The Apollo-Soyuz Test Project: an Orbital Partnership Is Born 18 July 2012

Total Page:16

File Type:pdf, Size:1020Kb

The Apollo-Soyuz Test Project: an Orbital Partnership Is Born 18 July 2012 Image: The Apollo-Soyuz test project: An orbital partnership is born 18 July 2012 had "won" the race to the moon, with six Apollo landings between 1969 and 1972. Both nations had launched space stations, the Russian Salyut and American Skylab. With the space shuttle still a few years off and the diplomatic chill thawing, the time was right for a joint mission. The Apollo-Soyuz Test Project would send NASA astronauts Tom Stafford, Donald K. "Deke" Slayton and Vance Brand in an Apollo Command and Service Module to meet Russian cosmonauts Aleksey Leonov and Valeriy Kubasov in a Soyuz capsule. A jointly designed, U.S.-built docking module fulfilled the main technical goal of the mission, demonstrating that two dissimilar craft could dock in orbit. But the human side of the mission went far beyond that. Credit: NASA Provided by NASA (Phys.org) -- On July 17, 1975, something momentous happened: two Cold War-rivals met in space. When their respective spacecraft rendezvoused and docked, a new era of cooperative ventures in space began. For more than a decade, American astronauts and Russian cosmonauts have been regularly living and working together in Earth orbit, first in the Shuttle-Mir program, and now on the International Space Station. But, before the two Cold War-rivals first met in orbit in 1975, such a partnership seemed unlikely. Since Sputnik bleeped into orbit in 1957, there had been a Space Race, with the U.S. and then-Soviet Union driven more by competition than cooperation. When President Kennedy called for a manned moon landing in 1961, he spoke of "battle that is now going on around the world between freedom and tyranny" and referred to the "head start obtained by the Soviets with their large rocket engines." But by the mid-70s things had changed. The U.S. 1 / 2 APA citation: Image: The Apollo-Soyuz test project: An orbital partnership is born (2012, July 18) retrieved 1 October 2021 from https://phys.org/news/2012-07-image-apollo-soyuz-orbital-partnership- born.html This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only. 2 / 2 Powered by TCPDF (www.tcpdf.org).
Recommended publications
  • Mir-125 in Normal and Malignant Hematopoiesis
    Leukemia (2012) 26, 2011–2018 & 2012 Macmillan Publishers Limited All rights reserved 0887-6924/12 www.nature.com/leu SPOTLIGHT REVIEW MiR-125 in normal and malignant hematopoiesis L Shaham1,2, V Binder3,4,NGefen1,5, A Borkhardt3 and S Izraeli1,5 MiR-125 is a highly conserved microRNA throughout many different species from nematode to humans. In humans, there are three homologs (hsa-miR-125b-1, hsa-miR-125b-2 and hsa-miR-125a). Here we review a recent research on the role of miR-125 in normal and malignant hematopoietic cells. Its high expression in hematopoietic stem cells (HSCs) enhances self-renewal and survival. Its expression in specific subtypes of myeloid and lymphoid leukemias provides resistance to apoptosis and blocks further differentiation. A direct oncogenic role in the hematopoietic system has recently been demonstrated by several mouse models. Targets of miR-125b include key proteins regulating apoptosis, innate immunity, inflammation and hematopoietic differentiation. Leukemia (2012) 26, 2011–2018; doi:10.1038/leu.2012.90 Keywords: microRNA; hematopoiesis; hematological malignancies; acute myeloid leukemia; acute lymphoblastic leukemia MicroRNAs (miRNAs) are 21–23-nucleotide non-coding RNAs that nucleotides with the seed region of miR-125b (ebv-miR-BART21-5p, have crucial roles in fundamental biological processes by ebv-miR-BART8 and rlcv-miR-rL1-25). In humans, as in most of the regulating the levels of multiple proteins. They are transcribed genomes, there are two paralogs (hsa-miR-125b-1 on chromosome as primary miRNAs and processed in the nucleus by the RNase III 11 and hsa-miR-125b-2 on chromosome 21), coding for the same endonuclease DROSHA to liberate 70-nucleotide stem loops, the mature sequence.
