Hydrogen Production by Electrolysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Steel Production Through Electrolysis: Impacts for Electricity Consumption 0, 0, 75
Font Family: Benton Sans 131, 176, 70 Steel production through electrolysis: impacts for electricity consumption 0, 0, 75 204, 102, 51 Adam Rauwerdink 144, 144, 144 VP, Business Development October 18, 2019 Font Family: A 3,000 year old formula Benton Sans Iron Ore Carbon (Coal) Iron Carbon Dioxide 131, 176, 70 Fe2O3 C Fe CO2 0, 0, 75 204, 102, 51 >2 144, 144, 144 Gt CO2 per year (8% of global emissions) Iron Age 1000 BC Digital Age 2019 2 Boston Metal | 2019 Font Family: Steel in 2018 Benton Sans 131, 176, 70 Aluminium is #2 at 1,800 64 million tonnes 0, 0, 75 million tonnes 204, 102, 51 70% 30% 144, 144, 144 Integrated Steel Mill Mini Mill (Iron ore new steel units) (Scrap recycled steel units) Source: World Steel Association 3 Boston Metal | 2019 Font Family: Integrated steel mill: material flow Benton Sans 131, 176, 70 0, 0, 75 204, 102, 51 144, 144, 144 4 Boston Metal | 2019 Font Family: Molten oxide electrolysis (MOE) is emissions free Benton Sans Molten Oxide Electrolysis (MOE) 131, 176, 70 Iron Ore Electricity Iron Oxygen 0, 0, 75 - Fe2O3 e Fe O2 204, 102, 51 144, 144, 144 No carbon in the process = No CO2 emitted Electricity decarbonization eliminates/reduces indirect emissions! 5 Boston Metal | 2019 Font Family: Changing the formula from coal to electricity Benton Sans Iron Ore Carbon (Coal) Iron Carbon Dioxide 131, 176, 70 Fe2O3 C Fe CO2 0, 0, 75 204, 102, 51 Molten Oxide Electrolysis (MOE) 144, 144, 144 Iron Ore Electricity Iron Oxygen - Fe2O3 e Fe O2 6 Boston Metal | 2019 Font Family: MOE is more energy efficient Benton -
Energy and the Hydrogen Economy
Energy and the Hydrogen Economy Ulf Bossel Fuel Cell Consultant Morgenacherstrasse 2F CH-5452 Oberrohrdorf / Switzerland +41-56-496-7292 and Baldur Eliasson ABB Switzerland Ltd. Corporate Research CH-5405 Baden-Dättwil / Switzerland Abstract Between production and use any commercial product is subject to the following processes: packaging, transportation, storage and transfer. The same is true for hydrogen in a “Hydrogen Economy”. Hydrogen has to be packaged by compression or liquefaction, it has to be transported by surface vehicles or pipelines, it has to be stored and transferred. Generated by electrolysis or chemistry, the fuel gas has to go through theses market procedures before it can be used by the customer, even if it is produced locally at filling stations. As there are no environmental or energetic advantages in producing hydrogen from natural gas or other hydrocarbons, we do not consider this option, although hydrogen can be chemically synthesized at relative low cost. In the past, hydrogen production and hydrogen use have been addressed by many, assuming that hydrogen gas is just another gaseous energy carrier and that it can be handled much like natural gas in today’s energy economy. With this study we present an analysis of the energy required to operate a pure hydrogen economy. High-grade electricity from renewable or nuclear sources is needed not only to generate hydrogen, but also for all other essential steps of a hydrogen economy. But because of the molecular structure of hydrogen, a hydrogen infrastructure is much more energy-intensive than a natural gas economy. In this study, the energy consumed by each stage is related to the energy content (higher heating value HHV) of the delivered hydrogen itself. -
Hydrogen from Biomass Gasification
Hydrogen from biomass gasification Biomass harvesting, Photo: Bioenergy2020+ IEA Bioenergy: Task 33: December 2018 Hydrogen from biomass gasification Matthias Binder, Michael Kraussler, Matthias Kuba, and Markus Luisser Edited by Reinhard Rauch Copyright © 2018 IEA Bioenergy. All rights Reserved ISBN, 978-1-910154-59-5 Published by IEA Bioenergy IEA Bioenergy, also known as the Technology Collaboration Programme (TCP) for a Programme of Research, Development and Demonstration on Bioenergy, functions within a Framework created by the International Energy Agency (IEA). Views, findings and publications of IEA Bioenergy do not necessarily represent the views or policies of the IEA Secretariat or of its individual Member countries. Executive Summary Hydrogen will be an important renewable secondary energy carrier for the future. Today, hydrogen is predominantly produced from fossil fuels. Hydrogen production from biomass via gasification can be an auspicious alternative for future decarbonized applications, which are based on renewable and carbon-dioxide-neutral produced hydrogen. This study gives an overview of possible ways to produce hydrogen via biomass gasification. First, an overview of the current market situation is given. Then, hydrogen production based on biomass gasification is explained. Two different hydrogen production routes, based on biomass gasification, were investigated in more detail. Hydrogen production was investigated for steam gasification and sorption enhanced reforming. Both routes assessed, appear suitable for hydrogen production. Biomass to hydrogen efficiencies (LHV based) of up to 69% are achieved and a techno-economic study shows, hydrogen selling prices of down to 2.7 EUR·kg-1 (or 79 EUR·MWh-1). Overall it can be stated, that governmental support and subsidies are necessary for successful implementation of hydrogen production based on biomass gasification technologies. -
