Engagement Toolkit Methods, Tips and Best Practices to Design Effective Participatory Processes

Total Page:16

File Type:pdf, Size:1020Kb

Engagement Toolkit Methods, Tips and Best Practices to Design Effective Participatory Processes Engagement Toolkit Methods, tips and best practices to design effective participatory processes Prepared by EFSA based on desk research undertaken by Prospex and iCONs (outsourced activity) Last updated: March 2021 European Food Safety Authority Via Carlo Magno 1A – 43126 Parma, Italy Tel. +39 0521 036 111│ www.efsa.europa.eu Table of contents The toolkit’s scope and objectives ...................................................................... 7 Introductory section .......................................................................................... 9 Glossary ............................................................................................................ 9 Recommendations for an effective engagement process .......................................... 9 Consider engagement as a continuous and circular process ................................... 9 Adopt a multi-level approach (EU and Local) ..................................................... 10 Some general principles to bear in mind ........................................................... 11 EFSA’s engagement model ............................................................................... 13 Why does EFSA engage, and with whom? ............................................................ 13 Three streams, one framework........................................................................... 14 The ‘Preparedness’ stream ................................................................................. 14 The ‘Quality of science’ stream ........................................................................... 15 The ‘Stakeholder dialogue’ stream ...................................................................... 15 The inventory of engagement methods ............................................................ 16 Objectives ....................................................................................................... 16 Broadening pool of experts and stakeholders .................................................... 16 Introduce new and/or more agile engagement formats ....................................... 16 Enhance the quality of scientific outputs through engagement ............................. 16 Enhance the transparency of the risk assessment process................................... 16 Structure ......................................................................................................... 16 How to identify the right method(s) ................................................................. 18 Purpose-based selection .................................................................................... 18 Stream-based selection ..................................................................................... 19 Recommended methods for the ‘Preparedness’ stream ....................................... 20 Recommended methods for the ‘Quality of science’ stream ................................. 20 Recommended methods for the ‘Stakeholder dialogue’ stream ............................ 22 ANNEX I - Engagement methods A to Z ............................................................ 24 Academic social networking sites ........................................................................ 24 After action review (AAR) .................................................................................. 25 Brainstorming .................................................................................................. 27 Buzz groups ..................................................................................................... 29 Challenge prize ................................................................................................ 31 Community based participatory research ............................................................. 33 2 Community of practice ...................................................................................... 35 Concept mapping ............................................................................................. 37 Consensus Conference ...................................................................................... 40 Crowdsourcing ................................................................................................. 42 Delphi Method/Technique .................................................................................. 43 Design Thinking, Project-in-a day ....................................................................... 45 Discussion forum .............................................................................................. 47 E-conference ................................................................................................... 48 Envisioning the future ....................................................................................... 50 Expert knowledge elicitation (EKE) ..................................................................... 52 Expert Interview with audience .......................................................................... 53 Focus group ..................................................................................................... 54 Gamestorming ................................................................................................. 56 Gamification .................................................................................................... 57 Group interview with a co-design session ............................................................ 58 Icebreakers and energizers ................................................................................ 60 Innovation jam ................................................................................................ 63 Interview......................................................................................................... 64 Most significant change ..................................................................................... 66 Online jam....................................................................................................... 69 Online Platform ................................................................................................ 71 Online Survey .................................................................................................. 72 Open innovation challenge ................................................................................. 74 Nominal group technique ................................................................................... 75 Participatory design .......................................................................................... 