    [Show full text]
  • Molds Aboard the International Space Station
    Mold Species in Dust from the International Space Station Identified and Quantified by Mold Specific Quantitative PCR Stephen J. Vesper a*, Wing Wongb C. Mike Kuoc, Duane L. Piersond a National Exposure Research Laboratory (NERL), United States (US) Environmental Protection Agency, Cincinnati, OH; b Enterprise Advisory Services Inc., Houston, TX c WYLE Laboratories Inc., Houston, TX d Johnson Space Center, National Aeronautics and Space Administration, Houston, TX *Corresponding Author: Stephen Vesper, US EPA, 26 West M.L. King Ave., M.L. 314, Cincinnati, Ohio 45268. Phone: 513-569-7367; email: [email protected] Abstract Dust was collected over a period of several weeks in 2007 from HEPA filters in the U.S. Laboratory Module of the International Space Station (ISS). The dust was returned on the Space Shuttle Atlantis, mixed, sieved, and the DNA was extracted. Using a DNA- based method called mold specific quantitative PCR (MSQPCR), 39 molds were measured in the dust. Potential opportunistic pathogens Aspergillus flavus and A. niger and potential moderate toxin producers Penicillium chrysogenum and P. brevicompactum were noteworthy. No cells of the potential opportunistic pathogens A. fumigatus, A. terreus, Fusarium solani or Candida albicans were detected. Keywords: International Space Station, mold specific quantitative PCR, Aspergillus 1 1. Introduction Since human space exploration began, microbes have traveled with us and are ubiquitous throughout the spacecraft. Previous studies have demonstrated that bacteria, including potential pathogens, were commonly isolated in the air, water, and on surfaces aboard the Mir Space Station [12] and the International Space Station (ISS) [1,6]. Biofilms were found in the water distribution lines on the Space Shuttle Discovery [5].
    [Show full text]
  • Apollo-Soyuz Test Project
    --.I m ...ir,,.= The document_-contains materials on the Soyuz-Apollo test and consists of two parts, prepared by the USSR and USA sides res- pectively. Both parts outline the purposes and program of the mission, the spacecraft design, the flight plan and information on Joint and unilateral scientific experiments. Brief biographies of the cosmonauts and astronauts, the Joint mission crew members_ are also presented. The document covers technical support activities providing mission control and gives information about the ASTP Soviet and American leaders. As the USSR and USA parts of the document have been prepared independently, there might be duplication in the sections dealing with the Joint activities. The document is intended for press representatives and various mass information means. CONTENTS Page I.0 INTRODUCTION ....................................... 10 1.1 Background ......................................... I0 1,2 Apollo-Soyuz joint test project objectives .......... 13 2.0 COMPATIBILITY PROBLEMS ................... ......... • 15 2.1 Spacecraft compatibility conditions and principal solutions accepted for Apollo-Ssyuz Test Mission .... 15 2.2 Compatibility of ground flight control personnel ... 18 2_3 Methodological compatibility ....................... 20 3.0 SOYUZ SPACECRAFT ................................... 22 3.1 PurPose. Brief data on Soyuz spacecraft flights .... 22 3.2 Soyuz spacecraft description ....................... 25 3.2.1 General description of the Soyuz spacecraft.. 25 Main characteristics ........................
    [Show full text]
  • Part 2 Almaz, Salyut, And
    Part 2 Almaz/Salyut/Mir largely concerned with assembly in 12, 1964, Chelomei called upon his Part 2 Earth orbit of a vehicle for circumlu- staff to develop a military station for Almaz, Salyut, nar flight, but also described a small two to three cosmonauts, with a station made up of independently design life of 1 to 2 years. They and Mir launched modules. Three cosmo- designed an integrated system: a nauts were to reach the station single-launch space station dubbed aboard a manned transport spacecraft Almaz (“diamond”) and a Transport called Siber (or Sever) (“north”), Logistics Spacecraft (Russian 2.1 Overview shown in figure 2-2. They would acronym TKS) for reaching it (see live in a habitation module and section 3.3). Chelomei’s three-stage Figure 2-1 is a space station family observe Earth from a “science- Proton booster would launch them tree depicting the evolutionary package” module. Korolev’s Vostok both. Almaz was to be equipped relationships described in this rocket (a converted ICBM) was with a crew capsule, radar remote- section. tapped to launch both Siber and the sensing apparatus for imaging the station modules. In 1965, Korolev Earth’s surface, cameras, two reentry 2.1.1 Early Concepts (1903, proposed a 90-ton space station to be capsules for returning data to Earth, 1962) launched by the N-1 rocket. It was and an antiaircraft cannon to defend to have had a docking module with against American attack.5 An ports for four Soyuz spacecraft.2, 3 interdepartmental commission The space station concept is very old approved the system in 1967.
