Blastodermal Cuticle Formation Contributes to Desiccation Resistance in Springtail Eggs: Eco-Evolutionary Implications for Insect Terrestrialization

Total Page:16

File Type:pdf, Size:1020Kb

Blastodermal Cuticle Formation Contributes to Desiccation Resistance in Springtail Eggs: Eco-Evolutionary Implications for Insect Terrestrialization bioRxiv preprint doi: https://doi.org/10.1101/767947; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Vargas et. al., Springtail eggs. This preprint has not been submitted to any journal. September 12th, 2019. Blastodermal cuticle formation contributes to desiccation resistance in springtail eggs: eco-evolutionary implications for insect terrestrialization Helena Carolina Martins Vargas1,2; Kristen A. Panfilio3; Dick Roelofs2; Gustavo Lazzaro Rezende1,3 ¹Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil. ²Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, HV Amsterdam, The Netherlands. 3School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK. HCM: ORCID 0000-0001-8290-8423, [email protected] / KAP: ORCID 0000-0002-6417-251X, [email protected] DR: ORCID 0000-0003-3954-3590, [email protected] / GLR: ORCID 0000-0002-8904-7598, [email protected] /[email protected] Abstract Land colonization was a major event in the history of life. Among animals, insects had a staggering terrestrialization success, due to traits usually associated with post-embryonic life stages, while the egg stage has been largely overlooked in comparative studies. In many insects, after blastoderm differentiation, the extraembryonic serosal tissue wraps the embryo and synthesizes the serosal cuticle, an extracellular matrix that lies beneath the eggshell and protects the egg against water loss. In contrast, in non-insect hexapods such as springtails (Collembola) the early blastodermal cells synthesize a blastodermal cuticle. Here, we investigate the relationship between blastodermal cuticle formation and egg resistance to desiccation in the springtails Orchesella cincta and Folsomia candida, two species with different oviposition tenvironments and developmental rates. The blastodermal cuticle becomes externally visible in O. cincta and F. candida at 22 and 29% of embryogenesis, respectively. To contextualize, we describe the stages of springtail embryogenesis, exemplified by F. candida. Physiological assays showed that blastodermal cuticle formation supports egg viability in a dry environment, significantly contributing to hatching success. However, protection differs between species: while O. cincta eggs survive at least 2 hours outside a humid environment, the survival period recorded for F. candida eggs is only 15 minutes, which correlates with this species’ requirement for humid microhabitats. We suggest that the formation of this protective cuticle is an ancestral trait among hexapods, predating and facilitating the process of terrestrialization that occurred during insect evolution. Keywords: blastodermal cuticle, egg resistance to desiccation, embryogenesis, land colonization, springtails, water loss. Introduction insects accounts for 79% and 66% of the total, Life originated in a marine environment and respectively (Suppl. Figure 1). In other words, subsequent colonization of land was a significant event considering all living animal species, 2/3 are insects for the evolution of many organisms on Earth, such as (Zhang, 2011). arthropods (Little, 1983; Selden, 2016). The arthropod In order to survive on land, insects evolved phylum is comprised of the paraphyletic "Crustacea" traits that allow them to overcome low or irregular and the monophyletic Chelicerata, Myriapoda and water availability, such as an internalized respiratory Hexapoda (constituted of Collembola, Protura, Diplura system and an exoskeleton that minimizes water loss and Insecta) (Kukalová-Peck, 1987; Misof et al., 2014) (Dunlop et al., 2013; Hadley, 1994; Little, 1983). (Suppl. Figure 1). It is estimated that during arthropod Moreover, it was suggested that traits related to the evolution independent events of terrestrialization egg stage contributed to their successful occurred, standing out the ones of hexapods, terrestrialization, in addition to juvenile and adult myriapods and chelicerates (Dunlop et al., 2013; characteristics (Zeh et al., 1989). Freshly laid insect Grimaldi and Engel, 2005; Rota-Stabelli et al., 2013). eggs are covered by eggshell layers that are produced Specifically in the case of insect evolution, during oogenesis within the maternal body. These colonization of land led to an unparalleled maternal eggshell layers will be collectively termed diversification among animals. There