Memoirs of the Queensland Museum: Cultural Heritage Series · January 2010

Total Page:16

File Type:pdf, Size:1020Kb

Memoirs of the Queensland Museum: Cultural Heritage Series · January 2010 See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/285946374 Fossil fruit of the Macadamieae (Proteaceae) in the Tertiary of eastern Australia: Eureka gen. nov Article in Memoirs of the Queensland Museum: Cultural Heritage Series · January 2010 CITATION READS 1 31 2 authors, including: Mary E. Dettmann Queensland Museum 85 PUBLICATIONS 2,582 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: The origins history and evolution of the modern Australian flora View project All content following this page was uploaded by Mary E. Dettmann on 10 December 2015. The user has requested enhancement of the downloaded file. Memoirs of the Queensland Museum | Nature 55(1) © The State of Queensland (Queensland Museum) 2010 PO Box 3300, South Brisbane 4101, Australia Phone 06 7 3840 7555 Fax 06 7 3846 1226 Email [email protected] Website www.qm.qld.gov.au National Library of Australia card number ISSN 0079-8835 NOTE Papers published in this volume and in all previous volumes of the Memoirs of the Queensland Museum may be reproduced for scientific research, individual study or other educational purposes. Properly acknowledged quotations may be made but queries regarding the republication of any papers should be addressed to the Editor in Chief. Copies of the journal can be purchased from the Queensland Museum Shop. A Guide to Authors is displayed at the Queensland Museum web site http://www.qm.qld.gov.au/About+Us/Publications/Memoirs+of+the+Queensland+Museum A Queensland Government Project Typeset at the Queensland Museum Fossil fruit of the Macadamieae (Proteaceae) in the Tertiary of eastern Australia: Eureka gen. nov. Mary E. DETTMANN H. Trevor CLIFFORD Queensland Museum, Geosciences, Hendra Facility, 122 Gerler Rd, Hendra, Qld 4011, Australia. Email: [email protected] Citation: Dettmann, M.E. & Clifford, H.T. 2010 03 15. Fossil fruit of the Macadamieae (Proteaceae) in the Tertiary of eastern Australia: Eureka gen. nov.. Memoirs of the Queensland Museum — Nature 55(1): 147-166. Brisbane. ISSN 0079-8835. Accepted: 13 October 2009. ABSTRACT Eureka gen. nov. is proposed to accommodate fossil fruits recovered from several mid- Tertiary (early Oligocene-Miocene) sites in eastern Australia. The type (E. welcomensis sp. nov.) and other described species (E.(al. Conchotheca) turgida (F. Muell.) comb. nov., E. spechtii sp. nov., E. harslettiae sp. nov.) have bilaterally symmetrical, ellipsoidal pericarps that are uniloculate, 1-seeded, and tardily dehiscent along the ventral suture and dorsal hinge line. The pericarp wall is radially structured and has a branched vasculature system capped by fibres embedded in a thick mesocarp; the radial fibres extend into the exocarp, and the endocarp is thin or lacking. The seed is orthotropous, attached apically and with a 2-layered seed coat that has an endotestal cuticle bearing impressions of transfer cells. Eureka is morphologically and anatomically consistent with fruits of extant members of Bleasdalea F. Muell., Hicksbeachia F. Muell., and Gevuina Molina of subtribe Gevuininae (tribe Macadamieae, family Proteaceae). Accordingly, the fossil fruit evidence implies that the Gevuininae had a former distribution range spanning some 20º of latitude in eastern Australia and taken together with fossil cuticle evidence a trans-Tasman distribution no longer mirrored in the present vegetation. Eureka also displays some resemblance to the tardily dehiscent fruits of extant Panopsis (subtribe Macadamiinae, tribe Macadamieae); however, morphological/anatomical details of extant members are imprecisely known. Australia, Bleasdalea, Eureka, fossil fruit, Gevuina, Hicksbeachia, Macadamieae, Tertiary. Among recently recovered woody fossils mesocarp. Similarly structured pericarps charac- from Tertiary sediments at several localities terise fruits borne by extant genera of tribe in Queensland are several different types of Macadamieae. The distinctive vasculature 