    [Show full text]
  • Human Spaceflight Plans of Russia, China and India
    Presentation to the Secure World Foundation November 3, 2011 by Marcia S. Smith Space and Technology Policy Group, LLC and SpacePolicyOnline.com “Civil” Space Activities in Russia “Civil” space activities Soviet Union did not distinguish between “civil” and “military” space programs until 1985 Line between the two can be quite blurry For purposes of this presentation, “civil” means Soviet/Russian activities analogous to NASA and NOAA (though no time to discuss metsats today) Roscosmos is Russian civil space agency. Headed by Army General (Ret.) Vladimir Popovkin Recent reports of $3.5 billion budget, but probably does not include money from US and others 11-03-11 2 Key Points to Take Away Space cooperation takes place in the broad context of U.S.-Russian relations Russia may not be a superpower today, but it is a global power and strategically important to the United States Complex US-Russian relationship, as New START and INKSNA demonstrate Russian space program modest by Soviet standards, but Retains key elements Leverages legacy capabilities for current activities and commercial gain Is a global launch service provider from four launch sites from Arctic to equator Proud history of many space “firsts,” but also tragedies and setbacks U.S.-Soviet/Russian civil space relationship has transitioned from primarily competition to primarily cooperation/interdependence today Cooperation not new, dates back to 1963, but much more intensive today U.S. is dependent on Russia for some things, but they also need us Bold dreams endure as Mars 500 demonstrates 11-03-11 3 Today is 54th Anniversary of First Female in Space 11-03-11 4 Just One of Many “Firsts” First satellite (Sputnik, Oct.
    [Show full text]
  • Soviet On-Board Computers for Spacecraft
    Table 2. Soviet on-board computers for spacecraft. by Slava Gerovitch, MIT <[email protected]> Online supplement to the book Voices of the Soviet Space Program: Cosmonauts, Soldiers, and Engineers Who Took the USSR into Space (Palgrave Macmillan, 2014) Computer / Spacecraft Characteristics Year Argon-11S Zond-4/8 function: automatic guidance system 1968 (7K-L1) architecture: single-address computer with parallel processing number of units manufactured: 21 components: hybrid integrated circuits (ICs) Tropa-1 redundancy: hardware triple redundancy RAM: 128 14-bit words ROM: 4,096 17-bit words weight: 34 kg dimensions: 305 x 305 x 550 mm power: 75W continuous operation time: 2 hrs 40 min. design: NIEM Salyut-1 Zond-4/8 function: manual guidance system 1968 (7K-L1) RAM: 64 32-bit words ROM 4,096 17-bit words dimensions: 450 x 140 x 140 mm weight: 14 kg design: NII MP Argon-12A Salyut 2/3/5 single-address computer with parallel processing 1968 (Almaz number of units manufactured: 15 orbital components: hybrid ICs Tropa-1 station) hardware double redundancy RAM: 512 24-bit words ROM: 2x4,096 24-bit words weight: 131 kg volume: 240 dm2 power: 160W (in standby mode 25W) service time: more than 2000 hours design: NIEM Argon-12S Almaz single-address computer with parallel processing 1968 landing mass production: no module components: hybrid ICs Tropa-1 1 RAM: 128 17-bit words ROM: 4,096 17-bit words weight: 20 kg dimensions: 366 x 366 x 272 mm power: 36W mean time before failure: 300 hours design: NIEM Salyut-2 Venera-5/6 design: NII MP 1968 Salyut-2M
    [Show full text]
  • Paper Session II-B-Shuttle-MIR a KSC Perspective
    1996 (33rd) America's Space Program -What's The Space Congress® Proceedings Ahead? Apr 24th, 2:00 PM - 5:00 PM Paper Session II-B - Shuttle- MIR a KSC Perspective Edward Mango NASA/ KSC Susan Hermann LMSO/ KSC Jon Cowart NASA/ KSC Michael Garske NASA/ KSC Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Mango, Edward; Hermann, Susan; Cowart, Jon; and Garske, Michael, "Paper Session II-B - Shuttle- MIR a KSC Perspective" (1996). The Space Congress® Proceedings. 8. https://commons.erau.edu/space-congress-proceedings/proceedings-1996-33rd/april-24-1996/8 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. SHUTTLE - MIR A KSC PERSPECTIVE Edward Mango Susan Hermann NASA/KSC LMSO/KSC Jon Cowart Michael Garske NASA/KSC NASA/KSC INTRODUCTION Last summer the world witnessed an event that was over two years in the making, but twenty years overdue--the docking of the American space shuttle Atlantis to the Russian INITIALIZATION OF PHASE ONE space station Mir. A poll conducted by Space News ranked it as the number one news story Born during the halcyon days of Détente, the of the year. Other newspapers printed Apollo-Soyuz Test Project (ASTP) laid the excavated time capsules of the Apollo-Soyuz groundwork for the Shuttle-Mir docking mission. What caused these two nations to missions. These missions are collectively awake from their “Rip Van Winkle” state of known within NASA, and the human space sleep and more importantly, how will the flight community, as Phase One.
