WOOD FLUORESCENCE of INDIGENOUS SOUTH AFRICAN TREES Stephanie T. Dyer Summary Introdudion Materials and Methods
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Multiple Polyploidy Events in the Early Radiation of Nodulating And
Multiple Polyploidy Events in the Early Radiation of Nodulating and Nonnodulating Legumes Steven B. Cannon,*,y,1 Michael R. McKain,y,2,3 Alex Harkess,y,2 Matthew N. Nelson,4,5 Sudhansu Dash,6 Michael K. Deyholos,7 Yanhui Peng,8 Blake Joyce,8 Charles N. Stewart Jr,8 Megan Rolf,3 Toni Kutchan,3 Xuemei Tan,9 Cui Chen,9 Yong Zhang,9 Eric Carpenter,7 Gane Ka-Shu Wong,7,9,10 Jeff J. Doyle,11 and Jim Leebens-Mack2 1USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 2Department of Plant Biology, University of Georgia 3Donald Danforth Plant Sciences Center, St Louis, MO 4The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia 5The School of Plant Biology, The University of Western Australia, Crawley, WA, Australia 6Virtual Reality Application Center, Iowa State University 7Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada 8Department of Plant Sciences, The University of Tennessee Downloaded from 9BGI-Shenzhen, Bei Shan Industrial Zone, Shenzhen, China 10Department of Medicine, University of Alberta, Edmonton, AB, Canada 11L. H. Bailey Hortorium, Department of Plant Biology, Cornell University yThese authors contributed equally to this work. *Corresponding author: E-mail: [email protected]. http://mbe.oxfordjournals.org/ Associate editor:BrandonGaut Abstract Unresolved questions about evolution of the large and diverselegumefamilyincludethetiming of polyploidy (whole- genome duplication; WGDs) relative to the origin of the major lineages within the Fabaceae and to the origin of symbiotic nitrogen fixation. Previous work has established that a WGD affects most lineages in the Papilionoideae and occurred sometime after the divergence of the papilionoid and mimosoid clades, but the exact timing has been unknown. -
Archaea, Bacteria and Termite, Nitrogen Fixation and Sustainable Plants Production
Sun W et al . (2021) Notulae Botanicae Horti Agrobotanici Cluj-Napoca Volume 49, Issue 2, Article number 12172 Notulae Botanicae Horti AcademicPres DOI:10.15835/nbha49212172 Agrobotanici Cluj-Napoca Re view Article Archaea, bacteria and termite, nitrogen fixation and sustainable plants production Wenli SUN 1a , Mohamad H. SHAHRAJABIAN 1a , Qi CHENG 1,2 * 1Chinese Academy of Agricultural Sciences, Biotechnology Research Institute, Beijing 100081, China; [email protected] ; [email protected] 2Hebei Agricultural University, College of Life Sciences, Baoding, Hebei, 071000, China; Global Alliance of HeBAU-CLS&HeQiS for BioAl-Manufacturing, Baoding, Hebei 071000, China; [email protected] (*corresponding author) a,b These authors contributed equally to the work Abstract Certain bacteria and archaea are responsible for biological nitrogen fixation. Metabolic pathways usually are common between archaea and bacteria. Diazotrophs are categorized into two main groups namely: root- nodule bacteria and plant growth-promoting rhizobacteria. Diazotrophs include free living bacteria, such as Azospirillum , Cupriavidus , and some sulfate reducing bacteria, and symbiotic diazotrophs such Rhizobium and Frankia . Three types of nitrogenase are iron and molybdenum (Fe/Mo), iron and vanadium (Fe/V) or iron only (Fe). The Mo-nitrogenase have a higher specific activity which is expressed better when Molybdenum is available. The best hosts for Rhizobium legumiosarum are Pisum , Vicia , Lathyrus and Lens ; Trifolium for Rhizobium trifolii ; Phaseolus vulgaris , Prunus angustifolia for Rhizobium phaseoli ; Medicago, Melilotus and Trigonella for Rhizobium meliloti ; Lupinus and Ornithopus for Lupini, and Glycine max for Rhizobium japonicum . Termites have significant key role in soil ecology, transporting and mixing soil. Termite gut microbes supply the enzymes required to degrade plant polymers, synthesize amino acids, recycle nitrogenous waste and fix atmospheric nitrogen. -
Whole Genome and Segmental Duplications Underlie Glutamine Synthetase and Phosphoenolpyruvate Carboxylase Diversity in Narrow-Leafed Lupin (Lupinus Angustifolius L.)