1-seeded, tardily dehiscent, uniloculate fruits pattern with ‘third-order radial vascular bundles’ with vascularised pericarps similar to those of (Johnson & Briggs 1975, p.134; Douglas 1995, fruits borne by several extant genera included p.18) comprises prolific radial branching of within tribe Macadamieae (Proteaceae) as the main vertical and lateral (tangentially- recently redefined (Weston & Barker 2006; Mast aligned) bundles in a woody ground mass of et al. 2008). The Queensland fossil fruits are predominantly radially oriented fibre sheaths spheroidal to ellipsoidal, near-symmetrical about that surround the bundles as detailed for fruits the vertical axis, and their thick pericarp has a of several extant members of the tribe (Filla distinctive radial structure reflecting a branched 1926; Strohschen 1986a,b). The Queensland vasculature system embedded in a thick, woody fossil fruits with their near vertical symmetry, Memoirs of the Queensland Museum | Nature 2010 55(1) www.qm.qld.gov.au 147 Dettmann & Clifford near-smooth outer surface of pericarp, and shown to be insufficiently discriminatory of one apically attached unwinged seed having the extant taxa in parsimony analyses (Sauquet a 2-layered, non-woody seed coat are more et al. 2009); thus far, P. tripartus has not been similar to fruits of several genera (Gevuina tested in any comparable cladistic analysis. Molina, Hicksbeachia F. Muell., and Bleasdalea F. Muell.) of subtribe Gevuininae than to other MATERIAL members of tribe Macadamieae. Previously described fossil fruits that possess a thick Fruits reported upon here include woody and pericarp with third order vasculature were charcoalified and permineralised specimens. assigned to Conchotheca turgida F. Muell., a taxon The charcoalified specimens were recovered reported from mid-Tertiary deep lead sediments from subsurface sediments near Blackwater in Victoria (Mueller 1874a, Deane 1925) and and Moranbah, central Queensland and Tasmania (Johnston 1880). Mueller (1874a) did Bundaberg, southeastern Queensland and the not comment on the botanical aff inity of C. turgida, permineralised specimens are from an outcrop at but examination of his protocol material confirms Glencoe, central Queensland; all are held in the these fossils, too, are morphologically consonant Queensland Museum (QMF). Also examined are with fruits of subtribe Gevuininae, being similar woody and charcoalified fruits collected in the late to those of Gevuina, Bleasdalea, and Hicksbeachia. 1800’s and early 1900’s from several goldfield sites Evaluation of Mueller’s protocol material and of in Victoria and New South Wales and housed the Queensland fossil fruits form the basis of the in the Queensland Museum, the Australian present study. Moreover, comparisons have been Museum (AMF) and the Museum of Victoria undertaken of the fossil material with fruits of (NMVP). The last-mentioned collection contains extant Gevuina, Hicksbeachia, and Bleasdalea. the type and other specimens of the protocol material of Conchotheca turgida F. Muell.,1874, Extant Gevuina is monotypic and endemic which was originally housed in the Museum to southern South America; Bleasdalea has two of the Geological Survey of Victoria (GSVF). species, one each in New Guinea and eastern Locality details of occurrences of Eureka gen. Australia, and Hicksbeachia, with two species, is nov. are as follows (see also Fig. 1B). endemic to eastern Australia (Fig 1A; Weston & Barker 2006). Fossil cuticles that are consistent Queensland. a) Picardy Station, near Moranbah with those of subtribe Gevuininae have been (21º5’17.6’S 147º50’34.3’E) Rio Tinto Explor ation reported from Eocene sediments of Western Hole RDPD98MA21, sands, silts and lignites Australia (Carpenter & Pole 1995) and from at 123-133 m; Early Oligocene (Dettmann & the Miocene of New Zealand (Pole 1998). Clifford 2001). Fossil wood similar to, but not identical with, b) Near Blackwater (24º 1’1.3’S 148º48’50’E) South Gevuina has been reported from the Oligocene of Patagonia (Pujana 2007). Blackwater Coal Pty Ltd Hole R8736, sands and lignites at 82m; Early-Late