaena Pinnatifida Var
REGIONAL PARKS BOTANIC GARDEN, TILDEN REGIONAL PARK, BERKELEY, CALIFORNIA Celebrating 76 years of growing California native plants: 1940-2016 **FINAL**PLANT SALE LIST **FINAL** (9/30/2016 @ 6:00 PM) visit: www.nativeplants.org for the most up to date plant list FALL PLANT SALE OF CALIFORNIA NATIVE PLANTS SATURDAY, OCTOBER 1, 2016 PUBLIC SALE: 10:00 AM TO 3:00 PM MEMBERS ONLY SALE: 9:00 AM TO 10:00 AM MEMBERSHIPS ARE AVAILABLE AT THE ENTRY TO THE SALE AT 8:30 AM Qty Size Name 6 1G Abies bracteata 10 1G Abutilon palmeri 1 1G Acaena pinnatifida var. californica 18 1G Achillea millefolium 10 4" Achillea millefolium - Black Butte 28 4" Achillea millefolium 'Island Pink' 8 4" Achillea millefolium 'Rosy Red' - donated by Annie's Annuals 2 4" Achillea millefolium 'Sonoma Coast' 7 4" Acmispon (Lotus) argophyllus var. argenteus 9 1G Actea rubra f. neglecta (white fruits) 25 4" Adiantum x tracyi (A. jordanii x A. aleuticum) 5 1G Aesculus californica 1 2G Agave shawii var. shawii 2 1G Agoseris grandiflora 8 1G Alnus incana var. tenuifolia 2 2G Alnus incana var. tenuifolia 5 4" Ambrosia pumila 5 1G Amelanchier alnifolia var. semiintegrifolia 9 1G Anemopsis californica 5 1G Angelica hendersonii 3 1G Angelica tomentosa 1 1G Apocynum androsaemifolium x Apocynum cannabinum 7 1G Apocynum cannabinum 5 1G Aquilegia formosa 2 4" Aquilegia formosa 4 4" Arbutus menziesii 2 1G Arctostaphylos andersonii 2 1G Arctostaphylos auriculata 3 1G Arctostaphylos 'Austin Griffith' 11 1G Arctostaphylos bakeri 5 1G Arctostaphylos bakeri 'Louis Edmunds' 2 1G Arctostaphylos canescens 2 1G Arctostaphylos canescens subsp. -
Qty Size Name Price 10 1G Abies Bracteata 12.00 $ 15 1G Abutilon
REGIONAL PARKS BOTANIC GARDEN, TILDEN REGIONAL PARK, BERKELEY, CALIFORNIA Celebrating 78 years of growing California native plants: 1940-2018 **PRELIMINARY**PLANT SALE LIST **PRELIMINARY** Preliminary Plant Sale List 9/29/2018 visit: www.nativeplants.org for the most up to date plant list, updates are posted until 10/5 FALL PLANT SALE OF CALIFORNIA NATIVE PLANTS SATURDAY, October 6, 2018 PUBLIC SALE: 10:00 AM TO 3:00 PM MEMBERS ONLY SALE: 9:00 AM TO 10:00 AM MEMBERSHIPS ARE AVAILABLE AT THE ENTRY TO THE SALE AT 8:30 AM Qty Size Name Price 10 1G Abies bracteata $ 12.00 15 1G Abutilon palmeri $ 11.00 1 1G Acer circinatum $ 10.00 3 5G Acer circinatum $ 40.00 8 1G Acer macrophyllum $ 9.00 10 1G Achillea millefolium 'Calistoga' $ 8.00 25 4" Achillea millefolium 'Island Pink' OUR INTRODUCTION! $ 5.00 28 1G Achillea millefolium 'Island Pink' OUR INTRODUCTION! $ 8.00 6 1G Actea rubra f. neglecta (white fruits) $ 9.00 3 1G Adenostoma fasciculatum $ 10.00 1 4" Adiantum aleuticum $ 10.00 6 1G Adiantum aleuticum $ 13.00 10 4" Adiantum shastense $ 10.00 4 1G Adiantum x tracyi $ 13.00 2 2G Aesculus californica $ 12.00 1 4" Agave shawii var. shawii $ 8.00 1 1G Agave shawii var. shawii $ 15.00 4 1G Allium eurotophilum $ 10.00 3 1G Alnus incana var. tenuifolia $ 8.00 4 1G Amelanchier alnifolia var. semiintegrifolia $ 9.00 8 2" Anemone drummondii var. drummondii $ 4.00 9 1G Anemopsis californica $ 9.00 8 1G Apocynum cannabinum $ 8.00 2 1G Aquilegia eximia $ 8.00 15 4" Aquilegia formosa $ 6.00 11 1G Aquilegia formosa $ 8.00 10 1G Aquilegia formosa 'Nana' $ 8.00 Arabis - see Boechera 5 1G Arctostaphylos auriculata $ 11.00 2 1G Arctostaphylos auriculata - large inflorescences from Black Diamond $ 11.00 1 1G Arctostaphylos bakeri $ 11.00 15 1G Arctostaphylos bakeri 'Louis Edmunds' $ 11.00 2 1G Arctostaphylos canescens subsp. -
