Volumes 6 and 8 Update Volume 7
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Indoor Plants Or Houseplants
Visit us on the Web: www.gardeninghelp.org Indoor Plants or Houseplants Over the past twenty years houseplants have grown in popularity. Offered in a wide variety of sizes, shapes, colors and textures, houseplants beautify our homes and help soften our environment. They have been scientifically proven to improve our health by lowering blood pressure and removing pollutants from the air we breathe. When selecting a houseplant, choose reputable suppliers who specialize in growing houseplants. Get off to a good start by thoroughly examining each plant. Watch for brown edges and spindly growth with elongated stems and large gaps between new leaves. Inspect leaves and stem junctions for signs of insect or disease problems. Check any support stakes to make sure they are not hiding broken stems or branches. Finally, make sure the plant is placed in an area that suits its optimal requirements for light, temperature and humidity. Where to Place Your House Plants With the exception of the very darkest areas, you can always find a houseplant with growth requirements to match the environmental conditions in your home. The most important factors are light intensity and duration. The best way to determine the intensity of light at a window exposure area is to measure it with a light meter. A light meter measures light in units called foot-candles. One foot-candle is the amount of light from a candle spread over a square foot of surface area. Plants that prefer low light may produce dull, lifeless-looking leaves when exposed to bright light. Bright light can also cause leaf spots or brown-tipped scorched margins. -
1. TAKAKIACEAE S. Hattori & Inoue
1. TAKAKIACEAE S. Hattori & Inoue John R. Spence Wilfred B. Schofield Stems erect, arising sympodially from creeping pale or white stolons bearing clusters of beaked slime cells, rhizoids absent, stem in cross section differentiated into outer layer of smaller, thick- walled cells and cortex of larger thin-walled cells, sometimes with small central cells, these often with trigones, outer cells with simple oil droplets. Leaves typically 3-ranked, terete, forked, of (1–)2–4 terete segments, segments sometimes connate at base, in cross section of 3–5 cells, one or more larger central cells surrounded by smaller cells, oil droplets present in all cells, 2-celled slime hairs with enlarged apical cell present in axils of leaves. Specialized asexual reproduction by caducous leaves or stems. Sexual condition dioicous, gametangia naked. Seta with foot, persistent, elongating prior to capsule maturation. Capsule erect, symmetric, well-defined neck region absent, stomates absent, dextrorsely spiralled at maturity, columella ephemeral, basifixed, not penetrating the archesporial tissue, peristome absent, dehiscence by longitudinal helical slit. Calyptra fugacious to rarely persistent, typically mitrate. Spores 3-radiate, slightly roughened to papillose. Genus 1, species 2 (2 in the flora): North America, se Asia (including Borneo). Takakiaceae are plants of cool, cold-temperate to arctic-alpine oceanic climates. They were first collected in the Himalayas by J. D. Hooker and placed in the hepatic genus Lepidozia as L. ceratophylla by W. Mitten. The consensus has been that it was a highly unusual liverwort with affinity to the Calobryales. Distinctive features include erect shoots arising from a stolon, terete leaves, sometimes fused at or near the base and thus of 2–4 segments, naked lateral gametangia, slime cells, oil droplets, and chromosome numbers of n = 4 or 5. -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
Early Evolution of the Land Plant Circadian Clock
