Cadmium Tolerance in a Soil Arthropod a Model of Real-Time Microevolution

Total Page:16

File Type:pdf, Size:1020Kb

Cadmium Tolerance in a Soil Arthropod a Model of Real-Time Microevolution Cadmium tolerance in a soil arthropod a model of real-time microevolution Insects are suitable models for the study of micro- Nico M. van Straalen & Dick Roelofs evolution in real time. Springtails (Collembola) Institute of Ecological Science are common inhabitants of organic soils. When Vrije Universiteit the soil is polluted by heavy metals, some spring- De Boelelaan 1085 tails are still able to survive due to genetic adap- 1081 HV Amsterdam The Netherlands tation. We have shown that the production of a [email protected] metal-binding protein, metallothionein, is in- creased in strains of Orchesella cincta cultured from sites with heavy metal contamination. A higher production of metal-binding protein al- lows more metal to be retained in the gut cells and consequently more metal to be excreted when the gut epithelium is regenerated at moult. DNA analysis has shown that the promoter of the metallothionein gene shows a considerable degree of polymorphism in springtail popula- tions while some promoter alleles confer in- creased expression of the gene. In populations tion in the oxygen transporting protein haemocyanin, but in exposed to high metal concentrations the fre- general our knowledge of insect mineral nutrition is scanty quency of these alleles is increased compared to compared to that of vertebrates and plants. reference populations, which is most likely due Notwithstanding the long history of interactions between organisms and heavy metals, adaptation processes can still to a selective advantage of high expresser phe- be observed in present ecosystems. This is due to the fact notypes in polluted ecosystems. The data illus- that in a relatively short timespan, human activities have led trate a new mechanism of microevolution, se- to a large-scale redistribution of heavy metals over the pla- net. This redistribution basically takes the form of depletion lection on transcriptional regulation, rather than in a few places (ore deposits) and enrichments in many ot- on gene structure. her places (around mines and smelters, in industrial areas and around urban settlements). In this way, ecosystems are Entomologische Berichten 65(4): 105-111 loaded with metal levels that were not there before. The question addressed in this paper is whether exposures asso- ciated with these increased metal loadings of the environ- Keywords: cadmium, Collembola, evolution, heavy metals, ment lead to new adaptations and what would be the me- metallothionein, Orchesella cincta, soil pollution chanisms by which animals can develop such adaptations. Adaptation to heavy metals can be considered an examp- Introduction le of ‘evolution through pollution’. In fact, one of the finest examples of evolution in action is provided by the adapta- Like all animals, insects require heavy metals in their meta- tion of plants to metal-containing soils in areas that are bolism, but suffer from metal toxicity when they are exposed naturally enriched with heavy metals. These examples have to levels above their capacity for detoxification (box 1). Since found their way to textbooks and are cited as evidence that life began, organisms have used heavy metals to perform evolution is still going on around us (Futuyma 1998). The ve- certain functions in their metabolism. Some authors even getation of metal-enriched soils includes metal-tolerant argue that heavy metals played a crucial role in the origin of varieties of species that are often rare in other places and life itself (Russell & Hall 1997). Anyway, life has been very se- species that are only known from metal-enriched sites. lective in the choice of metals for biological functions, be- In insects, the issue of ‘evolution through pollution’ is cause there is no correlation whatsoever between the abun- mostly known from pesticide resistance (Oppenoorth 1987). dance of metals in the earth’s crust and their abundance in Metal tolerance is not often studied, partly because many in- biological tissues (Ernst & Joosse 1983). Also insects have sects are not exposed to high concentrations of heavy me- adopted heavy metals as essential elements in their metabo- tals, at least not during their adult life. The story is different lism. The role of copper is well-known because of its posi- for insects that live in close contact with soils or sediments Entomologische Berichten 65(4) 2005 105 and their associated dead organic matter, because these en- Evidence for metal tolerance is suggested for at least vironmental compartments are sinks for many pollutants eighteen species, most of them invertebrates, but including and heavy metals tend to accumulate there. Consequently, two fishes (table 1). Only in a few cases it was actually pro- tolerance development to heavy metals in insects is best do- ven that the adaptation was due to genetic change. The re- cumented in soil- and sediment-living species. In this paper view (table 1) reinforces the previous conclusion that many we document recent progress in the