Electrochemistry of Fuel Cell - Kouichi Takizawa
ENERGY CARRIERS AND CONVERSION SYSTEMS – Vol. II - Electrochemistry of Fuel Cell - Kouichi Takizawa ELECTROCHEMISTRY OF FUEL CELL Kouichi Takizawa Tokyo Electric Power Company, Tokyo, Japan Keywords : electrochemistry, fuel cell, electrochemical reaction, chemical energy, anode, cathode, electrolyte, Nernst equation, hydrogen-oxygen fuel cell, electromotive force Contents 1. Introduction 2. Principle of Electricity Generation by Fuel Cells 3. Electricity Generation Characteristics of Fuel Cells 4. Fuel Cell Efficiency Glossary Bibliography Biographical Sketch Summary Fuel cells are devices that utilize electrochemical reactions to generate electric power. They are believed to give a significant impact on the future energy system. In particular, when hydrogen can be generated from renewable energy resources, it is certain that the fuel cell should play a significant role. Even today, some types of fuel cells have been already used in practical applications such as combined heat and power generation applications and space vehicle applications. Though research and development activities are still required, the fuel cell technology is one of the most important technologies that allow us to draw the environment friendly society in the twenty-first century. This section describes the general introduction of fuel cell technology with a brief overview of the principle of fuel cells and their historical background. 1. Introduction A fuel cellUNESCO is a system of electric power – generation,EOLSS which utilizes electrochemical reactions. It can produce electric power by inducing both a reaction to oxidize hydrogen obtained by reforming natural gas or other fuels, and a reaction to reduce oxygen in the air, each occurringSAMPLE at separate electrodes conne CHAPTERScted to an external circuit. -
Teaching H. C. Ørsted's Scientific Work in Danish High School Physics
UNIVERSITY OF COPENHAGEN FACULTY OF SCIENCE Ida Marie Monberg Hindsholm Teaching H. C. Ørsted's Scientific Work in Danish High School Physics Masterʹs thesis Department of Science Education 19 July 2018 Master's thesis Teaching H. C. Ørsted’s Scientific Work in Danish High School Physics Submitted 19 July 2018 Author Ida Marie Monberg Hindsholm, B.Sc. E-mail [email protected] Departments Niels Bohr Institute, University of Copenhagen Department of Science Education, University of Copenhagen Main supervisor Ricardo Avelar Sotomaior Karam, Associate Professor, Department of Science Education, University of Copenhagen Co-supervisor Steen Harle Hansen, Associate Professor, Niels Bohr Institute, University of Copenhagen 1 Contents 1 Introduction . 1 2 The Material: H. C. Ørsted's Work . 3 2.1 The Life of Hans Christian Ørsted . 3 2.2 Ørsted’s Metaphysical Framework: The Dynamical Sys- tem............................. 6 2.3 Ritter and the failure in Paris . 9 2.4 Ørsted’s work with acoustic and electric figures . 12 2.5 The discovery of electromagnetism . 16 2.6 What I Use for the Teaching Sequence . 19 3 Didactic Theory . 20 3.1 Constructivist teaching . 20 3.2 Inquiry Teaching . 22 3.3 HIPST . 24 4 The Purpose and Design of the Teaching Sequence . 27 4.1 Factual details and lesson plan . 28 5 Analysis of Transcripts and Writings . 40 5.1 Method of Analysis . 40 5.2 Practical Problems . 41 5.3 Reading Original Ørsted's Texts . 42 5.4 Inquiry and Experiments . 43 5.5 "Role play" - Thinking like Ørsted . 48 5.6 The Reflection Corner . 51 5.7 Evaluation: The Learning Objectives . -
Electrochemistry –An Oxidizing Agent Is a Species That Oxidizes Another Species; It Is Itself Reduced
Oxidation-Reduction Reactions Chapter 17 • Describing Oxidation-Reduction Reactions Electrochemistry –An oxidizing agent is a species that oxidizes another species; it is itself reduced. –A reducing agent is a species that reduces another species; it is itself oxidized. Loss of 2 e-1 oxidation reducing agent +2 +2 Fe( s) + Cu (aq) → Fe (aq) + Cu( s) oxidizing agent Gain of 2 e-1 reduction Skeleton Oxidation-Reduction Equations Electrochemistry ! Identify what species is being oxidized (this will be the “reducing agent”) ! Identify what species is being •The study of the interchange of reduced (this will be the “oxidizing agent”) chemical and electrical energy. ! What species result from the oxidation and reduction? ! Does the reaction occur in acidic or basic solution? 2+ - 3+ 2+ Fe (aq) + MnO4 (aq) 6 Fe (aq) + Mn (aq) Steps in Balancing Oxidation-Reduction Review of Terms Equations in Acidic solutions 1. Assign oxidation numbers to • oxidation-reduction (redox) each atom so that you know reaction: involves a transfer of what is oxidized and what is electrons from the reducing agent to reduced 2. Split the skeleton equation into the oxidizing agent. two half-reactions-one for the oxidation reaction (element • oxidation: loss of electrons increases in oxidation number) and one for the reduction (element decreases in oxidation • reduction: gain of electrons number) 2+ 3+ - 2+ Fe (aq) º Fe (aq) MnO4 (aq) º Mn (aq) 1 3. Complete and balance each half reaction Galvanic Cell a. Balance all atoms except O and H 2+ 3+ - 2+ (Voltaic Cell) Fe (aq) º Fe (aq) MnO4 (aq) º Mn (aq) b. -