Oligocene The fossil pollen taxa, Propylipollis reticulo­ (Dettmann & Clifford 2001). scabratus (Harris) Harris and Martin, and P. c) Glencoe Station (23º 36’S 148º 06’E), near Capella, tripartus Harris, which occur in Campanian- silcrete outcrop; Oligocene-?Early Miocene Tertiary sediments of Australia, New Zealand and Antarctica, are morphologically similar to (Rozefelds 1990; Rozefelds & Christophel 1996; pollen of Gevuina, Bleasdalea, and Hicksbeachia Dettmann & Clifford 2001). (Martin 1982; Dettmann & Jarzen 1990, 1996, d) N of Bundaberg (24° 46’49’S 152º18’17’E), 1998). P. reticuloscabratus however, has been Herberts on Welcome Creek Drain, subsurface 148 Memoirs of the Queensland Museum | Nature 2010 55(1) Fossil Proteaceous fruits sands and clays; Early Miocene (Dettmann without whitening. Thin sections of charcoalified & Clifford, 2003). specimens were cut using a slide microtome e) Near Clifton (27º 55’S 151º 55’E), Queensland and mounted in glycerine jelly on glass slides Water Resources borehole, sands and lignites for transmitted light microscope analysis. Fragments of several specimens were mounted at 45-46 m; Tertiary (?Miocene). on stubs and gold plated for scanning electron New South Wales. Near Orange (33º 17’S 149º microscope analysis. Anatomical features of 06’E, Forest Reefs Mine, deep lead sediments; seed coats were examined in transmitted light late Middle-early
Recommended publications
  • Macadamia Integrifolia HAES 741)
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.25.114009; this version posted May 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Chromosome-scale assembly and annotation of the macadamia genome (Macadamia integrifolia HAES 741) Catherine J. Nock1†*, Abdul Baten1,2†, Ramil Mauleon1, Kirsty S. Langdon1, Bruce Topp3, Craig Hardner3, Agnelo Furtado3, Robert J. Henry3 and Graham J. King1 1Southern Cross Plant Science, Southern Cross University, Lismore NSW 2480, Australia 2AgResearch NZ, Grasslands Research Centre, Palmerston North 4442, New Zealand 3Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia QLD 4069, Australia †These authors contributed equally to this work *Corresponding author, [email protected] ORCID 0000-0001-5609-4681 Abstract Macadamia integrifolia is a representative of the large basal eudicot family Proteaceae and the main progenitor species of the Australian native nut crop macadamia. Since its commercialisation in Hawaii fewer than 100 years ago, global production has expanded rapidly. However, genomic resources are limited in comparison to other horticultural crops. The first draft assembly of M. integrifolia had good coverage of the functional gene space but its high fragmentation has restricted its use in comparative genomics and association studies. Here we have generated an improved assembly of cultivar HAES 741 (4,094 scaffolds, 745 Mb, N50 413 kb) using a combination of Illumina paired and PacBio long read sequences.
    [Show full text]
  • Method to Estimate Dry-Kiln Schedules and Species Groupings: Tropical and Temperate Hardwoods
    United States Department of Agriculture Method to Estimate Forest Service Forest Dry-Kiln Schedules Products Laboratory Research and Species Groupings Paper FPL–RP–548 Tropical and Temperate Hardwoods William T. Simpson Abstract Contents Dry-kiln schedules have been developed for many wood Page species. However, one problem is that many, especially tropical species, have no recommended schedule. Another Introduction................................................................1 problem in drying tropical species is the lack of a way to Estimation of Kiln Schedules.........................................1 group them when it is impractical to fill a kiln with a single Background .............................................................1 species. This report investigates the possibility of estimating kiln schedules and grouping species for drying using basic Related Research...................................................1 specific gravity as the primary variable for prediction and grouping. In this study, kiln schedules were estimated by Current Kiln Schedules ..........................................1 establishing least squares relationships between schedule Method of Schedule Estimation...................................2 parameters and basic specific gravity. These relationships were then applied to estimate schedules for 3,237 species Estimation of Initial Conditions ..............................2 from Africa, Asia and Oceana, and Latin America. Nine drying groups were established, based on intervals of specific Estimation