study of a soil-living animals can develop tolerance to metals, that invertebrates collembolan and its adaptation to cadmium. seem to be more prone to develop tolerance than vertebra- tes, and that some animals cannot develop tolerance at all. Adaptation to metals The strongest evidence for tolerance comes from studies at grossly polluted sites where selection is expected to be parti- Since the 1970s, many authors have reported cases of adap- cularly strong, e.g. ore mines and point sources of industrial tation to metal pollution in field populations of animals emission. It is interesting to note that no cases of tolerance (Joosse & Buker 1979, Van Straalen et al. 1987, Hopkin 1989, (at least not in animals) are reported from some common Posthuma et al. 1992, Baird & Barata 1999, Stürzenbaum et cases of environmental pollution, e.g. lead in roadside ver- al. 2001). The term ‘adaptation’ is used in variable senses ges and zinc below overhead electric power cables. Also, (see box 2). The aquatic studies published in the 1970s and there is no evidence for copper tolerance in earthworms fr- most of the 1980s were summarized by Klerks & Weis (1987). om vineyeard soils. Their review showed that metal tolerance had been reported Whereas table 1 illustrates cases of metal tolerance in more often in algae and invertebrates than in vertebrates field populations, the phenomenon of tolerance is also known (fish and amphibians). The authors also stated that if the pu- from laboratory test species. Extensive work has been done blished literature accurately represents the situation in pol- on the variation between clones in parthenogenetic or g a- luted areas, it must be concluded that most, but not all, pop- nisms, such as Daphnia magna Straus for the aquatic environ - ulations can develop tolerance. However, they warned ment and Folsomia candida (Willem) for soil. A study by against relaxing water quality criteria on this basis, because Baird & Barata (1999) has shown that substantial variability many populations failed to survive in polluted environments. in the susceptibility to cadmium is present between clones How the tolerances were acquired, by physiological or gene- of Daphnia. This has important implications for the use of tic adaptation, was unclear in most of the studies. Posthuma these cladocerans as standard test animals in ecotoxicology, & Van Straalen (1993) conducted a review with a scope simi- because the same level of water pollution may be evaluated lar to Klerks & Weis, but aimed to cover the terrestrial en- differently depending on the clone used. The issue of inter- vironment. These authors concluded that there was good clonal differences was also investigated by Crommentuijn et evidence for metal tolerance in seven species of terrestrial al. (1995) in four strains of the parthenogenetic collembolan invertebrate. F. candida, exposed to three toxicants, including cadmium. Differences between clones amounted to a factor 4. The evidence reviewed here (see table 1) suggests that Box 1. What is a heavy metal? adaptation to metals accompanied by genetic change is not an All elements which have a density greater than 5 g/cm3 fall in the uncommon phenomenon in the wild. The following sections category ‘heavy metals’. Heavy metals are a normal part of na- deals with one of the mechanisms underlying adaptation, in- ture: they cycle through all compartments including living bio- duction of the metal-binding protein, metallothionein. mass, although their concentrations are usually very low (hence ‘trace metals’). Some metals perform specific functions in the Metallothionein metabolism, for example: copper is an essential constituent of the oxygen-transporting Since its discovery in 1957, metallothionein (MT) has been haemolymph protein of arthropods and molluscs, haemocya- subject to extensive research in a wide variety of organisms. nin, The protein was called metallothionein because of its very zinc is a crucial element of enzymes such as carbonic anhydrase high metal and sulphur content. The high sulphur content is and many DNA-binding peptides which regulate the expression due to an exceptional number of cysteine residues which re- of genes (‘zinc fungers’), sults in a high affinity for heavy metals such as cadmium iron is an essential part of cytochromes such as cytochrome and copper. The cysteines are usually arranged in a Cys- P450, a family of enzymes associated with the metabolism of XaaCys (Xaa being any amino acid) configuration. steroid hormones and biotransformation of plant secondary Metallothio- nein lacks aromatic amino acids. Notwithstan- compounds. ding these properties shared by all metallothioneins, the size Some metals such as lead and cadmium have no known bio- of protein and amino acid composition can vary enormously logical function, but it cannot be excluded that they may have a between MTs of different organisms or even between iso- function in very low concentrations. For example, recently a bio- forms with-in an organism. logical role was suggested for cadmium in a specific form of car- Studies on vertebrates have shown that each molecule of bonic anhydrase in a marine diatom.