77 Participatory modelling ...................................................................................... 79 Participatory sensing ......................................................................................... 81 Participatory workshops .................................................................................... 82 Fishbowl ....................................................................................................... 83 Innovation Challenge ..................................................................................... 86 Knowledge Fair .............................................................................................. 87 Open space technology................................................................................... 89 Unconference ................................................................................................ 92 Six thinking hats............................................................................................ 94 World café .................................................................................................... 96 3 Peer Assist ...................................................................................................... 99 PESTEL and SWOT combined ........................................................................... 102 Public consultations ........................................................................................ 104 Public events ................................................................................................. 104 Q-methodology stakeholder selection ................................................................ 106 Reflexive interactive design ............................................................................. 107 Research agenda camp ................................................................................... 109 Science Café .................................................................................................. 111 Science shops ................................................................................................ 113 Science week ................................................................................................. 114 Scoping study ................................................................................................ 116 Stakeholder working groups ............................................................................ 118 Swot Analysis ................................................................................................ 119 TOP 100 list ................................................................................................... 122 TOPSY TURVY (or Reverse Brainstorming) ......................................................... 124 User committee .............................................................................................. 126 VIPP Cards Collection
Recommended publications
  • Guide to Publication Policies of the Nature Journals
    GUIDE TO PUBLICATION POLICIES OF THE NATURE JOURNALS Last updated on 30 April 2009. Editorial Policies NATURE JOURNALS' POLICIES ON PUBLICATION ETHICS Nature journals' authorship policy Being an author The Nature journals do not require all authors of a research paper to sign the letter of submission, nor do they impose an order on the list of authors. Submission to a Nature journal is taken by the journal to mean that all the listed authors have agreed all of the contents. The corresponding (submitting) author is responsible for having ensured that this agreement has been reached, and for managing all communication between the journal and all co-authors, before and after publication. Any changes to the author list after submission, such as a change in the order of the authors, or the deletion or addition of authors, needs to be approved by a signed letter from every author. Responsibilities of senior team members on multi-group collaborations The editors at the Nature journals assume that at least one member of each collaboration, usually the most senior member of each submitting group or team, has accepted responsibility for the contributions to the manuscript from that team. This responsibility includes, but is not limited to: (1) ensuring that original data upon which the submission is based is preserved and retrievable for reanalysis; (2) approving data presentation as representative of the original data; and (3) foreseeing and minimizing obstacles to the sharing of data, materials, algorithms or reagents described in the work. Author contributions statementsAuthors are required to include a statement of responsibility in the manuscript that specifies the contribution of every author.
    [Show full text]
  • 24-Hour Nuclear Emergency Management and All the Usual Things
    The Danish Nuclear emergency prepredness plan NORCOP-COAST Jeppe Vöge, DEMA Nuclear Division Danish Nuclear emergency preparedness plan 1 The Danish Emergency Management Agency The Danish Emergency Management Agency (DEMA) is a Danish governmental agency under the Ministry of Defence. The agency was formed under the Danish Emergency Management Act, which came into force on January 1, 1993. Organisation DEMA's mission is to cushion the effects of accidents and disasters on society and to prevent harm to people, property and the environment. Consequently, DEMA has a series of operational, supervisory and regulatory functions concerning emergency management and preparedness. - Danish National Fire and Rescue Service - International support, aid and coorporation - Experts and assistance regarding hazardous chemicals etc. - Danish authority in case of a nuclear emergency. - Regulatory functions regarding technical prevention and regulations - Supervising, assistance and advice to local fire and rescue services. - Education of firemen and leaders in the emergency preparedness. Fire and rescue center Thisted Headquarters Fire and rescue center Birkerød Herning including Nuclear Division Fire and rescue center Hedehusene Fire and rescue center Fire and rescue center Fire and rescue center Haderslev Næstved Allinge Side 2 The Danish Emergency Management Agency Nuclear Division • National Compethent Authority (NCA) • Responsible for maintaining the general nuclear emergency preparedness plan for Denmark • Nuclear Inspectorate function (DTU Newtech Campus Risø) • Maintaining expert knowledge regarding measurements and consequence assessment • Physical protection of transport of nuclear material. 3 Nuclear prepreredness plan, October 30, 2013 24-hour nuclear emergency management And all the usual things Preparedness plan and Monitoring Decision support systems and experts Duty officers stations 11 station sites in Denmark, 3 in Greenland.