    [Show full text]
  • Brooklyn, Cloudland, Melsonby (Gaarraay)
    BUSH BLITZ SPECIES DISCOVERY PROGRAM Brooklyn, Cloudland, Melsonby (Gaarraay) Nature Refuges Eubenangee Swamp, Hann Tableland, Melsonby (Gaarraay) National Parks Upper Bridge Creek Queensland 29 April–27 May · 26–27 July 2010 Australian Biological Resources Study What is Contents Bush Blitz? Bush Blitz is a four-year, What is Bush Blitz? 2 multi-million dollar Abbreviations 2 partnership between the Summary 3 Australian Government, Introduction 4 BHP Billiton and Earthwatch Reserves Overview 6 Australia to document plants Methods 11 and animals in selected properties across Australia’s Results 14 National Reserve System. Discussion 17 Appendix A: Species Lists 31 Fauna 32 This innovative partnership Vertebrates 32 harnesses the expertise of many Invertebrates 50 of Australia’s top scientists from Flora 62 museums, herbaria, universities, Appendix B: Threatened Species 107 and other institutions and Fauna 108 organisations across the country. Flora 111 Appendix C: Exotic and Pest Species 113 Fauna 114 Flora 115 Glossary 119 Abbreviations ANHAT Australian Natural Heritage Assessment Tool EPBC Act Environment Protection and Biodiversity Conservation Act 1999 (Commonwealth) NCA Nature Conservation Act 1992 (Queensland) NRS National Reserve System 2 Bush Blitz survey report Summary A Bush Blitz survey was conducted in the Cape Exotic vertebrate pests were not a focus York Peninsula, Einasleigh Uplands and Wet of this Bush Blitz, however the Cane Toad Tropics bioregions of Queensland during April, (Rhinella marina) was recorded in both Cloudland May and July 2010. Results include 1,186 species Nature Refuge and Hann Tableland National added to those known across the reserves. Of Park. Only one exotic invertebrate species was these, 36 are putative species new to science, recorded, the Spiked Awlsnail (Allopeas clavulinus) including 24 species of true bug, 9 species of in Cloudland Nature Refuge.
    [Show full text]
  • IV. on the Proteaceć of Jussieu. by Mr. Robert Brown, Lib. LS
    IV. On the Proteacea of Jussieu. By -Mr. Robert Brown, Lib. L.S. Read Jan. 17, 1809. THELinnean system of botany, though confessedly artificial, has not only contributed more than all others to facilitate tlie knowledge of species, but, by constantly directing the attention to those essential parts of the flower on which it is founded, has made us acquainted with more of their important modific-a t’ ions than we probably should have known, had it not been generally adopted, and has thus laid a more solid foundation for the esta- blishment of a natural arrangement, the superior importance of which no one has been inore fully impressed with than Linnzus hiinself. There are still, however, certain circumstances respccting the stamina and pistilla, which appear to iiie to havc been much less attended to than they deserve, both by Linneus and succeeding botanists. What I chiefly allude to is the state of these organs before the expansion of the flower. Tlie utility of ascertaining the internal condition of the ovarium before fecundation will liardly be called in question, now that the immortal worlis of Gxrtner and Jussieu hare demonstrated the necessity of minutely studying the fruits of plants in attempting to arrange tlicin ac- cording to tlic sum of their affinities, as in many cases the true nature of tlie ripc fruit, cspecially witli respect to the placenta- tion of the seeds, can oiily be detcrniined by this mc;~ns. Its importance is indeed expressly inculcated by many l~ot:inists, Tf’llO, 16 Mr. BROWN,on the Proteacee of Jussieu.