International Journal of Molecular Sciences Article A Tale of Two Families: Whole Genome and Segmental Duplications Underlie Glutamine Synthetase and Phosphoenolpyruvate Carboxylase Diversity in Narrow-Leafed Lupin (Lupinus angustifolius L.) Katarzyna B. Czy˙z 1,* , Michał Ksi ˛a˙zkiewicz 2 , Grzegorz Koczyk 1 , Anna Szczepaniak 2, Jan Podkowi ´nski 3 and Barbara Naganowska 2 1 Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; [email protected] 2 Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; [email protected] (M.K.); [email protected] (B.N.) 3 Department of Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland * Correspondence: [email protected] Received: 17 February 2020; Accepted: 6 April 2020; Published: 8 April 2020 Abstract: Narrow-leafed lupin (Lupinus angustifolius L.) has recently been supplied with advanced genomic resources and, as such, has become a well-known model for molecular evolutionary studies within the legume family—a group of plants able to fix nitrogen from the atmosphere. The phylogenetic position of lupins in Papilionoideae and their evolutionary distance to other higher plants facilitates the use of this model species to improve our knowledge on genes involved in nitrogen assimilation and primary metabolism, providing novel contributions to our understanding of the evolutionary history of legumes. In this study, we present a complex characterization of two narrow-leafed lupin gene families—glutamine synthetase (GS) and phosphoenolpyruvate carboxylase (PEPC). We combine a comparative analysis of gene structures and a synteny-based approach with phylogenetic reconstruction and reconciliation of the gene family and species history in order to examine events underlying the extant diversity of both families. -
Method to Estimate Dry-Kiln Schedules and Species Groupings: Tropical and Temperate Hardwoods
United States Department of Agriculture Method to Estimate Forest Service Forest Dry-Kiln Schedules Products Laboratory Research and Species Groupings Paper FPL–RP–548 Tropical and Temperate Hardwoods William T. Simpson Abstract Contents Dry-kiln schedules have been developed for many wood Page species. However, one problem is that many, especially tropical species, have no recommended schedule. Another Introduction................................................................1 problem in drying tropical species is the lack of a way to Estimation of Kiln Schedules.........................................1 group them when it is impractical to fill a kiln with a single Background .............................................................1 species. This report investigates the possibility of estimating kiln schedules and grouping species for drying using basic Related Research...................................................1 specific gravity as the primary variable for prediction and grouping. In this study, kiln schedules were estimated by Current Kiln Schedules ..........................................1 establishing least squares relationships between schedule Method of Schedule Estimation...................................2 parameters and basic specific gravity. These relationships were then applied to estimate schedules for 3,237 species Estimation of Initial Conditions ..............................2 from Africa, Asia and Oceana, and Latin America. Nine drying groups were established, based on intervals of specific Estimation -
PUBLISHER S Candolle Herbarium
Guide ERBARIUM H Candolle Herbarium Pamela Burns-Balogh ANDOLLE C Jardin Botanique, Geneva AIDC PUBLISHERP U R L 1 5H E R S S BRILLB RI LL Candolle Herbarium Jardin Botanique, Geneva Pamela Burns-Balogh Guide to the microform collection IDC number 800/2 M IDC1993 Compiler's Note The microfiche address, e.g. 120/13, refers to the fiche number and secondly to the individual photograph on each fiche arranged from left to right and from the top to the bottom row. Pamela Burns-Balogh Publisher's Note The microfiche publication of the Candolle Herbarium serves a dual purpose: the unique original plants are preserved for the future, and copies can be made available easily and cheaply for distribution to scholars and scientific institutes all over the world. The complete collection is available on 2842 microfiche (positive silver