    [Show full text]
  • The Nature Index Journals
    The Nature Index journals The current 12-month window on natureindex.com includes data from 57,681 primary research articles from the following science journals: Advanced Materials (1028 articles) American Journal of Human Genetics (173 articles) Analytical Chemistry (1633 articles) Angewandte Chemie International Edition (2709 articles) Applied Physics Letters (3609 articles) Astronomy & Astrophysics (1780 articles) Cancer Cell (109 articles) Cell (380 articles) Cell Host & Microbe (95 articles) Cell Metabolism (137 articles) Cell Stem Cell (100 articles) Chemical Communications (4389 articles) Chemical Science (995 articles) Current Biology (440 articles) Developmental Cell (204 articles) Earth and Planetary Science Letters (608 articles) Ecology (259 articles) Ecology Letters (120 articles) European Physical Journal C (588 articles) Genes & Development (193 articles) Genome Research (184 articles) Geology (270 articles) Immunity (159 articles) Inorganic Chemistry (1345 articles) Journal of Biological Chemistry (2639 articles) Journal of Cell Biology (229 articles) Journal of Clinical Investigation (298 articles) Journal of Geophysical Research: Atmospheres (829 articles) Journal of Geophysical Research: Oceans (493 articles) Journal of Geophysical Research: Solid Earth (520 articles) Journal of High Energy Physics (2142 articles) Journal of Neuroscience (1337 articles) Journal of the American Chemical Society (2384 articles) Molecular Cell (302 articles) Monthly Notices of the Royal Astronomical Society (2946 articles) Nano Letters
    [Show full text]
  • Performance Report -R- (J) W for the Period Ending March 31, 2006
    Fisheries and Oceans Canada (j) w r­ <( ~ Performance Report -r- (j) w For the period ending March 31, 2006 Canada The Estimates Documents Each year, the government prepares Estimates in support of its request to Parliament for authority to spend public monies. This request is formalized through the tabling of appropriation bills in Parliament. The Estimates, which are tabled in the House of Commons by the President of the Treasury Board, consist of: Part I-The Government Expense Plan provides an overview of federal spending and summarizes the key elements of the Main Estimates. Part II -The Main Estimates directly support the Appropriation Act. The Main Estimates identify the spending authorities ( otes) and amounts to be included in subsequent appropriation bills. Parliament will be asked to approve these votes to enable the government to proceed with its spending plans. Parts I and II of the Estimates are tabled concurrently on or before March I. Part III - Departmental Expenditure Plans, which is divided into two components: I) Reports on Plans and Priorities (RPPs) are individual expenditure plans for each department and agency (excluding Crown corporations). These reports provide increased levels of detail over a three-year period on an organisation's main priorities by strategic outcome(s), program activity(s) and planned/expected results, including links to related resource requirements. The RPPs also provide details on human resource requirements, major capital projects, grants and contributions, and net program costs. They are tabled in Parliament by the President of the Treasury Board on behalf of the ministers who preside over the appropriation dependent departments and agencies identified in Schedules I, I.
    [Show full text]
  • Cancer-Milestones December 2020
    www.nature.com/collections/cancer-milestones December 2020 Cancer Produced by: With support from: Nature Genetics and Nature Medicine Cancer MILESTONES S2 Foreword S3 Timeline S4 Routes to resistance S5 Tracking cancer in liquid biopsies S6 When cancer prevention went viral S7 A licence to kill S8 Sitting on the fence S9 Not a simple switch S10 Sequencing the secrets of the cancer genome S11 Unleashing the immune system against cancer S12 Engineering armed T cells for the fight S13 Oncohistones: epigenetic drivers of cancer S14 Tumour evolution: from linear paths to branched trees S15 Undruggable? Inconceivable S16 Good bacteria make for good cancer therapy S17 The AI revolution in cancer Credit: S.Fenwick/Springer Nature Limited CITING THE MILESTONES VISIT THE SUPPLEMENT ONLINE SUBSCRIPTIONS AND CUSTOMER SERVICES Nature Milestones in Cancer includes Milestone articles written The Nature Milestones in Cancer supplement can be found at Springer Nature, Subscriptions, by our editors and an online Collection of previously published www.nature.com/collections/cancer-milestones Cromwell Place, Hampshire International Business Park, material. To cite the full project, please use Nature Milestones: Lime Tree Way, Basingstoke, Cancer https://www.nature.com/collections/cancer-milestones CONTRIBUTING JOURNALS Hampshire RG24 8YJ, UK (2020). Should you wish to cite any of the individual Milestones, BMC Cancer, Nature, Nature Cancer, Nature Communications, Tel: +44 (0) 1256 329242 please list Author, A. Title. Nature Milestones: Cancer <Article URL> Nature Genetics, Nature Medicine, Nature Reviews Cancer, [email protected] (2020). For example, Milestone 1 is Valtierra, I. Routes to resistance. Nature Reviews Clinical Oncology, Nature Reviews Drug Discovery, Customer serviCes: www.nature.com/help Nature Milestones: Cancer https://www.nature.com/articles/ Nature Reviews Gastroenterology & Hepatology, d42859-020-00069-6 (2020).