CW3E AR Outlook for California DWR’S AR Program
CW3E AR Outlook For California DWR’s AR Program Active weather pattern expected to bring heavy rainfall and snowfall to portions of the Western U.S. • A series of storms and landfalling ARs are forecast to bring significant precipitation to portions of Northern California and the Pacific Northwest over the next 7 days • AR 4/AR 5 conditions (based on the Ralph et al. 2019 AR Scale) are possible over coastal Oregon and Washington in association with the second landfalling AR • The highest 7-day precipitation amounts (5–10 inches) are forecast over the Pacific Coast Ranges and Cascade Mountains • More than 2 feet of snow is possible in the higher elevations of the Washington Cascades during the next 48 hours AR Outlook: 12 Nov 2020 Source: NWS Seattle, https://www.weather.gov/sew/ • Strong winds and heavy rainfall/mountain snowfall are expected Friday and Friday night across western Washington • At least 12” of snow are forecast over the Olympic Mountains and Washington Cascades during the next 48 hours • The highest elevations in the Cascades may receive 2–4 feet of snow by Saturday morning AR Outlook: 12 Nov 2020 For California DWR’s AR Program GFS IVT & SLP Forecasts A) Valid 1200 UTC 13 Nov (F-036) B) Valid 0000 UTC 15 Nov (F-72) C) Valid 0000 UTC 17 Nov (F-120) L L Third AR makes H landfall over British H Columbia/Pacific Northwest 1st AR Brief pulse 2nd AR of IVT • The first AR is forecast make landfall over coastal Oregon before 12Z 13 Nov in association with a weaking frontal boundary (Figure A) • After the first AR dissipates, -
Geologic History of Siletzia, a Large Igneous Province in the Oregon And
Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot Wells, R., Bukry, D., Friedman, R., Pyle, D., Duncan, R., Haeussler, P., & Wooden, J. (2014). Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot. Geosphere, 10 (4), 692-719. doi:10.1130/GES01018.1 10.1130/GES01018.1 Geological Society of America Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Downloaded from geosphere.gsapubs.org on September 10, 2014 Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot Ray Wells1, David Bukry1, Richard Friedman2, Doug Pyle3, Robert Duncan4, Peter Haeussler5, and Joe Wooden6 1U.S. Geological Survey, 345 Middlefi eld Road, Menlo Park, California 94025-3561, USA 2Pacifi c Centre for Isotopic and Geochemical Research, Department of Earth, Ocean and Atmospheric Sciences, 6339 Stores Road, University of British Columbia, Vancouver, BC V6T 1Z4, Canada 3Department of Geology and Geophysics, University of Hawaii at Manoa, 1680 East West Road, Honolulu, Hawaii 96822, USA 4College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 104 CEOAS Administration Building, Corvallis, Oregon 97331-5503, USA 5U.S. Geological Survey, 4210 University Drive, Anchorage, Alaska 99508-4626, USA 6School of Earth Sciences, Stanford University, 397 Panama Mall Mitchell Building 101, Stanford, California 94305-2210, USA ABSTRACT frames, the Yellowstone hotspot (YHS) is on southern Vancouver Island (Canada) to Rose- or near an inferred northeast-striking Kula- burg, Oregon (Fig. -
Qty Size Name 9 1G Abies Bracteata 5 1G Acer Circinatum 4 5G Acer