Recommended publications
  • The Changing of the Guard in White Grub Control Insecticides
    A PRACTICAL RESEARCH DIGEST FOR TURF MANAGERS Volume 10, Issue 6 • June 2001 ¡TURFGRASS PEST CONTROL IN THIS ISSUE • The changing of the The Changing of the guard in white grub Guard in White Grub control insecticides 1 Organophosphate/ Control Insecticides carbamate update New product information By Kevin Mathias Natural control influence of insecticides combination of federal regulatory rulings and economic decisions by insecticide Multiple targeting manufacturers has dramatically changed the landscape of white grub insecticides A and control strategies. At the beginning of the 1990's white grub control insecti- • Site analysis for golf cides consisted mainly of organophosphate and carbamate based chemistries with only a course development 7 few biorational products available (Table 1). As a group, the organophosphate and car- Climate bamate insecticides, have a relatively short residual activity and are highly efficacious when used in curative control programs. Topography Optimum results are attained if the products are applied in mid to late August or into September, as white grub damage is first noticed and Drainage patterns when the grubs are young and relatively small. Optimum results are Water availability As we enter the new millennium many of the cura- attained if the tive control products have been replaced by a group of Soils and geology products are applied new insecticides. These insecticides, Merit and Mach 2, offer greater applicator safety, have less adverse effect Environmental issues in mid to late August on the environment, provide a longer window of appli- Wetlands or into September, as cation due to their extended soil residual activities, have minimal impact on beneficial predators, and pro- Water quality white grub damage vide excellent control (+90%) of white grubs.
    [Show full text]
  • Springtails in Sugarbeet: Identification, Biology, And
    E-1205 SpringtailsSpringtails in Sugarbeet: Figure 1. Adult springtail (40x magnification). Identification, Biology, and Management Mark A. Boetel, Research and Extension Entomologist Robert J. Dregseth, Research Specialist Introduction Mohamed F. R. Khan, Extension Sugarbeet Specialist Springtails are tiny, wingless, primitive animals commonly placed into the insect order Collembola. They are so unusual that some experts classify them as non-insects. Springtails Description are one of the most abundant and diverse animal groups on Springtails can vary in color from white to yellow, earth with over 6,000 described species and an estimated orange, metallic green, lavender, gray, or red. A tiny tube eight times as many remaining to be identified. on the abdomen, the collophore, is common to all spring- The springtails have worldwide distribution and tails. The collophore is mostly needed for maintaining occupy a diverse habitat range that includes soil, algae, old optimal water balance but also functions in some species as snowbanks, beaches, caves, cisterns, vacant bird nests, a sticky appendage for adhering to surfaces. The name tropical rain forest canopies, tidal pools, deserts, the “springtail” refers to an unusual forked organ, the furcula, surfaces of freshwater ponds and streams, and even the that arises near the posterior end of some species. It enables frozen terrain of Antarctica. However, they are most them to jump when disturbed. The furcula is usually folded abundant in warm, moist environments. Economically forward along the underside of the body and held in place important species in North Dakota and Minnesota with a clasp called the tenaculum. To jump, the springtail sugarbeet fields are the soil-inhabiting springtails.