    [Show full text]
  • Abelmoschus Moschatus Subsp
    Cooktown Botanic Gardens Index Plantarum 2011 Family Published Taxon Name Plate No Acanthaceae Eranthemum pulchellum Andrews 720 Acanthaceae Graptophyllum excelsum (F.Meull.) Druce 515 Acanthaceae Graptophyllum spinigerum (F.Meull.) 437 Acanthaceae Megaskepasma erythrochlamys Lindau 107 Acanthaceae Pseuderanthemum variabile (R.Br.) Radlk. 357 Adiantaceae Adiantum formosum R.Br. 761 Adiantaceae Adiantum hispidulum Sw. 762 Adiantaceae Adiantum philippense L. 765 Adiantaceae Adiantum silvaticum Tindale 763 Adiantaceae Adiantum Walsh River 764 Agavaceae Beaucarnea recurvata Lem. 399 Agavaceae Furcraea foetida (L.) Haw. 637 Agavaceae Furcraea gigantea (L.) Haw. 049 Agavaceae Yucca elephantipes Hort.ex Regel 388 Agavaceae Agave sisalana Perrine. 159 Amarylidaceae Scadoxus Raf. sp 663 Amaryllidacea, Crinum angustifolium R.Br. 536 Liliaceae Amaryllidacea, Crinum asiaticum var. procerum (Herb. et Carey) Baker 417 Liliaceae Amaryllidacea, Crinum pedunculatum R.Br. 265 Liliaceae Amaryllidacea, Crinum uniflorum F.Muell. 161 Liliaceae Amaryllidaceae Hymenocallis Salisb. americanus 046 Amaryllidaceae Hymenocallis Salisb. peruvianna 045 Amaryllidaceae Proiphys amboinensis (L.) Herb. 041 Anacardiaceae Anacardium occidentale L. 051 Anacardiaceae Buchanania arborescens (Blume) Blume. 022 Anacardiaceae Euroschinus falcatus Hook.f. var. falcatus 429 Anacardiaceae Mangifera indica L. 009 Anacardiaceae Pleiogynium timorense (DC.) Leenh. 029 Anacardiaceae Semecarpus australiensis Engl. 368 Annonaceae Annona muricata L. 054 Annonaceae Annona reticulata L. 053 Annonaceae Annona squamosa 602 Annonaceae Cananga odorata (Lam.) Hook.f.&Thomson 406 Annonaceae Melodorum leichhardtii (F.Muell.) Diels. 360 Annonaceae Rollinia deliciosa Saff. 098 Apiaceae Centella asiatica (L.) Urb. 570 Apocynaceae Adenium obesum (Forssk.) Roem. & Schult. 489 Apocynaceae Allamanda cathartica L. 047 Apocynaceae Allamanda violacea Gardn. & Field. 048 Apocynaceae Alstonia actinophylla (A.Cunn.) K.Schum. 026 Apocynaceae Alstonia scholaris (L.) R.Br. 012 Apocynaceae Alyxia ruscifolia R.Br.
    [Show full text]
  • Finschia-"A Genus of "Nut" Trees of the Southwest Pacific
    Finschia-" A Genus of "Nut" Trees of the Southwest Pacific c. T. WHITE1 INTRODUCTION A PLANT FAMILY with a most interesting and F. Muell., Carnarvonia F. Muell., D arlin"gia F; intriguing distribution is Proteaceae, which finds Muell., Hollandaea F. Muell. (two spp.) , Mus­ its greatest development in Australia (650 " gravea F. Muell., and Placospermum White & species) on the one hand and South Africa (300 Francis. A surprising feature is the absence, species) on the other, though the two countries with the exception of one species in New Zea­ have no genera in common. Practically all the land, of the family "from Polynesia. South African species and the vast majority of There is in the islands of the southwest Paci­ "Australian ones are markedly xerophytic. The fic-Caroline Islands, New Guinea, Solomon largest genus, Greoillea R. Br., consists mainly Islands, and the New Hebrides-a group of trees of xerophytic shrubs or small trees but a few with the floral characters of Greuillea R. Br. are large trees found in the rain forests of and the fruit of Helicia Lour. These, I consider, tropical and subtropical eastern Australia, New all belong 'to Finschia Warb. This genus was Guinea, and New Caledonia. In the southwest founded by Warburg (1891: 297 ) on"a tree Pacific area the family finds its greatest develop­ from northeastern New Guinea. His original ment in northeastern Australia, where trees be­ description would cover Grevillea R. Br. exactly longing to it provide the great bulk of cabinet though he does not mention this genus and on timbers known in the trade as "Silky Oaks." the following page the distinctions he gives for There is close affinity between the Proteaceae of separating his proposed new genus from H elicia eastern Australia and of western South America are exactly those which distinguish Greuillea as illustrated by the genera Embothrium Forst.