    [Show full text]
  • Understanding Biological Design from Synthetic Circuits
    REVIEWS MODELLING Synthetic biology: understanding biological design from synthetic circuits Shankar Mukherji* and Alexander van Oudenaarden‡ Abstract | An important aim of synthetic biology is to uncover the design principles of natural biological systems through the rational design of gene and protein circuits. Here, we highlight how the process of engineering biological systems — from synthetic promoters to the control of cell–cell interactions — has contributed to our understanding of how endogenous systems are put together and function. Synthetic biological devices allow us to grasp intuitively the ranges of behaviour generated by simple biological circuits, such as linear cascades and interlocking feedback loops, as well as to exert control over natural processes, such as gene expression and population dynamics. 10–12 Modularity One of the most astounding findings of the Human potential clinical applications . In this Review, however, A property of a system such Genome Project was that our genome contains as many we focus on how synthetic circuits help us to under- that it can be broken down into genes as that of Drosophila melanogaster. This finding stand how natural biological systems are genetically discrete subparts that perform begged the question: how do you get one organism to assembled and how they operate in organisms from specific tasks independently of look like a fly and another like a human with the same microbes to mammalian cells. In this light, synthetic the other subparts. number of genes? One possibility is that the rich rep- circuits have been crucial as simplified test beds in Bioremediation ertoire of non-protein-coding sequences found in the which to refine our ideas of how similarly structured The treatment of pollution with genomes of complex organisms adds many new parts natural networks function, and they have served as microorganisms.
    [Show full text]
  • Assessment of Impacts and Potential Mitigation for Icebreaking Vessels MARK Transiting Pupping Areas of an Ice-Breeding Seal
    Biological Conservation 214 (2017) 213–222 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Assessment of impacts and potential mitigation for icebreaking vessels MARK transiting pupping areas of an ice-breeding seal ⁎ Susan C. Wilsona, , Irina Trukhanovab, Lilia Dmitrievac, Evgeniya Dolgovad, Imogen Crawforda, Mirgaliy Baimukanove, Timur Baimukanove, Bekzat Ismagambetove, Meirambek Pazylbekovf, ⁎ Mart Jüssig, Simon J. Goodmanc, a Tara Seal Research, Killyleagh, Co. Down, N. Ireland, UK b Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, USA c School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK d Lomonosov Moscow State University, Russian Federation e Institute of Hydrobiology & Ecology, Karasaysky Raion, Almaty, Kazakhstan f Institute of Fisheries, Almaty, Kazakhstan g Pro Mare MTÜ, Saula, Kose, Harjumaa EE 75101, Estonia ARTICLE INFO ABSTRACT Keywords: Icebreaker operations in the Arctic and other areas are increasing rapidly to support new industrial activities and Caspian Sea shipping routes, but the impact on pinnipeds in these habitats is poorly explored. We present the first quantitative Pinniped study of icebreakers transiting ice-breeding habitat of a phocid seal and recommendations for mitigation. Impacts Marine mammal were recorded from the vessel bridge during seven ice seasons 2006–2013, for Caspian seals (Pusa caspica) Ship strikes breeding on the winter ice-field of the Caspian Sea. Impacts included displacement and separation of mothers and Aerial survey pups, breakage of birth or nursery sites and vessel-seal collisions. The flight distance of mothers with pups ahead Conservation was < 100 m, but measurable disturbance occurred at distances exceeding 200 m.