Research Early evolution of the land plant circadian clock Anna-Malin Linde1,2*, D. Magnus Eklund1,2*, Akane Kubota3*, Eric R. A. Pederson1,2, Karl Holm1,2, Niclas Gyllenstrand1,2, Ryuichi Nishihama3, Nils Cronberg4, Tomoaki Muranaka5, Tokitaka Oyama5, Takayuki Kohchi3 and Ulf Lagercrantz1,2 1Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyv€agen 18D, SE-75236 Uppsala, Sweden; 2The Linnean Centre for Plant Biology in Uppsala, Uppsala, Sweden; 3Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; 4Department of Biology, Lund University, Ecology Building, SE-22362 Lund, Sweden; 5Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan Summary Author for correspondence: While angiosperm clocks can be described as an intricate network of interlocked transcrip- Ulf Lagercrantz tional feedback loops, clocks of green algae have been modelled as a loop of only two genes. Tel: +46(0)18 471 6418 To investigate the transition from a simple clock in algae to a complex one in angiosperms, we Email: [email protected] performed an inventory of circadian clock genes in bryophytes and charophytes. Additionally, Received: 14 December 2016 we performed functional characterization of putative core clock genes in the liverwort Accepted: 18 January 2017 Marchantia polymorpha and the hornwort Anthoceros agrestis. Phylogenetic construction was combined with studies of spatiotemporal expression patterns New Phytologist (2017) 216: 576–590 and analysis of M. polymorpha clock gene mutants. doi: 10.1111/nph.14487 Homologues to core clock genes identified in Arabidopsis were found not only in bryophytes but also in charophytes, albeit in fewer copies. Circadian rhythms were detected Key words: bryophyte, circadian clock, for most identified genes in M. -
ORNAMENTAL GARDEN PLANTS of the GUIANAS: an Historical Perspective of Selected Garden Plants from Guyana, Surinam and French Guiana
f ORNAMENTAL GARDEN PLANTS OF THE GUIANAS: An Historical Perspective of Selected Garden Plants from Guyana, Surinam and French Guiana Vf•-L - - •• -> 3H. .. h’ - — - ' - - V ' " " - 1« 7-. .. -JZ = IS^ X : TST~ .isf *“**2-rt * * , ' . / * 1 f f r m f l r l. Robert A. DeFilipps D e p a r t m e n t o f B o t a n y Smithsonian Institution, Washington, D.C. \ 1 9 9 2 ORNAMENTAL GARDEN PLANTS OF THE GUIANAS Table of Contents I. Map of the Guianas II. Introduction 1 III. Basic Bibliography 14 IV. Acknowledgements 17 V. Maps of Guyana, Surinam and French Guiana VI. Ornamental Garden Plants of the Guianas Gymnosperms 19 Dicotyledons 24 Monocotyledons 205 VII. Title Page, Maps and Plates Credits 319 VIII. Illustration Credits 321 IX. Common Names Index 345 X. Scientific Names Index 353 XI. Endpiece ORNAMENTAL GARDEN PLANTS OF THE GUIANAS Introduction I. Historical Setting of the Guianan Plant Heritage The Guianas are embedded high in the green shoulder of northern South America, an area once known as the "Wild Coast". They are the only non-Latin American countries in South America, and are situated just north of the Equator in a configuration with the Amazon River of Brazil to the south and the Orinoco River of Venezuela to the west. The three Guianas comprise, from west to east, the countries of Guyana (area: 83,000 square miles; capital: Georgetown), Surinam (area: 63, 037 square miles; capital: Paramaribo) and French Guiana (area: 34, 740 square miles; capital: Cayenne). Perhaps the earliest physical contact between Europeans and the present-day Guianas occurred in 1500 when the Spanish navigator Vincente Yanez Pinzon, after discovering the Amazon River, sailed northwest and entered the Oyapock River, which is now the eastern boundary of French Guiana. -
A Quarter Century of Pharmacognostic Research on Panamanian Flora: a Review*
Reviews 1189 A Quarter Century of Pharmacognostic Research on Panamanian Flora: A Review* Authors Catherina Caballero-George 1, Mahabir P. Gupta2 Affiliations 1 Institute of Scientific Research and High Technology Services (INDICASAT‑AIP), Panama, Republic of Panama 2 Center for Pharmacognostic Research on Panamanian Flora (CIFLORPAN), College of Pharmacy, University of Panama, Panama, Republic of Panama Key words Abstract with novel structures and/or interesting bioactive l" bioassays ! compounds. During the last quarter century, a to- l" Panamanian plants Panama is a unique terrestrial bridge of extreme