    [Show full text]
  • Pathogens Associated with Diseases. of Protea, Leucospermum and Leucadendron Spp
    PATHOGENS ASSOCIATED WITH DISEASES. OF PROTEA, LEUCOSPERMUM AND LEUCADENDRON SPP. Lizeth Swart Thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Agriculture at the University of Stellenbosch Supervisor: Prof. P. W. Crous Decem ber 1999 Stellenbosch University https://scholar.sun.ac.za DECLARATION 1, the undersigned, hereby declare that the work contained in this thesis is my own original work and has not previously in its entirety or in part been submitted at any university for a degree. SIGNATURE: DATE: Stellenbosch University https://scholar.sun.ac.za PATHOGENS ASSOCIATED WITH DISEASES OF PROTEA, LEUCOSPERMUM ANDLEUCADENDRONSPP. SUMMARY The manuscript consists of six chapters that represent research on different diseases and records of new diseases of the Proteaceae world-wide. The fungal descriptions presented in this thesis are not effectively published, and will thus be formally published elsewhere in scientific journals. Chapter one is a review that gives a detailed description of the major fungal pathogens of the genera Protea, Leucospermum and Leucadendron, as reported up to 1996. The pathogens are grouped according to the diseases they cause on roots, leaves, stems and flowers, as well as the canker causing fungi. In chapter two, several new fungi occurring on leaves of Pro tea, Leucospermum, Telopea and Brabejum collected from South Africa, Australia or New Zealand are described. The following fungi are described: Cladophialophora proteae, Coniolhyrium nitidae, Coniothyrium proteae, Coniolhyrium leucospermi,Harknessia leucospermi, Septoria prolearum and Mycosphaerella telopeae spp. nov. Furthermore, two Phylloslicla spp., telopeae and owaniana are also redecribed. The taxonomy of the Eisinoe spp.
    [Show full text]
  • Approved NSW & National Recovery Plan Eidothea Hardeniana
    Approved NSW & National Recovery Plan Eidothea hardeniana September 2004 © Department of Environment and Conservation (NSW), July 2004. This work is copyright. However, material presented in this plan may be copied for personal use or published for educational purposes, providing that any extracts are fully acknowledged. Apart from this and any other use as permitted under the Copyright Act 1968, no part may be reproduced without prior written permission from NSW Department of Environment and Conservation. NSW Department of Environment and Conservation 43 Bridge Street (PO Box 1967) Hurstville NSW 2220 Tel: 02 9585 6444 www.nationalparks.nsw.gov.au Requests for information or comments regarding the recovery program for the Nightcap Oak are best directed to: The Nightcap Oak Recovery Co-ordinator Threatened Species Unit, North East Branch NSW Department of Environment and Conservation Locked Bag 914 Coffs Harbour NSW 2450 Tel: 02 6651 5946 Cover illustrator: Lesley Elkan © Botanic Gardens Trust, Sydney Cover illustration: Adult and juvenile leaves and fruit of Eidothea hardeniana This plan should be cited as follows: NSW Department of Environment and Conservation 2004, Recovery Plan for the Nightcap Oak (Eidothea hardeniana), Department of Environment and Conservation (NSW), Hurstville. ISBN 0 7313 6781 2 Recovery Plan The Nightcap Oak Recovery Plan for the Nightcap Oak (Eidothea hardeniana) Foreword The New South Wales Government established a new environment agency on 24 September 2003, the Department of Environment and Conservation (NSW), which incorporates the New South Wales National Parks and Wildlife Service. Responsibility for the preparation of Recovery Plans now rests with this new department. This document constitutes the New South Wales State and National Recovery Plan for Eidothea hardeniana Weston & Kooyman (Nightcap Oak), and as such considers the conservation requirements of the species across its range.