Hydrogen Energy Storage: Grid and Transportation Services February 2015
02 Hydrogen Energy Storage: Grid and Transportation Services February 2015 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy EfficiencyWorkshop Structure and Renewable / 1 Energy, operated by the Alliance for Sustainable Energy, LLC. Hydrogen Energy Storage: Grid and Transportation Services February 2015 Hydrogen Energy Storage: Grid and Transportation Services Proceedings of an Expert Workshop Convened by the U.S. Department of Energy and Industry Canada, Hosted by the National Renewable Energy Laboratory and the California Air Resources Board Sacramento, California, May 14 –15, 2014 M. Melaina and J. Eichman National Renewable Energy Laboratory Prepared under Task No. HT12.2S10 Technical Report NREL/TP-5400-62518 February 2015 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 www.nrel.gov NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. -
Electrolysis Through Magnetic Field for Future Renewable Energy
International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8 Issue-2S, July 2019 Electrolysis Through Magnetic Field for Future Renewable Energy Asaad Zuhair Abdulameer, Zolkafle Buntat, Rai Naveed Arshad, Zainuddin Nawaw Production of Hydroxide through the electrolysis of water, Abstract: Hydrocarbon fuels are the best source of energy; resolve numerous possible problems of using hydroxide as a however, they have some drawbacks. Because of extensive usage fuel supplement [9, 10]. In this attempt, magnetic field and replacement difficulties, it is not financially possible to electrolysis is a technique of electrolysis that is a more entirely disregard them in the coming days. Hydrogen with Oxygen (hydroxide-HHO) gas as a fuel supplement is one convenient light source to compare with solar energy for possible way to reduce consumption and emissions of commercial electrolysis [11]. Although this process gives a hydrocarbon fuels. However, the accessibility and rate of small proportion of hydrogen production by using the current compressed hydrogen (H2) have made it challenging. Electrolysis method, we believed that this process would contribute a lot of water, resolve numerous possible complications of using to society if the existing methods are upgraded with suitable hydroxide for fuel to progress hydrocarbon burning. This materials and substances. research introduces a new design of electrolyzer with proper selection of electrode material and types integrated with magnetic field system, which can reduce the energy consumption. The effect of the optimum magnetic field strength was measured for this process with tap and distilled water. Two supplementary compounds, Sodium Hydroxide (NaOH) and Soda (NaHCO3), with concentration 3333ppm 1.5 litres of the electrolyte was used in this process. -
Summary of Hydrogen Production and Storage Systems
Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The view and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. An Overview of Hydrogen Production and Storage Systems with Renewable Hydrogen Case Studies May 2011 Prepared by: Timothy Lipman, PhD 1635 Arrowhead Drive Oakland, California 94611 (510) 339-1449 [email protected] Prepared for: Clean Energy States Alliance 50 State Street, Suite 1 Montpelier, VT 05602 Conducted under US DOE Grant DE-FC3608GO18111 A000, Office of Energy Efficiency and Renewable Energy Fuel Cell Technologies Program This page intentionally blank Summary Hydrogen is already widely produced and used, but it is now being considered for use as an energy carrier for stationary power and transportation markets. Approximately 10-11 million metric tonnes of hydrogen are produced in the US each year, enough to power 20-30 million cars or 5-8 million homes.1 Major current uses of the commercially produced hydrogen include oil refining (hydro-treating crude oil as part of the refining process to improve the hydrogen to carbon ratio of the fuel), food production (e.g., hydrogenation), treating metals, and producing ammonia for fertilizer and other industrial uses. -
The Effect of Magnetic Field on the Dynamics of Gas Bubbles in Water Electrolysis