halide). The order number is 800/2. For prices of the complete collection or individual parts, please write to IDC Microform Publishers, P.O. Box 11205, 2301 EE Leiden, The Netherlands. THE DECANDOLLEPRODROMI HERBARIUM ALPHABETICAL INDEX Taxon Fiche Taxon Fiche Number Number -A- Acacia floribunda 421/2-3 Acacia glauca 424/14-15 Abatia sp. 213/18 Acacia guadalupensis 423/23 Abelia triflora 679/4 Acacia guianensis 422/5 Ablania guianensis 218/5 Acacia guilandinae 424/4 Abronia arenaria 2215/6-7 Acacia gummifera 421/15 Abroniamellifera 2215/5 Acacia haematomma 421/23 Abronia umbellata 221.5/3-4 Acacia haematoxylon 423/11 Abrotanella emarginata 1035/2 Acaciahastulata 418/5 Abrus precatorius 403/14 Acacia hebeclada 423/2-3 Acacia abietina 420/16 Acacia heterophylla 419/17-19 Acacia acanthocarpa 423/16-17 Acaciahispidissima 421/22 Acacia alata 418/3 Acacia hispidula 419/2 Acacia albida 422/17 Acacia horrida 422/18-20 Acacia amara 425/11 Acacia in....? 423/24 Acacia amoena 419/20 Acacia intertexta 421/9 Acacia anceps 419/5 Acacia julibross. -
The Flora Protection Act, 2000 Legal Notice No.10 of 2000
The Flora Protection Act, 2000 Legal Notice No.10 of 2000 Gazetted as VOL. XXXVI I I MBABANE, Friday, Septem ber 22nd., 2000 [ No. 606] Presented by the Minister for Agriculture and Cooperatives MEMORANDUM OF OBJECTS AND REASONS The purpose of this Bill is to repeal and replace the Flora Protection Act No. 45 of 1952 so as to provide for m ore effective protection of flora and to provide for m atters incidental thereto. P. M. DLAMI NI Attorney General A BI LL entitled An Act to protect indigenous flora and to provide for m atters incidental thereto. ENACTED by the King and the Parliam ent of Swaziland. Short title and commencement 1. This Act m ay be cited as the Flora Protection Act, 2000 and shall com e into force on such date as the Minister m ay, by notice in the Gazette, appoint. Interpretation 2. I n this Act, unless the context otherwise requires: - "Authority" m eans the Swaziland Environm ent Authority established by the Swaziland Environm ent Authority Act No. 15 of 1992; "cultivate" m eans to prom ote, stim ulate or foster the growth of a plant, or plant m aterial (including seed) obtained lawfully in term s of this Act, and "cultivated" and "cultivation" have corresponding m eanings; "endem ic flora" m eans any flora whose natural distribution is restricted to the boundaries of Swaziland; "flora reserve" m eans a reserve established in term s of Section 3; "indigenous flora" m eans any plant whose natural distribution is Southern Africa including Swaziland; "land" includes land with or without buildings thereon; "Minister" m eans the Minister responsible for Flora; "plant" m eans any vegetative or reproductive growth including fungi, algae, m osses, lichens, liverworts, ferns, fern allies or seed plant whether living or dead; "owner" m eans: - a. -
Preliminary Ecological Survey and Habitat Assessment for the Proposed New Link Road from the N2 Connecting to the Mvezho Village
PRELIMINARY ECOLOGICAL SURVEY-P-166 PRELIMINARY ECOLOGICAL SURVEY AND HABITAT ASSESSMENT FOR THE PROPOSED P-166 ROAD; WHITE-RIVER-MBOMBELA, MPUMALANGA PROVINCE Compiled for: Royal HaskoningDHV by: Vegetation Aspect Prof. L.R. Brown (Phd UP) MGSSA, Pr.Sci.Nat 400075/98 Faunal Aspect Mr C.L.COOK (MSc. Zool. U.P) Pr.Nat.Sci 400084/08 SUBMITTED: DECEMBER 2012 1 PRELIMINARY ECOLOGICAL SURVEY-P-166 1. Background Information Prof. L.R. Brown and Mr. C. L. Cook were appointed by Royal HaskoningDHV (previously SSI) to undertake a preliminary ecological assessment for the scoping phase of the proposed EIA for the P-166 road from the north of White River to the south of Mbombela. Four alternatives alignments were proposed for the new P1-66 road linkage. It must be stressed that no comprehensive vegetation or faunal surveys have been undertaken due to severe financial and time constraints as well as access on privately owned properties; but merely a brief assessment of the current ecological status of the proposed road alignments. By surveying the proposed road alignment as well as immediate areas adjacent to the proposed alignment for specialised habitats, as well as the remaining vegetation and specific habitats, one can make an assumption of the possible presence or absence of threatened plant and animal species. An initial site visitation of the proposed alignment was conducted on the 20-21st October 2012. The survey was supplemented by literature investigations; personal records, historic data and previous surveys conducted in the White River-Mbombela areas (2000-2012) as well as in similar habitats. -