    [Show full text]
  • 13 Index of Common Names
    Index of Common Names BITING/STINGING/VENOMOUS PESTS Bees ………………………………………………………… 6 Honey bee…………………………………………………6 Africanized bees……………………………………….. 7 Bumblebee…………………………………………………….9 Carpenter bee……………………………………………….9 Digger bee………………………………………………………11 Leaf cutter bee………………………………………………….12 Sweat bee………………………………………………………..13 Wasps…………………………………………………………….14 Tarantula hawk…………………………………………………14 Yellowjacket……………………………………………………….15 Aerial yellowjacket ……………………………………………….15,16 Common yellowjacket ……………………………………………….15 German yellowjacket……………………………………………….15 Western yellowjacket……………………………………………….15 Paper wasp………………………………………………. 18 Brown paper wasp……………………………………………….18 Common paper wasp ……………………………………………….18 European paper wasp……………………………………………….18 Navajo paper wasp……………………………………………….18,19 Yellow paper wasp……………………………………………….18,19 Western paper wasp……………………………………………….18 Mud dauber………………………………………………. 20 Black and blue mud dauber……………………………..………………….20 Black and yellow mud dauber……………………………………………….20 Organ pipe mud dauber……………………………………………….20,21 Velvet ant……………………………………………………21 Scorpions………………………………………………………23 Arizona bark scorpion……………………………………………….23 Giant hairy scorpion ……………………………………………….24 Striped-tail scorpion……………………………………………….25 Yellow ground scorpion……………………………………………….25 Spiders…………………………………………………………..26 Cellar spider……………………………………………….2 6 Recluse spider……………………………………………….27 Tarantula…………………………………………………. 28 Widow spider……………………………………………….29 Scorpion/spider look-alikes……………………………………………….30 Pseudoscorpion……………………………………………….30 Solifugid/wind
    [Show full text]
  • Observations on the Springtail Leaping Organ and Jumping Mechanism Worked by a Spring
    Observations on the Springtail Leaping Organ and Jumping Mechanism Worked by a Spring Seiichi Sudo a*, Masahiro Shiono a, Toshiya Kainuma a, Atsushi Shirai b, and Toshiyuki Hayase b a Faculty of Systems Science and Technology, Akita Prefectural University, Japan b Institute of Fluid Science, Tohoku University, Japan Abstract— This paper is concerned with a small In this paper, the springtail leaping organ was jumping mechanism. Microscopic observations of observed with confocal laser scanning microscopy. A springtail leaping organs were conducted using a jumping mechanism using a spring and small confocal leaser scanning microscope. A simple electromagnet was produced based on the observations springtail mechanism using a spring and small of leaping organ and the jumping analysis of the electromagnet was produced based on the observations springtail. of leaping organ and the jumping analysis of the globular springtail. Jumping characteristics of the mechanism were examined with high-speed video II. EXPERIMENTAL METHOD camera system. A. Microscopic Observations Index Terms—Jumping Mechanism, Leaping Organ, Globular springtails are small insects that reach Springtail, Morphology, Jumping Characteristics around 1 mm in size. They have the jumping organ (furcula), which can be folded under the abdomen. Muscular action releasing the furcula can throw the I. INTRODUCTION insect well out of the way of predators. Jumping in insect movement is an effective way to In this paper, microscopic observations of the furcula escape predators, find food, and change locations. were conducted using the confocal laser scanning Grasshoppers, fleas, bush crickets, katydids, and locusts microscope. Confocal laser scanning microscopy is are particularly well known for jumping mechanisms to fluorescence – imaging technique that produces move around.
    [Show full text]
  • Occasional Invaders
    This publication is no longer circulated. It is preserved here for archival purposes. Current information is at https://extension.umd.edu/hgic HG 8 2000 Occasional Invaders Centipedes Centipede Millipede doors and screens, and by removal of decaying vegetation, House Centipede leaf litter, and mulch from around the foundations of homes. Vacuum up those that enter the home and dispose of the bag outdoors. If they become intolerable and chemical treatment becomes necessary, residual insecticides may be Centipedes are elongate, flattened animals with one pair of used sparingly. Poisons baits may be used outdoors with legs per body segment. The number of legs may vary from caution, particularly if there are children or pets in the home. 10 to over 100, depending on the species. They also have A residual insecticide spray applied across a door threshold long jointed antennae. The house centipede is about an inch may prevent the millipedes from entering the house. long, gray, with very long legs. It lives outdoors as well as indoors, and may be found in bathrooms, damp basements, Sowbugs and Pillbugs closets, etc. it feeds on insects and spiders. If you see a centipede indoors, and can’t live with it, escort it outdoors. Sowbugs and pillbugs are the only crustaceans that have Centipedes are beneficial by helping controlArchived insect pests and adapted to a life on land. They are oval in shape, convex spiders. above, and flat beneath. They are gray in color, and 1/2 to 3/4 of an inch long. Sowbugs have two small tail-like Millipedes appendages at the rear, and pillbugs do not.