REGIONAL PARKS BOTANIC GARDEN, TILDEN REGIONAL PARK, BERKELEY, CALIFORNIA Celebrating 77 years of growing California native plants: 1940-2017 **FIRST PRELIMINARY**PLANT SALE LIST **FIRST PRELIMINARY** First Preliminary Plant Sale List 9/29/2017 visit: www.nativeplants.org for the most up to date plant list, updates are posted until 10/6 FALL PLANT SALE OF CALIFORNIA NATIVE PLANTS SATURDAY, October 7, 2017 PUBLIC SALE: 10:00 AM TO 3:00 PM MEMBERS ONLY SALE: 9:00 AM TO 10:00 AM MEMBERSHIPS ARE AVAILABLE AT THE ENTRY TO THE SALE AT 8:30 AM Qty Size Name 9 1G Abies bracteata 5 1G Acer circinatum 4 5G Acer circinatum 7 4" Achillea millefolium 6 1G Achillea millefolium 'Island Pink' 15 4" Achillea millefolium 'Island Pink' 6 1G Actea rubra f. neglecta (white fruits) 15 1G Adiantum aleuticum 30 4" Adiantum capillus-veneris 15 4" Adiantum x tracyi (A. jordanii x A. aleuticum) 5 1G Alnus incana var. tenuifolia 1 1G Alnus rhombifolia 1 1G Ambrosia pumila 13 4" Ambrosia pumila 7 1G Anemopsis californica 6 1G Angelica hendersonii 1 1G Angelica tomentosa 6 1G Apocynum cannabinum 10 1G Aquilegia eximia 11 1G Aquilegia eximia 10 1G Aquilegia formosa 6 1G Aquilegia formosa 1 1G Arctostaphylos andersonii 3 1G Arctostaphylos auriculata 5 1G Arctostaphylos bakeri 10 1G Arctostaphylos bakeri 'Louis Edmunds' 5 1G Arctostaphylos catalinae 1 1G Arctostaphylos columbiana x A. uva-ursi 10 1G Arctostaphylos confertiflora 3 1G Arctostaphylos crustacea subsp. subcordata 3 1G Arctostaphylos cruzensis 1 1G Arctostaphylos densiflora 'James West' 10 1G Arctostaphylos edmundsii 'Big Sur' 2 1G Arctostaphylos edmundsii 'Big Sur' 22 1G Arctostaphylos edmundsii var. -
British Columbia Coastal Range and the Chilkotins
BRITISH COLUMBIA COASTAL RANGE AND THE CHILKOTINS The Coast Mountains of British Columbia are remote with limited accessibility by float plane, helicopter or boating up its deep inlets along the coast and hiking in. The mountains along British Columbia and SE Alaska intermix with the sea in a complex maze of fjords, with thousands of islands. It is a true wilderness where not exploited by logging and salmon farming pens. But there are some areas accessible from roads that can be explored, including west of Lillooet, the Chilcotins, and the Garibaldi Range. The Coast Mountains extend approximately 1,600 kilometres (1,000 mi) long from the southeastern boundaries are surrounded by the Fraser River and the Interior Plateau while its far northwestern edge is delimited by the Kelsall and Tatshenshini Rivers at the north end of the Alaska Panhandle, beyond which are the Saint Elias Mountains. The western mountain slopes are covered by dense temperate rainforest with heavily glaciated peaks and icefields that include Mt Waddington and Mt Silverthrone. Mount Waddington is the highest mountain of the Coast Mountains and the highest that lies entirely within British Columbia, located northeast of the head of Knight Inlet with an elevation of 4,019 metres (13,186 ft). The range along its eastern flanks tapers to the dry Interior Plateau and the boreal forests of the southern Chilkotins north to the Spatsizi Plateau Wilderness Provincial Park. The mountain range's name derives from its proximity to the sea coast, and it is often referred to as the Coast Range. The range includes volcanic and non-volcanic mountains and the extensive ice fields of the Pacific and Boundary Ranges, and the northern end of the volcanic system known as the Cascade Volcanoes. -
147 Occurrence and Distribution of Flash