    [Show full text]
  • List Stranica 1 Od
    list product_i ISSN Primary Scheduled Vol Single Issues Title Format ISSN print Imprint Vols Qty Open Access Option Comment d electronic Language Nos per volume Available in electronic format 3 Biotech E OA C 13205 2190-5738 Springer English 1 7 3 Fully Open Access only. Open Access. Available in electronic format 3D Printing in Medicine E OA C 41205 2365-6271 Springer English 1 3 1 Fully Open Access only. Open Access. 3D Display Research Center, Available in electronic format 3D Research E C 13319 2092-6731 English 1 8 4 Hybrid (Open Choice) co-published only. with Springer New Start, content expected in 3D-Printed Materials and Systems E OA C 40861 2363-8389 Springer English 1 2 1 Fully Open Access 2016. Available in electronic format only. Open Access. 4OR PE OF 10288 1619-4500 1614-2411 Springer English 1 15 4 Hybrid (Open Choice) Available in electronic format The AAPS Journal E OF S 12248 1550-7416 Springer English 1 19 6 Hybrid (Open Choice) only. Available in electronic format AAPS Open E OA S C 41120 2364-9534 Springer English 1 3 1 Fully Open Access only. Open Access. Available in electronic format AAPS PharmSciTech E OF S 12249 1530-9932 Springer English 1 18 8 Hybrid (Open Choice) only. Abdominal Radiology PE OF S 261 2366-004X 2366-0058 Springer English 1 42 12 Hybrid (Open Choice) Abhandlungen aus dem Mathematischen Seminar der PE OF S 12188 0025-5858 1865-8784 Springer English 1 87 2 Universität Hamburg Academic Psychiatry PE OF S 40596 1042-9670 1545-7230 Springer English 1 41 6 Hybrid (Open Choice) Academic Questions PE OF 12129 0895-4852 1936-4709 Springer English 1 30 4 Hybrid (Open Choice) Accreditation and Quality PE OF S 769 0949-1775 1432-0517 Springer English 1 22 6 Hybrid (Open Choice) Assurance MAIK Acoustical Physics PE 11441 1063-7710 1562-6865 English 1 63 6 Russian Library of Science.
    [Show full text]
  • Curriculum Vitae – WENJUN ZHANG
    Curriculum Vitae – WENJUN ZHANG Department of Chemical and Biomolecular Engineering, University of California, Berkeley 201 Gilman Hall, Berkeley, CA 94720 http://www.cchem.berkeley.edu/wzgrp Tel: (510)643-8682, [email protected] https://scholar.google.com/citations?hl=en&user=NUYglIoAAAAJ&view_op=list_works&sortby=pubdate PROFESSIONAL EXPERIENCE Co-director, Agilent/UC Berkeley Synthetic Biology Institute (SBI) 2019 to current Associate Professor, Dept. of Chemical and Biomolecular Engineering, UC Berkeley 2018 to current Biologist Faculty Sci/Engr, Lawrence Berkeley National Laboratory 2014 to current Assistant Professor, Dept. of Chemical and Biomolecular Engineering, UC Berkeley 2011-2018 EDUCATION Research Fellow, Harvard Medical School (adviser: Christopher T. Walsh) 2009-2011 Ph.D., Chemical Engineering, University of California, Los Angeles (adviser: Yi Tang) 2004-2009 M.S., Biochemistry and Molecular Biology, Nanjing University, China (adviser: Genxi Li) 2002-2004 B.S., Biochemistry, DII, Nanjing University, China 1998-2002 AWARDS AND HONORS Presidential Early Career Award for Scientists and Engineers (PECASE) (2019) Scialog Fellow, Research Corporation and the Gordon and Betty Moore Foundation (2018) American Cancer Society Research Scholar (2017) Chau Hoi Shuen Foundation Women in Science Program New Research Grant Award (2017) Chan Zuckerberg Biohub Investigator (2017) Alfred P . Sloan Research Fellow (2016) Paul Saltman Memorial Award in Bioinorganic Chemistry (2016) NIH Director's New Innovator Award (2015) Hellman Fellow (2015) F1000Prime Faculty (Chemical Biology, Small Molecule Chemistry section) (2015) The Charles R. Wilke Endowed Chair in Chemical Engineering, UC Berkeley (2014) University of California Cancer Research Coordinating Committee Research Award (2013) Pew Scholar (2012) Energy Biosciences Institute Proposal Award (2011, 2014) Outstanding Ph.D.