    [Show full text]
  • Plant Life of Western Australia
    INTRODUCTION The characteristic features of the vegetation of Australia I. General Physiography At present the animals and plants of Australia are isolated from the rest of the world, except by way of the Torres Straits to New Guinea and southeast Asia. Even here adverse climatic conditions restrict or make it impossible for migration. Over a long period this isolation has meant that even what was common to the floras of the southern Asiatic Archipelago and Australia has become restricted to small areas. This resulted in an ever increasing divergence. As a consequence, Australia is a true island continent, with its own peculiar flora and fauna. As in southern Africa, Australia is largely an extensive plateau, although at a lower elevation. As in Africa too, the plateau increases gradually in height towards the east, culminating in a high ridge from which the land then drops steeply to a narrow coastal plain crossed by short rivers. On the west coast the plateau is only 00-00 m in height but there is usually an abrupt descent to the narrow coastal region. The plateau drops towards the center, and the major rivers flow into this depression. Fed from the high eastern margin of the plateau, these rivers run through low rainfall areas to the sea. While the tropical northern region is characterized by a wet summer and dry win- ter, the actual amount of rain is determined by additional factors. On the mountainous east coast the rainfall is high, while it diminishes with surprising rapidity towards the interior. Thus in New South Wales, the yearly rainfall at the edge of the plateau and the adjacent coast often reaches over 100 cm.
    [Show full text]
  • Rates of Molecular Evolution and Diversification in Plants: Chloroplast
    Duchene and Bromham BMC Evolutionary Biology 2013, 13:65 http://www.biomedcentral.com/1471-2148/13/65 RESEARCH ARTICLE Open Access Rates of molecular evolution and diversification in plants: chloroplast substitution rates correlate with species-richness in the Proteaceae David Duchene* and Lindell Bromham Abstract Background: Many factors have been identified as correlates of the rate of molecular evolution, such as body size and generation length. Analysis of many molecular phylogenies has also revealed correlations between substitution rates and clade size, suggesting a link between rates of molecular evolution and the process of diversification. However, it is not known whether this relationship applies to all lineages and all sequences. Here, in order to investigate how widespread this phenomenon is, we investigate patterns of substitution in chloroplast genomes of the diverse angiosperm family Proteaceae. We used DNA sequences from six chloroplast genes (6278bp alignment with 62 taxa) to test for a correlation between diversification and the rate of substitutions. Results: Using phylogenetically-independent sister pairs, we show that species-rich lineages of Proteaceae tend to have significantly higher chloroplast substitution rates, for both synonymous and non-synonymous substitutions. Conclusions: We show that the rate of molecular evolution in chloroplast genomes is correlated with net diversification rates in this large plant family. We discuss the possible causes of this relationship, including molecular evolution driving diversification, speciation increasing the rate of substitutions, or a third factor causing an indirect link between molecular and diversification rates. The link between the synonymous substitution rate and clade size is consistent with a role for the mutation rate of chloroplasts driving the speed of reproductive isolation.
    [Show full text]
  • Grow Natives in Pots
    ATG About the Garden ATGFACTAbout SHEET the Garden Fact Sheet No. 21 GROWING NATIVES IN POTS The key factors to successfully growing Australian plants in containers are exactly the same as for exotic plants - drainage and nutrition. The main points to remember are that good drainage is even more important for certain natives (mainly those originating in arid areas with very light, sandy soils) and that plants in the Proteaceae family require low phosphorus fertilisers. When growing plants in containers it is important *PLANTS IN THE to know their type and origin so ask yourself the following questions: FAMILY PROTEACEAE • Tree, shrub or climber/groundcover? • Does it originate in a high or low rainfall area? INCLUDE: • Is its natural habitat sun or shade? • Natural soil type - light (sandy) or heavy (clay)? Athertonia banksia The type of plant determines the ultimate pot size. buckinghamia Knowing its origins will tell you the type of growing cardwellia medium you need, how much water and whether it darlingia should be placed in sun or shade. If the label doesn’t dryandra give you enough information, ask nursery staff. hakea lomatia Any type of container can be used, providing it has macadamia plenty of adequate sized drainage holes. Too small and oreocallis they will drain too slowly and block up easily; too large persoonia and all your precious water will run away too fast. Most petrophile, good quality terracotta and plastic pots come with stenocarpus and good drainage holes; a medium-sized pot should have telopea no less than four, about the size of a five cent piece.
    [Show full text]
  • Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
    Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M.
    [Show full text]