    [Show full text]
  • Syllabus ASEN 3036 Introduction to Human Space Flight
    Syllabus ASEN 3036 Introduction to Human Space Flight This course introduces students to the challenges and rewards of human space flight. Historical and current space programs and spacecraft will be discussed, along with the motivation, cost and rationale for human space exploration. An overview of the space environment will be presented in the context of what is needed to sustain human life and health, including physiological and psychological concerns, in a space habitat. Current events including space research will also be highlighted. Students will learn about the astronaut selection and training processes. Finally, anomalies, mission operations and future program directions, with some insight into career planning, will be covered. The emphasis on learning will be to understand the way humans approach the exploration of space and how such a bold endeavor affects us individually and as humans. Students will be encouraged to explore through readings and research different perspectives of spaceflight to include political, scientific, historical, economic, cultural, and social as well as to consider the impact on our future. Instructor: Jim Voss, Former Astronaut, Scholar in Residence, Roubos Chair Email: [email protected] Office: Engineering Center, ECAE 101 Prerequisites: none, open to all majors at any level Space Minor: This class is one of the elective courses for the CU Space Minor that is open to any undergraduate student from any major. For more information on the CU Space Minor see: http://www.colorado.edu/spaceminor/learn-more Textbook: Harrison, A., “Spacefaring - The Human Dimension”, University of California Press, Los Angeles, CA, 2001 Grading Breakdown: Homework 15%, Project 20%, Quizzes 30%, Exams 35% Course Website: http://www.colorado.edu/ASEN/asen3036/ Required Readings: • Harrison, A., “Spacefaring - The Human Dimension”, University of California Press, Los Angeles, CA, 2001 • NASA Strategic Plan, NASA Journey to Mars, various NASA reports • Various articles provided on the course website Suggested Readings: • O’Neill, G.
    [Show full text]
  • Lessons Learned from Mir — a Payload Perspective John J. Uri', Richard W
    Source of Acquisition NASA Johnson Space Center Lessons Learned from Mir — A Payload Perspective John J. Uri', Richard W. Nygren 2, Jeffery A. Cardenas3 1 ISS Payloads Office, NASA Johnson Space Center, Houston, USA `NASA, retired, Houston, USA 3University Space Research Association, Houston, USA Abstract Among the principal objectives of the Phase 1 NASA/Mir program were for the United States to gain experience working with an international partner, to gain working experience in long-duration space flight, and to gain working experience in planning for and executing research on a long-duration space platform. The Phase 1 program was to provide to the US early experience prior to the construction and operation of the International Space Station (Phase 2 and 3). While it can be argued that Mir and ISS are different platforms and that programmatically Phase 1 and ISS are organized differently, it is also clear that many aspects of operating a long-duration research program are platform independent. This can be demonstrated by a review of lessons learned from Skylab, a US space station program of the mid-1970's, many of which were again "learned" on Mir and are being "learned" on ISS. Among these are optimum crew training strategies, on-orbit crew operations, ground support, medical operations and crew psychological support, and safety certification processes. Introduction The Soviet Union launched the first space station, called Salyut, in 1971. Through the 1970's and 1980's, the Soviets launched a series of stations of increasing complexity and sophistication, culminating with the Mir complex, which had an outstanding career as a long-duration human outpost from 1986 to 2001.