tal of approximately 390 compounds from 86 l" ethnomedicine biological importance. It is one of the “hot spots” plants have been isolated, of which 160 are new l" novel compounds and occupies the fourth place among the 25 most to the literature. Most of the work reported here plant-rich countries in the world, with 13.4% en- has been the result of many international collabo- demic species. Panamanian plants have been rative efforts with scientists worldwide. From the screened for a wide range of biological activities: results presented, it is immediately obvious that as cytotoxic, brine shrimp-toxic, antiplasmodial, the Panamanian flora is still an untapped source antimicrobial, antiviral, antioxidant, immunosup- of new bioactive compounds. pressive, and antihypertensive agents. This re- view concentrates on ethnopharmacological uses Supporting information available at of medicinal plants employed by three Amerin- http://www.thieme-connect.de/ejournals/toc/ dian groups of Panama and on selected plants plantamedica Introduction are a major component of the Panamanian tropi- ! cal forest. Mosses abound in moist cloud forests as Medicinal plants remain an endless source of new well as other parts of the country. -
JUDD W.S. Et. Al. (2002) Plant Systematics: a Phylogenetic Approach. Chapter 7. an Overview of Green
UNCORRECTED PAGE PROOFS An Overview of Green Plant Phylogeny he word plant is commonly used to refer to any auto- trophic eukaryotic organism capable of converting light energy into chemical energy via the process of photosynthe- sis. More specifically, these organisms produce carbohydrates from carbon dioxide and water in the presence of chlorophyll inside of organelles called chloroplasts. Sometimes the term plant is extended to include autotrophic prokaryotic forms, especially the (eu)bacterial lineage known as the cyanobacteria (or blue- green algae). Many traditional botany textbooks even include the fungi, which differ dramatically in being heterotrophic eukaryotic organisms that enzymatically break down living or dead organic material and then absorb the simpler products. Fungi appear to be more closely related to animals, another lineage of heterotrophs characterized by eating other organisms and digesting them inter- nally. In this chapter we first briefly discuss the origin and evolution of several separately evolved plant lineages, both to acquaint you with these important branches of the tree of life and to help put the green plant lineage in broad phylogenetic perspective. We then focus attention on the evolution of green plants, emphasizing sev- eral critical transitions. Specifically, we concentrate on the origins of land plants (embryophytes), of vascular plants (tracheophytes), of 1 UNCORRECTED PAGE PROOFS 2 CHAPTER SEVEN seed plants (spermatophytes), and of flowering plants dons.” In some cases it is possible to abandon such (angiosperms). names entirely, but in others it is tempting to retain Although knowledge of fossil plants is critical to a them, either as common names for certain forms of orga- deep understanding of each of these shifts and some key nization (e.g., the “bryophytic” life cycle), or to refer to a fossils are mentioned, much of our discussion focuses on clade (e.g., applying “gymnosperms” to a hypothesized extant groups. -
Vascular Plants and a Brief History of the Kiowa and Rita Blanca National Grasslands
United States Department of Agriculture Vascular Plants and a Brief Forest Service Rocky Mountain History of the Kiowa and Rita Research Station General Technical Report Blanca National Grasslands RMRS-GTR-233 December 2009 Donald L. Hazlett, Michael H. Schiebout, and Paulette L. Ford Hazlett, Donald L.; Schiebout, Michael H.; and Ford, Paulette L. 2009. Vascular plants and a brief history of the Kiowa and Rita Blanca National Grasslands. Gen. Tech. Rep. RMRS- GTR-233. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 44 p. Abstract Administered by the USDA Forest Service, the Kiowa and Rita Blanca National Grasslands occupy 230,000 acres of public land extending from northeastern New Mexico into the panhandles of Oklahoma and Texas. A mosaic of topographic features including canyons, plateaus, rolling grasslands and outcrops supports a diverse flora. Eight hundred twenty six (826) species of vascular plant species representing 81 plant families are known to occur on or near these public lands. This report includes a history of the area; ethnobotanical information; an introductory overview of the area including its climate, geology, vegetation, habitats, fauna, and ecological history; and a plant survey and information about the rare, poisonous, and exotic species from the area. A vascular plant checklist of 816 vascular plant taxa in the appendix includes scientific and common names, habitat types, and general distribution data for each species. This list is based on extensive plant collections and available herbarium collections. Authors Donald L. Hazlett is an ethnobotanist, Director of New World Plants and People consulting, and a research associate at the Denver Botanic Gardens, Denver, CO. -
A Taxonomic Revision of Melanoxerus (Rubiaceae), with Descriptions of Three New Species of Trees from Madagascar
A taxonomic revision of Melanoxerus (Rubiaceae), with descriptions of three new species of trees from Madagascar Kent Kainulainen Abstract KAINULAINEN, K. (2021). A taxonomic revision of Melanoxerus (Rubiaceae), with descriptions of three new species of trees from Madagascar. Candollea 76: 105 – 116. In English, English and French abstracts. DOI: http://dx.doi.org/10.15553/c2021v761a11 This paper provides a taxonomic revision of Melanoxerus Kainul. & Bremer (Rubiaceae) – a genus of deciduous trees with eye-catching flowers and fruits that is endemic to Madagascar. Descriptions of three new species, Melanoxerus antsirananensis Kainul., Melanoxerus atropurpureus Kainul., and Melanoxerus maritimus Kainul. are presented along with distribution maps and a species identification key. The species distributions generally reflect the ecoregions of Madagascar, with Melanoxerus antsirananensis being found in the dry deciduous forests of the north; Melanoxerus atropurpureus in the inland dry deciduous forests of the west; Melanoxerus maritimus in dry deciduous forest on coastal sands; and Melanoxerus suavissimus (Homolle ex Cavaco) Kainul. & B. Bremer in the dry spiny thicket and succulent woodlands of the southwest. Résumé KAINULAINEN, K. (2021). Révision taxonomique du genre Melanoxerus (Rubiaceae), avec la description de trois nouvelles espèces d’arbres de Madagascar. Candollea 76: 105 – 116. En anglais, résumés anglais et français. DOI: http://dx.doi.org/10.15553/c2021v761a11 Cet article propose une révision taxonomique de Melanoxerus Kainul. & Bremer (Rubiaceae), un genre d’arbres à feuilles caduques avec des fleurs et des fruits attrayants qui est endémique de Madagascar. La description de trois nouvelles espèces, Melanoxerus antsirananensis Kainul., Melanoxerus atropurpureus Kainul. et Melanoxerus maritimus Kainul. est présentée accompagné de cartes de répartition et d’une clé d’identification des espèces. -
Taxonomic Novelties from Western North America in Mentzelia Section Bartonia (Loasaceae) Author(S) :John J
Taxonomic Novelties from Western North America in Mentzelia section Bartonia (Loasaceae) Author(s) :John J. Schenk and Larry Hufford Source: Madroño, 57(4):246-260. 2011. Published By: California Botanical Society DOI: 10.3120/0024-9637-57.4.246 URL: http://www.bioone.org/doi/full/10.3120/0024-9637-57.4.246 BioOne (www.bioone.org) is a a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. MADRON˜ O, Vol. 57, No. 4, pp. 246–260, 2010 TAXONOMIC NOVELTIES FROM WESTERN NORTH AMERICA IN MENTZELIA SECTION BARTONIA (LOASACEAE) JOHN J. SCHENK1 AND LARRY HUFFORD School of Biological Sciences, P.O. Box 644236, Washington State University, Pullman, WA 99164-4236 [email protected] ABSTRACT Recent field collections and surveys of herbarium specimens have raised concerns about species circumscriptions and recovered several morphologically distinct populations in Mentzelia section Bartonia (Loasaceae). From the Colorado Plateau, we name M. -