    [Show full text]
  • Michael Lynch
    1 Michael Lynch Center for Mechanisms of Evolution, Biodesign Institute Arizona State University Tempe, AZ 85287 Phone: 480-965-0868 Email: [email protected] Birth: 6 December 1951, Auburn, New York Undergraduate education: St. Bonaventure University, Biology - B.S., 1973. Graduate education: University of Minnesota, Ecology and Behavioral Biology - Ph.D., 1977 (advisor: J. Shapiro). Areas of Interest and Research: The integration of molecular and cellular biology, genetics, and evolution; population and quantitative genetics; molecular, genomic, and phenotypic evolution. Select Professional Activities and Service: Director, Biodesign Center for Mechanisms of Evolution, Arizona State University, 2017 – present. Professor, School of Life Sciences, Arizona State University, 2017 – present. Class of 1954 Professor, 2011 – 2017. Distinguished Professor, Indiana University, 2005 – 2017. Professor; Biology, Indiana University, 2001 – 2004. Adjunct Professor, Computer Science, Indiana University, 2014 – 2017. Adjunct Professor, Physics, Indiana University, 2015 – 2017. Professor; Biology, University of Oregon, 1989 – 2001. Director, Ecology and Evolution Program, Univ. of Oregon, 1989 – 1993, 1996 – 2000. Asst., Assoc., Full Professor; Ecology, Ethology, and Evolution; University of Illinois, 1977 – 1989. Co-director, NSF IGERT Training Grant in Evolution, Development, and Genomics, 1999 – 2004. Director, NSF Genetic Mechanisms of Evolution Training Grant, 1990 – 2000. President, Genetics Society of America, 2013. President, Society for Molecular Biology and Evolution, 2009. President, American Genetic Association, 2007. President, Society for the Study of Evolution, 2000. Chair-elect, Section on Biological Sciences American Association for the Advancement of Science, 2017-2020. Vice-president, Genetics Society of America, 2012. Vice-president, Society for the Study of Evolution, 1994. Council Member, Society for the Study of Evolution, 1991 – 1993.
    [Show full text]
  • Guide to Authors and Referees
    Guide to Authors and Referees • Single molecule chemistry of small molecules and biomolecules ABOUT THE JOURNAL • Theoretical simulations and modelling of biomolecules • Molecular recognition AIMS AND SCOPE OF THE JOURNAL • Small molecular model systems for metalloenzymes Nature Chemical Biology is a multidisciplinary journal that publishes • Molecular machines papers of the highest quality and significance in all areas of chemical • Pharmacologically active natural products biology. The journal is particularly interested in contributions from • Biosynthetic pathway elucidation chemists who are applying the principles, language and tools of • Chemical approaches to protein interaction networks chemistry to the understanding of biological problems and from biol- • Chemical ecology ogists who are interested in understanding biological processes at the molecular level. Priority is given to work that reports fundamental Expanding Biology through Chemistry new advances in biology or chemistry. Research areas at the interface • Chemical genetics and High Throughput Screening of chemistry and biology covered in the journal include, but are not • Biomolecular and small molecular array fabrication and valida- limited to: tion • Chemical insights into drug design and development Chemical Synthesis • Synthetic biology • Diversity-oriented synthesis • Unnatural biomolecular analogs in biological systems • Nucleic acid templated synthesis • Chemical genomics • Biomolecular modification and labelling chemistry • Chemical regulation of biosynthetic pathways
    [Show full text]
  • Towards Population-Scale Long-Read Sequencing
    REVIEWS Towards population-scale long-read sequencing Wouter De Coster 1,2,5, Matthias H. Weissensteiner3,5 and Fritz J. Sedlazeck 4 ✉ Abstract | Long-read sequencing technologies have now reached a level of accuracy and yield that allows their application to variant detection at a scale of tens to thousands of samples. Concomitant with the development of new computational tools, the first population-scale studies involving long-read sequencing have emerged over the past 2 years and, given the continuous advancement of the field, many more are likely to follow. In this Review, we survey recent developments in population-scale long-read sequencing, highlight potential challenges of a scaled-up approach and provide guidance regarding experimental design. We provide an overview of current long-read sequencing platforms, variant calling methodologies and approaches for de novo assemblies and reference-based mapping approaches. Furthermore, we summarize strategies for variant validation, genotyping and predicting functional impact and emphasize challenges remaining in achieving long-read sequencing at a population scale. Genome-wide association Sequencing the DNA or mRNA of multiple individuals These studies highlighted that a substantial proportion studies of one or more species (that is, population-scale sequenc- of hidden variation can be discovered with long-read (GWAS). Studies involving a ing) aims to identify genetic variation at a population sequencing. Indeed, recent long-read sequencing stud- statistical approach in genetics level to address questions in the fields of evolutionary, ies of Icelandic and Chinese populations have already to identify variants that correlate with a certain agricultural and medical research. Previous popula- identified previously undetected variants associated with 11,12 phenotype (for example, a tion studies, including genome-wide association studies height, cholesterol level and anaemia .
    [Show full text]