    [Show full text]
  • Springtails1 P
    ENY-228 Springtails1 P. G. Koehler, M. L. Aparicio, and M. Pfiester2 organic material and other nutrients to return to the soil; these nutrients are later used by plants. Occasionally, springtails attack young seedlings and may damage the roots and stems. Biology and Description The Order Collembola has two suborders easily distin- guished by their body shape. One appears linear (Figure 1), while the other appears globular (Figure 2). These suborders are further divided into families that contain the separate species. Only seven families include the 650 species in North America. Worldwide, 3,600 species have been discovered. This fact sheet is included in SP134: Pests in and around the Florida Home, which is available from the UF/IFAS Extension Bookstore. http:// ifasbooks.ifas.ufl.edu/p-154-pests-in-andaroundthe-florida-home.aspx Figure 1. A linear springtail. Springtails are minute insects without wings in the Order Springtails range in length from 0.25 to 6 mm, but are Collembola. They occur in large numbers in moist soil and normally about 1 mm long. Colors range from white to can be found in homes with high humidity, organic debris, yellow, gray, or blue-gray. Attached to the tip of the abdo- or mold. Homeowners sometimes discover these insects men is a forked appendage resembling a lever and called occurring in large numbers in swimming pools, potted the furcula. At rest, a clasp called the tenaculum holds the plants, or in moist soil and mulch. They feed on fungi, furcula to the abdomen. When disturbed or threatened, fungal spores, and decaying, damp vegetation, causing the springtail’s tenaculum releases the furcula, which then 1.
    [Show full text]
  • De Springstaarten Van Nederland: Het Genus ORCHESELLA (Hexapoda: Entognatha: Collembola) Matty Berg
    de springstaarten van nederland: het genus ORCHESELLA (hexapoda: entognatha: collembola) Matty Berg Springstaarten kruipen al minstens 450 miljoen jaar op aarde rond en komen in bijna elk ecosysteem voor. Ze zijn vaak in grote aantallen aanwezig en hebben dan een zeer belangrijke functie. Enerzijds zijn ze betrokken bij de afbraak van organisch materiaal en anderzijds als voedsel voor allerlei predatoren. Uit Nederland zijn ruim 200 soorten springstaarten bekend en nog tientallen soorten zijn te verwachten. Een samenvatting van de kennis is zeer tijdrovend. Daarom is besloten tot een reeks artikelen, waarbij steeds een of meerdere genera worden behandeld, met een tabel tot de soorten, ver- spreidingskaarten en een ecologisch profiel. In dit eerste artikel wordt het genus Orchesella behandeld, met vier bekende soorten in ons land. inleiding nieuwe soorten gevonden voor onze fauna. De Al sinds 1887 wordt gepubliceerd over het voorko- nieuwe soorten worden genoemd in de hand- men van springstaarten in ons land. In dat jaar leiding voor het karteren van springstaarten publiceerde Oudemans in zijn proefschrift een (Berg 2002), maar de vondsten worden hier naamlijst van de Nederlandse Collembola, met niet onderbouwd met bewijsmateriaal en nadere 36 soorten. Pas in 1930 verschijnt een nieuwe gegevens. Het is dus hoog tijd voor een kritische lijst met 54 soorten en 17 variëteiten (Buitendijk naamlijst van de Nederlandse springstaarten. 1930). Een aanvulling komt elf jaar later (Buiten- dijk 1941), met 62 soorten en 16 variëteiten. Dit Een volledige revisie van de Nederlandse naam- is de laatste officiële naamlijst van springstaarten lijst is zeer tijdrovend, zeker als elke nieuwe die voor ons land is verschenen.