Analysis of Phylogenetic Relationships in the Walnut Family Based on Internal Transcribed Spacer Sequences and Secondary Structures(ITS2)
Analysis of Phylogenetic Relationships in The Walnut Family Based on Internal Transcribed Spacer Sequences and Secondary Structures(ITS2) Zhongzhong Guo Tarim University Qiang Jin Tarim University Zhenkun Zhao Tarim University Wenjun Yu Tarim University Gen Li Tarim University Yunjiang Cheng Tarim University Cuiyun Wu Tarim University rui Zhang ( [email protected] ) Tarim University https://orcid.org/0000-0002-4360-5179 Research Article Keywords: Base sequence, Evolution, Juglandaceae, Ribosomal spacer, Secondary structure Posted Date: May 13th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-501634/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/23 Abstract This study aims to investigate the phylogenetic relationships within the Juglandaceae family based on the Internal Transcribed Spacer's primary sequence and secondary structures (ITS2). Comparative analysis of 51 Juglandaceae species was performed across most of the dened seven genera. The results showed that the ITS2 secondary structure's folding pattern was highly conserved and congruent with the eukaryote model. Firstly, Neighbor-joining (N.J.) analysis recognized two subfamilies: Platycaryoideae and Engelhardioideae. The Platycaryoideae included the Platycaryeae (Platycarya+ (Carya+ Annamocarya)) and Juglandeae (Juglans-(Cyclocarya + Pterocarya)). The Engelhardioideae composed the (Engelhardia+Oreomunnea+Alfaroa)). The Rhoiptelea genus was generally regarded as an outgroup when inferring the phylogeny of Juglandaceae. However, it is clustered into the Juglandaceae family and showed a close relationship with the Platycaryoideae subfamily. Secondly, the folded 3-helices and 4-helices secondary structure of ITS2 were founded in the Juglandaceae family. Therefore, these ITS2 structures could be used as formal evidence to analyze Juglandaceae's phylogeny relationship. -
Analyses of the Proposals to Amend the CITES Appendices at the 14Th Meeting of the Conference of the Parties
IUCN/TRAFFIC Analyses of the Proposals to Amend the CITES Appendices at the 14th Meeting of the Conference of the Parties The Hague, Netherlands 3–15 June 2007 Prepared by IUCN Species Programme and Species Survival Commission and TRAFFIC ANALYSES IUCN/TRAFFIC Analyses of the Proposals to Amend the CITES Appendices at the 14th Meeting of the Conference of the Parties The Hague, Netherlands 3–15 June 2007 Prepared by IUCN Species Programme and Species Survival Commission and TRAFFIC Production of the 2007 IUCN/TRAFFIC Analyses of the Proposals to Amend the CITES Appendices was made possible through the support of: • The Commission of the European Union • Ministry of Agriculture, Nature and Food Quality, Department for Nature, Netherlands • Ministère de l'écologie et du développement durable, Direction de la nature et des paysages, France • Ministerio de Medio Ambiente, Dirección General para la Biodiversidad, Spain • Office vétérinaire fédéral, Switzerland • Ministero dell’Ambiente e della Tutela del Territorio, Direzione Protezione della Nature, Italy • Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, Germany • Department for Environment, Food and Rural Affairs (DEFRA), UK • Danish Ministry of the Environment, Forest and Nature Agency • Ministry of Agriculture and Forestry, Environment and Water Management, Division for Nature Conservation and Species Protection, Austria IUCN -The World Conservation Union brings together states, government agencies and a diverse range of non-governmental organizations in a unique global partnership - over 1,000 members in some 181 countries. As a Union, IUCN seeks to influence, encourage and assist societies throughout the world to conserve the integrity and diversity of nature and to ensure that any use of natural resources is equitable and ecologically sustainable.