Museum of Economic Botany, Kew. Specimens Distributed 1901 - 1990
Museum of Economic Botany, Kew. Specimens distributed 1901 - 1990 Page 1 - https://biodiversitylibrary.org/page/57407494 15 July 1901 Dr T Johnson FLS, Science and Art Museum, Dublin Two cases containing the following:- Ackd 20.7.01 1. Wood of Chloroxylon swietenia, Godaveri (2 pieces) Paris Exibition 1900 2. Wood of Chloroxylon swietenia, Godaveri (2 pieces) Paris Exibition 1900 3. Wood of Melia indica, Anantapur, Paris Exhibition 1900 4. Wood of Anogeissus acuminata, Ganjam, Paris Exhibition 1900 5. Wood of Xylia dolabriformis, Godaveri, Paris Exhibition 1900 6. Wood of Pterocarpus Marsupium, Kistna, Paris Exhibition 1900 7. Wood of Lagerstremia parviflora, Godaveri, Paris Exhibition 1900 8. Wood of Anogeissus latifolia , Godaveri, Paris Exhibition 1900 9. Wood of Gyrocarpus jacquini, Kistna, Paris Exhibition 1900 10. Wood of Acrocarpus fraxinifolium, Nilgiris, Paris Exhibition 1900 11. Wood of Ulmus integrifolia, Nilgiris, Paris Exhibition 1900 12. Wood of Phyllanthus emblica, Assam, Paris Exhibition 1900 13. Wood of Adina cordifolia, Godaveri, Paris Exhibition 1900 14. Wood of Melia indica, Anantapur, Paris Exhibition 1900 15. Wood of Cedrela toona, Nilgiris, Paris Exhibition 1900 16. Wood of Premna bengalensis, Assam, Paris Exhibition 1900 17. Wood of Artocarpus chaplasha, Assam, Paris Exhibition 1900 18. Wood of Artocarpus integrifolia, Nilgiris, Paris Exhibition 1900 19. Wood of Ulmus wallichiana, N. India, Paris Exhibition 1900 20. Wood of Diospyros kurzii , India, Paris Exhibition 1900 21. Wood of Hardwickia binata, Kistna, Paris Exhibition 1900 22. Flowers of Heterotheca inuloides, Mexico, Paris Exhibition 1900 23. Leaves of Datura Stramonium, Paris Exhibition 1900 24. Plant of Mentha viridis, Paris Exhibition 1900 25. Plant of Monsonia ovata, S. -
Trees and Plants for Bees and Beekeepers in the Upper Mara Basin
Trees and plants for bees and beekeepers in the Upper Mara Basin Guide to useful melliferous trees and crops for beekeepers December 2017 Contents Who is this guide for? .......................................................................................................................................................................................................................................................................... 1 Introduction to the MaMaSe Project .................................................................................................................................................................................................................................................. 1 Market driven forest conservation initiatives in the Upper Mara basin ............................................................................................................................................................................................. 2 Water, apiculture, forests, trees and livelihoods ................................................................................................................................................................................................................................ 3 Types of bees ....................................................................................................................................................................................................................................................................................... 4 How this -
Bee Forage Use), Services (Pollination Services) and Threats (Hive Theft and Vandalism