    [Show full text]
  • The U.S.–Russia Space Experience: a Special and Unique Partnership
    JAMES A. BAKER III INSTITUTE FOR PUBLIC POLICY RICE UNIVERSITY THE U.S.–RUSSIA SPACE EXPERIENCE: A SPECIAL AND UNIQUE PARTNERSHIP BY GEORGE W.S. ABBEY BAKER BOTTS SENIOR FELLOW IN SPACE POLICY JAMES A. BAKER III INSTITUTE FOR PUBLIC POLICY RICE UNIVERSITY SEPTEMBER 13, 2013 THE U.S. - RUSSIA SPACE EXPERIENCE: A SPECIAL AND UNIQUE PARTNERSHIP THESE PAPERS WERE WRITTEN BY A RESEARCHER (OR RESEARCHERS) WHO PARTICIPATED IN A BAKER INSTITUTE RESEARCH PROJECT. WHEREVER FEASIBLE, THESE PAPERS ARE REVIEWED BY OUTSIDE EXPERTS BEFORE THEY ARE RELEASED. HOWEVER, THE RESEARCH AND VIEWS EXPRESSED IN THESE PAPERS ARE THOSE OF THE INDIVIDUAL RESEARCHER(S), AND DO NOT NECESSARILY REPRESENT THE VIEWS OF THE JAMES A. BAKER III INSTITUTE FOR PUBLIC POLICY. © 2013 BY THE JAMES A. BAKER III INSTITUTE FOR PUBLIC POLICY OF RICE UNIVERSITY THIS MATERIAL MAY BE QUOTED OR REPRODUCED WITHOUT PRIOR PERMISSION, PROVIDED APPROPRIATE CREDIT IS GIVEN TO THE AUTHOR AND THE JAMES A. BAKER III INSTITUTE FOR PUBLIC POLICY. 2 THE U.S. - RUSSIA SPACE EXPERIENCE: A SPECIAL AND UNIQUE PARTNERSHIP This past July marked the second year since the space shuttle last flew in space. Yet there were two Americans on board the International Space Station (ISS). For the first time in the 50-plus years of spaceflight history, the United States is relying on another nation to fly its astronauts to space. One can lament and complain that this is the case, but this is the reality—a surprising reality for many Americans but a fortunate reality for our civilian space program. Born in the shadow of a Cold War, the American civilian space program has haltingly moved into an international collaborative venture.
    [Show full text]
  • Mir Space Station Fire
    National Aeronautics and Space Administration Trial by Fire: Space Station Mir: On-Board Fire Leadership ViTS Meeting November 2011 Terry Wilcutt Chief, Safety and Mission Assurance Wilson B. Harkins Deputy Chief, Safety and Mission Assurance This and previous presentations are archived at: nsc.nasa.gov/SFCS THE MISHAP On February 24, 1997, six crew members on Space Station Mir faced significant danger when fire ignited in the solid fuel oxygen generator. The searing flame, which erupted from a fuel cartridge, cut off access to one of two Soyuz escape capsules. The module’s narrow space made it difficult to fight the fire, but with teamwork and composure, the crew prevailed. Although the incident would raise tensions between the teams on the ground and on orbit, both sides would learn valuable lessons applicable to the design of the joint U.S.-Russian International Space Station. Oxygen Generator •Mir was equipped with two Elektron units which provided the station with enough oxygen to support a 3- man crew. •Up to 6 crew members could reside on Mir at once, but the crew would then need a supplemental oxygen supply. •During times of increased occupancy, crew members activated the Solid Fuel Oxygen Generator (SFOG), which was located in Mir’s Kvant-1 module. •The SFOG worked by burning a cassette of Lithium Perchlorate. This reaction gave off a byproduct of oxygen, and the SFOG infused Mir with this supplement. •Crew members usually burned three Lithium Perchlorate canisters per day. Figure 1: The solid fuel oxygen generator in Mir’s Kvant-1 module can be seen on the wall to the right of the hatch.
    [Show full text]
  • The Space Station
    International Journal of Science and Research (IJSR) ISSN: 2319-7064 ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426 The Space Station Tanvi Dilip Challirwar B. E. Mechanical, Gokhale education Society College of Engineering, Nashik, Maharashtra, India Abstract: A space station, also known as orbital space station , is a spacecraft capable of supporting crewmembers, which is designed to remain in space (most commonly as an artificial satellite in low Earth orbit) for an extended period of time and for other spacecraft to dock. India's broadening spaceflight ambitions now include a longer-term presence in Earth's orbit. Indian Space Research Organization Chief K Sivan recently revealed plans to launch a space station around 2030. It will be a relatively small station where astronauts would only stay for 15 to 20 days, but that should be enough to allow microgravity experiments. Apart from the partner countries involved with the International Space Station, only China, Russia and the US have operated orbital homes away from home. It also shows that India intends to catch up on many aspects of space flight it fully intends on competing with spaceflight veterans. In this paper we summarize the development of Indian space station. Keywords: Space station, Indian space station, artificial satellite, Almaz and Salyut series, Skylab, Mir, Tiangong 1, Tiangong 2. 1. Objectives from other spacecraft used for human spaceflight by lack of major propulsion or landing systems. Instead, other vehicles To understand the concept of space station. transport people and cargo to and from the station. As of To understand how the Indian space station is going to get 2018, one fully functioning space station is in Earth orbit: build.
    [Show full text]