    [Show full text]
  • Data Providers
    Using Biodiversity Data from the NBN Database for Research y Paula Lightfoot, NBN Trust Data Access Officer Introduction to the NBN Database 1. Overview of available data 2. Finding and accessing data 3. Evaluating data quality 4. Using and referencing data http://data.nbn.org.uk Summary of Available Data • 91 million georeferenced taxon occurrence records. • 27 habitat datasets and 44 site boundary datasets to provide context and act as filters. • 856 datasets from 150 data providers. • Standard data format. • Standard taxonomy from UK Species Inventory. http://data.nbn.org.uk Data Providers Records in the NBN Database by data provider type. January 2014 (n = 91,206,588) • A large proportion of data comes from skilled amateur naturalists. • Data collated taxonomically and/or geographically. • Some structured surveys, much ad hoc recording. Geographic Coverage and Sampling Effort: • Recorder effort and data mobilisation are not evenly spread across the British Isles. • New NBN Gateway (v.5) extends coverage to include the Channel Islands and offshore data. • National Biodiversity Data Centre is the repository for ROI data. Sampling Effort Collembola Recording Scheme BTO Second Atlas of Breeding Birds 10,633 records of 336 species in Britain and Ireland: 1988-1991 over 200 years 1,465,400 records of 272 species over 4 years Sampling Effort Orchesella villosa (a springtail) http://tombio.myspecies.info/ Taxonomic Coverage Taxonomic breakdown of records in the NBN Database at January 2014 n = 91,269,685 Currency of Data Number of records in the NBN Database by year of record (January 2014) n = 89,091,428 (98% of total) Data Attributes Standard attributes in NBN Exchange Format: Required: Unique record key, taxon, date, date type, coordinates/grid reference/polygon, projection, precision (what? where? when?) Optional: Survey key, sample key, absent, sensitive, site key, site name, recorder, determiner Other attributes are not (yet) standardised across datasets: e.g.
    [Show full text]
  • Five New Species of Orchesella (Collembola: Entomobryidae)
    Proceedings of the Iowa Academy of Science Volume 84 Number Article 3 1977 Five New Species of Orchesella (Collembola: Entomobryidae) K. A. Christiansen Grinnell College B. E. Tucker Grinnell College Let us know how access to this document benefits ouy Copyright ©1977 Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Christiansen, K. A. and Tucker, B. E. (1977) "Five New Species of Orchesella (Collembola: Entomobryidae)," Proceedings of the Iowa Academy of Science, 84(1), 1-13. Available at: https://scholarworks.uni.edu/pias/vol84/iss1/3 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Q Christiansen and Tucker: Five New Species of Orchesella (Collembola: Entomobryidae) \ \ (-:f-6 v,tff rlD' l Five New Species of Orchesella (Collembola: Entomobryidae) C ·if K. A. CHR1STIANSEN 1 and B. E. TUCKER2 CHRISTIANSEN, K. A. and BRUCE E. TUCKER (Dept. of Biology, bryidae) new to science . The chaetotaxy of the abdomen as well as the antenna! Grinnell College, Grinnell IA 50112). Five New Species of Orchesella (Col­ pin seta are used systematically for the first time in the taxonomy of the genus. lembola: Entomobryidae). Proc. Iowa Acad. Sci. 84(1): 1-13, 1977 . INDEX DESCRIPTORS: Collembola Taxonomy, North American Insect This paper describes 5 species of the genus Orchese/la (Collembola: Entomo- Taxonomy.