NOAA Technical Memorandum NWS WR- 147 OCCURRENCE AND DISTRIBUTION OF FLASH FLOODS IN THE WESTERN REGION Thomas L. Dietrich Western Region Headquarters Hydrology Division Salt Lake City, Utah December 1979 UNITED STATES / NATIONAL OCEANIC AND / National Weather DEPARTMENT OF COMMERCE / ATMOSPHERIC ADMINISTRATION // Service Juanita M. Kreps, Secretary Richard A. Frank, Admtnistrator Richard E. Hallgren. Director This Technical Memorandum has been reviewed and is approved for pub! ication by Scientific Services Division, Western Region. L. W. Snellman, Chief Scientific Services Division Western Region Headquarters Salt Lake City, Utah ii TABLE OF CONTENTS Tables and Figures iv I. Introduction 1 II. Climatology of the Western Region by Geographical Divisions 1 a. Pacific Coast .. 1 b. Cascade ~ Sierra Nevada Mountains. 4 c. Intermountain Plateau. 4 d. Rocky Mountain Region. 4 e. Great Plains (eastern Montana) 8 III. Meteorology of Flash Floods .... 8 IV. Geographical Properties influencing Flash Floods. 10 a. Topography, Soils and Surface Cover. 10 b. Urbanization 10 V. Data Analysis .. 10 VI. Geographical Areas of Significant Concentrations of Flash Flood Events .... 17 a. Wasatch Front, Utah. 17 b. Central and Southern Arizona 19 c. Utah - Southern Mountains, Sevier Valley and Cedar City Area 19 VII. Brief Description of Flash Floods in the Western Region, 1950- 1969, as reported in the USGS Annual Flood Summaries. 23 VIII. References. iii TABLES AND FIGURES Table 1. Flash Floods by Geographical Region 16 Table 2. Flash Floods by Month and State . • 17 Figure 1. Geographic Regions of the United States 2 Figure 2. Coastal Valley, south of Eureka, California 3 Figure 3. Mean Annual Number of Days with Thunderstorms . -
Parker Flats Prescribed Burn 2015 Report 4-25-2016
The Parker Flats Prescribed Burn: 10th Year Post-fire Vegetation Recovery in 2015. Lars Pierce, Ian Harlan, John Inman, and Manual Casanova Division of Science & Environmental Policy, California State University Monterey Bay, 100 Campus Center, Seaside, CA 93955. March 2016 Abstract In 2000, vegetation in the 150-acre Parker Flats Parcel on Fort Ord was cleared of vegetation in order to remove unexploded ordnance. Subsequent vegetation regrowth from 2000-2005 favored plant species that are able to regenerate from below-ground buds (resprouters). There was little to no regrowth of special-status plant species that regenerate solely from seed following fire (obligate seeders). In order to improve the suitability of the Parcel as maritime chaparral habitat preserve, the Ft. Ord CRMP Group decided to burn the Parcel in 2005, with the goal of stimulating the germination and regrowth of these fire-adapted, obligate seeders from seedbank. To enhance combustion of the 5-yr old vegetation, we applied three fuel treatments prior to burning (cutting, crushing, and chaining) across twenty-four ½ acre plots (eight replicates). An additional twelve ½ acre plots were left untreated to act as controls in burned and unburned areas of Parker Flats. We have measured the cover and density of the plants at Parker Flats prior to and following the 2005 prescribed burn at 1-, 2-, 5-, and now 10-yr intervals (Pierce et al., 2004; 2005; 2006; 2007, 2010). Here we report on the 10th-year of post-fire vegetation recovery at Parker Flats in 2015. From 2010 to 2015, the cover of native plants in maritime chaparral at Parker Flats was little changed (83% in 2010 vs. -
Petrogenesis of Siletzia: the World’S Youngest Oceanic Plateau