An assessment of different beekeeping practices in South Africa based on their needs (bee forage use), services (pollination services) and threats (hive theft and vandalism) by Tlou Samuel Masehela Dissertation presented for the degree of Doctor of Philosophy in Entomology in the Faculty of Agricultural Sciences at Stellenbosch University Supervisor: Dr Ruan Veldtman March 2017 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis/dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. March 2017 Copyright © 2017 Stellenbosch University All rights reserved ii Stellenbosch University https://scholar.sun.ac.za General summary Two honey bee subspecies indigenous to South Africa, Apis mellifera capensis Escholtz (Cape honey bee) and Apis mellifera scutellata Lepeletier, are actively managed by beekeepers for honey production, other bee related products (e.g. bees wax) and to provide pollination services. Historic records show that managed colonies of both subspecies to rely on a mix of exotic - (Eucalyptus species, agricultural crops, weeds and suburban plantings) and indigenous forage (genera and vegetation units). However, their extent of use and importance for honey production, pollination, colony maintenance and swarm trapping (together referred to as beekeeping practices), have not been fully explored across South Africa. Additionally, acts of hive theft and vandalism have become a key concern for the industry, threatening and potentially limiting beekeeping in some areas. -
Tree Checklist
Taxon Common name Xerophyta retinervis Monkey’s Tail Xymalos monospora Lemonwood Tree Checklist Zanthoxylum dayvi Forest Knobwood Ziziphus mucronata Buffalo Thorn Updated February 2020 Please record any additional sightings in your Visitors report *Indicates an alien species Taxon Common name Taxon Common name *Acacia dealbata Silver Wattle *Salix babylonica Weeping Willoiw *Acacia decurrens Green Wattle Salix mucronata Flute Willow *Acacia Mearnsii Black Wattle Salvia dolomitica Pilgrim’s Rest Pink Salvia *Acacia. Melanoxylon Blackwood Scolopia mundii Red-pear Allophylus africanus African False Currant Scolopia oreophila Wakkerstroom Red-pear Aloe arborescens Cliff Aloe Schrebera alata Wing-leaved Wooden-pear Apodytes dimidiata White Pear Searsia chirindensis (=Rhus) Red Currant Bowkeria cymosa Transvaal Shell-flower Searsia dentata (=Rhus) Nana Berry Brachylaena discolor Costal silver Oak Searsia discolor Grassland Currant (Suffrutex) Buddleia auriculata Weeping Sagewood Searsia lancea (=Rhus) Karee Buddleia saligna False Olive Searsia lucida (=Rhus) Waxy Currant Buddleia salviifolia Mountain Sagewood Searsia tumulicola (=Rhus) Hard-leaved Currant Calodendron capense Cape Chestnut Senegalia ataxacantha (=Acacia) Flame Thorn Carissa bispinosa Forest Num-num Strophanthus speciosus Forest Poison Rope Carissa edulis Climbing Num-num Syncolostemon eriocephalus Mountain Cotton Bush Cassinopsis ilicifolia Lemonthorn Trimeria grandifolia Wild Mulberry Celtis africana White stinkwood Vachellia Karroo (=Acacia) Sweet Thorn Cephalanthus natalensis -
The Origin and Early Evolution of the Legumes Are a Complex
bioRxiv preprint doi: https://doi.org/10.1101/577957; this version posted March 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 The Origin and Early Evolution of the Legumes are a 2 Complex Paleopolyploid Phylogenomic Tangle closely 3 associated with the Cretaceous-Paleogene (K-Pg) Boundary 4 5 Running head: 6 Phylogenomic complexity and polyploidy in legumes 7 8 Authors: 9 Erik J.M. Koenen1*, Dario I. Ojeda2,3, Royce Steeves4,5, Jérémy Migliore2, Freek T. 10 Bakker6, Jan J. Wieringa7, Catherine Kidner8,9, Olivier Hardy2, R. Toby Pennington8,10, 11 Patrick S. Herendeen11, Anne Bruneau4 and Colin E. Hughes1 12 13 1 Department of Systematic and Evolutionary Botany, University of Zurich, 14 Zollikerstrasse 107, CH-8008, Zurich, Switzerland 15 2 Service Évolution Biologique et Écologie, Faculté des Sciences, Université Libre de 16 Bruxelles, Avenue Franklin Roosevelt 50, 1050, Brussels, Belgium 17 3 Norwegian Institute of Bioeconomy Research, Høgskoleveien 8, 1433 Ås, Norway 18 4 Institut de Recherche en Biologie Végétale and Département de Sciences Biologiques, 19 Université de Montréal, 4101 Sherbrooke St E, Montreal, QC H1X 2B2, Canada 20 5 Fisheries & Oceans Canada, Gulf Fisheries Center, 343 Université Ave, Moncton, NB 21 E1C 5K4, Canada 22 6 Biosystematics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, 23 Wageningen, The Netherlands 24 7 Naturalis Biodiversity Center, Leiden, Darwinweg 2, 2333 CR, Leiden, The Netherlands 25 8 Royal Botanic Gardens, 20a Inverleith Row, Edinburgh EH3 5LR, U.K.