The Effect of Magnetic Field on the Dynamics of Gas Bubbles in Water Electrolysis Yan-Hom Li ( [email protected] ) Department of Mechanical and Aerospace Engineering, Chung-Cheng Institute of Technology, National Defense University, Taiwan Yen-Ju Chen Department of Mechanical and Aerospace Engineering, Chung-Cheng Institute of Technology, National Defense University, Taiwan Research Article Keywords: gas bubbles, platinum electrodes, magnetic eld result, downward Lorentz forces Posted Date: March 8th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-283081/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Scientic Reports on April 30th, 2021. See the published version at https://doi.org/10.1038/s41598-021-87947-9. The effect of magnetic field on the dynamics of gas bubbles in water electrolysis Yan-Hom Li1,2,*, Yen-Ju Chen 1,⸸ 1Department of Mechanical and Aerospace Engineering, Chung-Cheng Institute of Technology, National Defense University, Taoyuan, 335, Taiwan, 2System Engineering and Technology Program, National Yang Ming Chiao Tung University, Hsin-Chu, 300, Taiwan *corresponding. hom_li @hotmail.com ⸸these authors contributed equally to this work Abstract In this work, the movement of the gas bubbles evolved from the platinum electrodes in the influence of various magnetic field configurations are experimentally investigated. The oxygen and hydrogen bubbles respectively evolve from the surface of anode and cathode have distinctive behaviors in the presence of magnetic fields due to their paramagnetic and diamagnetic characteristics. The magnetic field perpendicular to the surface of the horizontal electrode induces the revolution of the bubbles. -
Electrolysis of Salt Water
ELECTROLYSIS OF SALT WATER Unit: Salinity Patterns & the Water Cycle l Grade Level: High school l Time Required: Two 45 min. periods l Content Standard: NSES Physical Science, properties and changes of properties in matter; atoms have measurable properties such as electrical charge. l Ocean Literacy Principle 1e: Most of of Earth's water (97%) is in the ocean. Seawater has unique properties: it is saline, its freezing point is slightly lower than fresh water, its density is slightly higher, its electrical conductivity is much higher, and it is slightly basic. Big Idea: Water is comprised of two elements – hydrogen (H) and oxygen (O). Distilled water is pure and free of salts; thus it is a very poor conductor of electricity. By adding ordinary table salt (NaCl) to distilled water, it becomes an electrolyte solution, able to conduct electricity. Key Concepts o Ionic compounds such as salt water, conduct electricity when they dissolve in water. o Ionic compounds consist of two or more ions that are held together by electrical attraction. One of the ions has a positive charge (called a "cation") and the other has a negative charge ("anion"). o Molecular compounds, such as water, are made of individual molecules that are bound together by shared electrons (i.e., covalent bonds). o Essential Questions o What happens to salt when it is dissolved in water? o What are electrolytes? o How can we determine the volume of dissolved ions in a water sample? o How are atoms held together in an element? Knowledge and Skills o Conduct an experiment to see that water can be split into its constituent ions through the process of electrolysis. -
IAC-20,D1,3,5,X56351 Magnetic Buoyancy-Based Water Electrolysis
71st International Astronautical Congress (IAC) – The CyberSpace Edition, 12-14 October 2020. Copyright c 2020 by the authors. Published by the IAF, with permission and released to the IAF to publish in all forms. IAC-20,D1,3,5,x56351 Magnetic buoyancy-based water electrolysis in zero-gravity A.´ Romero-Calvo1, G. Cano-Gomez´ 2, H. Schaub3 The management of fluids in space is complicated by the absence of strong buoyancy forces. This raises significant technical issues for two-phase flows applications, such as water electrolysis or boiling. Different approaches have been proposed and tested to induce phase separation in low-gravity; however, further efforts are still required to develop efficient, reliable, and safe devices. The employment of magnetic buoyancy is proposed as a complement or substitution of current methods, and as a way to induce the early detachment of gas bubbles from their nucleation surfaces. The governing magnetohydrodynamic equations describing incompressible two-phase flows subjected to static magnetic fields in low-gravity are presented, and numerical simulations are employed to demonstrate the reachability of current magnets under different configurations. The results support the employment of new-generation neodymium magnets for centimeter- scale electrolysis and phase separation technologies in space, that would benefit from reduced complexity, mass, and power requirements. 1 Introduction tive to moderate departures from the operational design point [20], and electric fields consume power and may represent a safety hazard The term water electrolysis refers to the electrically induced decom- for both human and autonomous spaceflight due to the large required position of water into oxygen and hydrogen.