Results in Geochemistry 1 (2020) 100004 Contents lists available at ScienceDirect Results in Geochemistry journal homepage: www.elsevier.com/locate/ringeo Petrogenesis of Siletzia: The world’s youngest oceanic plateau T.Jake R. Ciborowski a,∗, Bethan A. Phillips b,1, Andrew C. Kerr b, Dan N. Barfod c, Darren F. Mark c a School of Environment and Technology, University of Brighton, Brighton BN2 4GJ, UK b School of Earth and Ocean Science, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK c Natural Environment Research Council Argon Isotope Facility, Scottish Universities Environmental Research Centre, East Kilbride G75 0QF, UK a r t i c l e i n f o a b s t r a c t Keywords: Siletzia is an accreted Palaeocene-Eocene Large Igneous Province, preserved in the northwest United States and Igneous petrology southern Vancouver Island. Although previous workers have suggested that components of Siletzia were formed Geochemistry in tectonic settings including back arc basins, island arcs and ocean islands, more recent work has presented Geochemical modelling evidence for parts of Siletzia to have formed in response to partial melting of a mantle plume. In this paper, we Mantle plumes integrate geochemical and geochronological data to investigate the petrogenetic evolution of the province. Oceanic plateau Large igneous provinces The major element geochemistry of the Siletzia lava flows is used to determine the compositions of the primary magmas of the province, as well as the conditions of mantle melting. These primary magmas are compositionally similar to modern Ocean Island and Mid-Ocean Ridge lavas. Geochemical modelling of these magmas indicates they predominantly evolved through fractional crystallisation of olivine, pyroxenes, plagioclase, spinel and ap- atite in shallow magma chambers, and experienced limited interaction with crustal components. -
Arctostaphylos Photos Susan Mcdougall Arctostaphylos Andersonii
Arctostaphylos photos Susan McDougall Arctostaphylos andersonii Santa Cruz Manzanita Arctostaphylos auriculata Mount Diablo Manzanita Arctostaphylos bakeri ssp. bakeri Baker's Manzanita Arctostaphylos bakeri ssp. sublaevis The Cedars Manzanita Arctostaphylos canescens ssp. canescens Hoary Manzanita Arctostaphylos canescens ssp. sonomensis Sonoma Canescent Manzanita Arctostaphylos catalinae Catalina Island Manzanita Arctostaphylos columbiana Columbia Manzanita Arctostaphylos confertiflora Santa Rosa Island Manzanita Arctostaphylos crustacea ssp. crinita Crinite Manzanita Arctostaphylos crustacea ssp. crustacea Brittleleaf Manzanita Arctostaphylos crustacea ssp. rosei Rose's Manzanita Arctostaphylos crustacea ssp. subcordata Santa Cruz Island Manzanita Arctostaphylos cruzensis Arroyo De La Cruz Manzanita Arctostaphylos densiflora Vine Hill Manzanita Arctostaphylos edmundsii Little Sur Manzanita Arctostaphylos franciscana Franciscan Manzanita Arctostaphylos gabilanensis Gabilan Manzanita Arctostaphylos glandulosa ssp. adamsii Adam's Manzanita Arctostaphylos glandulosa ssp. crassifolia Del Mar Manzanita Arctostaphylos glandulosa ssp. cushingiana Cushing's Manzanita Arctostaphylos glandulosa ssp. glandulosa Eastwood Manzanita Arctostaphylos glauca Big berry Manzanita Arctostaphylos hookeri ssp. hearstiorum Hearst's Manzanita Arctostaphylos hookeri ssp. hookeri Hooker's Manzanita Arctostaphylos hooveri Hoover’s Manzanita Arctostaphylos glandulosa ssp. howellii Howell's Manzanita Arctostaphylos insularis Island Manzanita Arctostaphylos luciana -
Active Mountain Building and the Distribution of “Core” Maxillariinae Species in Tropical Mexico and Central America