    [Show full text]
  • Abdominal-A Specify Three Different Types of Abdominal Appendage in the Springtail Orchesella Cincta (Collembola) Konopova and Akam
    The Hox genes Ultrabithorax and abdominal-A specify three different types of abdominal appendage in the springtail Orchesella cincta (Collembola) Konopova and Akam Konopova and Akam EvoDevo 2014, 5:2 http://www.evodevojournal.com/content/5/1/2 Konopova and Akam EvoDevo 2014, 5:2 http://www.evodevojournal.com/content/5/1/2 RESEARCH Open Access The Hox genes Ultrabithorax and abdominal-A specify three different types of abdominal appendage in the springtail Orchesella cincta (Collembola) Barbora Konopova* and Michael Akam Abstract Background: In Drosophila and many other insects, the Hox genes Ultrabithorax (Ubx) and abdominal-A (abd-A) suppress limb formation on most or all segments of the abdomen. However, a number of basal hexapod lineages retain multiple appendages on the abdomen. In the collembolans or springtails, three abdominal segments develop specialized organs that originate from paired appendage primordia which fuse at the midline: the first abdominal segment bears the collophore (ventral tube), involved in osmoregulation; the fourth segment bears the furca, the leaping organ, and the third segment bears the retinaculum, which retains the furca at rest. Ubx and abd-A are known to be expressed in the springtail abdomen, but what role they play in specifying these distinct abdominal appendages is not known. This is largely because no genetic model has been established in collembolans or any other non-insect hexapod. Results: We have developed a convenient method for laboratory culture of the collembolan Orchesella cincta on defined media, a method for in-situ hybridization to embryos and a procedure for gene knockdown by parental injection of double-stranded RNA (RNAi).
    [Show full text]
  • New Records of Springtail Fauna (Hexapoda: Collembola: Entomobryomorpha) from Ordu Province in Turkey
    Turkish Journal of Zoology Turk J Zool (2017) 41: 24-32 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1509-28 New records of springtail fauna (Hexapoda: Collembola: Entomobryomorpha) from Ordu Province in Turkey 1 2, 3 Muhammet Ali ÖZATA , Hasan SEVGİLİ *, Igor J. KAPRUS 1 Demir Karamancı Anatolian High School, Melikgazi, Kayseri, Turkey 2 Department of Biology, Faculty of Arts and Sciences, Ordu University, Ordu, Turkey 3 State Museum of Natural History, Ukrainian National Academy of Sciences, L’viv, Ukraine Received: 14.09.2015 Accepted/Published Online: 27.04.2016 Final Version: 25.01.2017 Abstract: This study aims to elucidate the Collembola fauna of the province of Ordu, which is situated between the Middle and Eastern Black Sea regions of Turkey. Although a large number of Collembolan specimens had been collected, only Entomobryomorpha species were given emphasis. From 44 different sampled localities of the province of Ordu, we recorded 6 families, 14 genera, and 28 species. Six of these species were previously recorded and 20 of them are new records for Turkey. The results were not surprising, considering that the sampled region had not been studied previously, quite like many habitats in Turkey. With our 20 new records (Entomobryomorpha), the grand total of the springtail fauna of Turkey is increased to 73 species. This represents an increase of almost 40% of the current list of known species. These numbers show us that the diversity of Collembola in Turkey is not thoroughly known and it is clear that numerous species remain undiscovered or undescribed.
    [Show full text]
  • <I>Orchesella</I> (Collembola: Entomobryomorpha
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 5-2015 A Molecular and Morphological Investigation of the Springtail Genus Orchesella (Collembola: Entomobryomorpha: Entomobryidae) Catherine Louise Smith University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Entomology Commons Recommended Citation Smith, Catherine Louise, "A Molecular and Morphological Investigation of the Springtail Genus Orchesella (Collembola: Entomobryomorpha: Entomobryidae). " Master's Thesis, University of Tennessee, 2015. https://trace.tennessee.edu/utk_gradthes/3410 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Catherine Louise Smith entitled "A Molecular and Morphological Investigation of the Springtail Genus Orchesella (Collembola: Entomobryomorpha: Entomobryidae)." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Entomology and Plant Pathology. John K. Moulton, Major Professor We have read this thesis and recommend its acceptance: Ernest C. Bernard, Juan Luis Jurat-Fuentes Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) A Molecular and Morphological Investigation of the Springtail Genus Orchesella (Collembola: Entomobryomorpha: Entomobryidae) A Thesis Presented for the Master of Science Degree The University of Tennessee, Knoxville Catherine Louise Smith May 2015 Copyright © 2014 by Catherine Louise Smith All rights reserved.
    [Show full text]