LANKESTERIANA 11(3): 275—291. 2011. ACTIVE MOUNTAIN BUILDING AND THE DISTRIBUTION OF “CORE” MAXILLARIINAE SPECIES IN TROPICAL MEXICO AND CENTRAL AMERICA STEPHEN H. KIRBY U.S. Geological Survey, 345 Middlefield Road, Menlo Park, California 94025, U.S.A. ABSTRACT. The observation that southeastern Central America is a hotspot for orchid diversity has long been known and confirmed by recent systematic studies and checklists. An analysis of the geographic and elevation distribution demonstrates that the most widespread species of “core” Maxillariinae are all adapted to life near sea level, whereas the most narrowly endemic species are largely distributed in wet highland environments. Drier, hotter lowland gaps exist between these cordilleras and evidently restrict the dispersal of the species adapted to wetter, cooler conditions. Among the recent generic realignments of “core” Maxillariinae based on molecular phylogenetics, the Camaridium clade is easily the most prominent genus in Central America and is largely restricted to the highlands of Costa Rica and Panama, indicating that this region is the ancestral home of this genus and that its dispersal limits are drier, lowland cordilleran gaps. The mountains of Costa Rica and Panama are among the geologically youngest topographic features in the Neotropics, reflecting the complex and dynamic interactions of numerous tectonic plates. From consideration of the available geological evidence, I conclude that the rapid growth of the mountain ranges in Costa Rica and Panama during the late Cenozoic times created, in turn, very rapid ranges in ecological life zones and geographic isolation in that part of the isthmus. Thus, I suggest that these recent geologic events were the primary drivers for accelerated orchid evolution in southeastern Central America. -
Washington Flora Checklist a Checklist of the Vascular Plants of Washington State Hosted by the University of Washington Herbarium
Washington Flora Checklist A checklist of the Vascular Plants of Washington State Hosted by the University of Washington Herbarium The Washington Flora Checklist aims to be a complete list of the native and naturalized vascular plants of Washington State, with current classifications, nomenclature and synonymy. The checklist currently contains 3,929 terminal taxa (species, subspecies, and varieties). Taxa included in the checklist: * Native taxa whether extant, extirpated, or extinct. * Exotic taxa that are naturalized, escaped from cultivation, or persisting wild. * Waifs (e.g., ballast plants, escaped crop plants) and other scarcely collected exotics. * Interspecific hybrids that are frequent or self-maintaining. * Some unnamed taxa in the process of being described. Family classifications follow APG IV for angiosperms, PPG I (J. Syst. Evol. 54:563?603. 2016.) for pteridophytes, and Christenhusz et al. (Phytotaxa 19:55?70. 2011.) for gymnosperms, with a few exceptions. Nomenclature and synonymy at the rank of genus and below follows the 2nd Edition of the Flora of the Pacific Northwest except where superceded by new information. Accepted names are indicated with blue font; synonyms with black font. Native species and infraspecies are marked with boldface font. Please note: This is a working checklist, continuously updated. Use it at your discretion. Created from the Washington Flora Checklist Database on September 17th, 2018 at 9:47pm PST. Available online at http://biology.burke.washington.edu/waflora/checklist.php Comments and questions should be addressed to the checklist administrators: David Giblin ([email protected]) Peter Zika ([email protected]) Suggested citation: Weinmann, F., P.F. Zika, D.E. Giblin, B.