are 1,527,660 here as 'chorion'. During the early stages of insect described species of extant animals; arthropods and embryogenesis, the blastoderm differentiates into three 1 bioRxiv preprint doi: https://doi.org/10.1101/767947; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Vargas et. al., Springtail eggs. This preprint has not been submitted to any journal. September 12th, 2019. types of cells: the two extraembryonic tissues, serosa Orchesella cincta (Entomobryidae) is a litter- and amnion, and the embryonic ones. After dwelling (epidaphic) species. Adults are pigmented differentiation the serosal cells envelop the embryo and measure about 6 mm in length. Its embryogenesis and secrete the serosal cuticle, an extracellular matrix lasts for about 6 days at 19-24 ºC, while egg size at the (Handel et al., 2000; Panfilio, 2008; Rezende et al., chorion rupture stage is about 200 - 250 μm in 2016, 2008). Present in most insects, this post-zygotic diameter, when two blastodermal cuticles are cuticle constitutes the innermost eggshell layer, located produced. This cuticle is covered with thorns (Bretfeld, below the chorion. Moreover, it is fundamental to 1963). Its postembryonic development takes at least 44 protect the insect egg against water loss (Jacobs et al., days before reaching the adult stage (Hopkin, 1997; 2013; Rezende et al., 2016, 2008). The serosa and its Joosse et al., 1972). The species reproduces sexually cuticle are considered as crucial traits that fostered the through indirect sperm transfer via spermatophores. evolution of insects on land (Jacobs et al., 2013). The individuals molt during adult life, and sperm cells However, nothing is known about the role of post- cannot be stored by females. After each adult molt a zygotic cuticle in other lineages, given that female enters a new reproductive cycle and take up a comparative studies with other arthropods are still new spermatophore (Hopkin, 1997). Orchesella cincta lacking. is employed in ecotoxicology tests (Hopkin, 1997) and Indeed, some other arthropods produce post- its genome was recently sequenced (Faddeeva- zygotic eggshell layers named blastodermal cuticle Vakhrusheva et al., 2016). Also, several molecular (also termed blastodermic cuticle or blastoderm techniques were recently developed for this species, cuticle) (Machida, 2006; Rezende et al., 2016). For such as RNAi-driven gene silencing and in situ this trait, it is feasible to study Collembola, a hexapod hybridization in eggs (Konopova and Akam, 2014). group closely related to the insects, but lacking such a Folsomia candida (Isotomidae) is a tremendous diversification: collembolans, colloquially parthenogenetic, soil-dwelling (eudaphic) species. called 'springtails', account for only 0.5% of the total Adults are unpigmented, blind and measure between 1 species number of living animals (Suppl. Figure 1). to 3 mm in length. Its embryogenesis lasts about 10 Collembolan embryogenesis and blastodermal cuticle days and hatchlings take 24 days to reach the adult formation have been described in many species stage at 20 ºC. Its eggs are smaller than those of O. (Bretfeld, 1963; Jura, 1972; Jura et al., 1987; Marshall cincta: they measure about 80 μm when laid and and Kevan, 1962; Prowazek, 1900; Tamarelle, 1981; increase in size up to 165 μm at the chorion rupture Tomizuka and Machida, 2015; Uemiya and Ando, stage (Marshall and Kevan, 1962). Adults can survive 1987a, 1987b) (Figure 1). Briefly, during early under relatively dry conditions by increasing embryogenesis the springtail blastoderm differentiates osmolality through production of sugars and polyols, into two types of cells: an extraembryonic tissue and facilitating absorbance of water vapor (Fountain and the embryonic rudiment (Figure 1A, B). Depending on Hopkin, 2005; Hopkin, 1997; Roelofs et al., 2013). For the species the blastodermal cuticle is secreted by cells more than 40 years, F. candida has been used as a of either the uniform undifferentiated blastoderm or model organism for the study of soil contamination the differentiated blastoderm (Figure 1C). In parallel, and is used in an internationally standardized test (ISO water uptake increases egg volume, which leads to 11267) to assess the level of toxicity of contaminated chorion rupture (Figure 1D), thus forming the polar soils and to monitor their remediation (Fountain and caps (i.e. chorion remnants, which lie at both poles of Hopkin, 2005). The F. candida genome was recently the egg) and the blastodermal cuticle becomes the sole sequenced (Faddeeva-Vakhrusheva
Recommended publications
  • Evolutionary Origin and Function of NOX4-Art, an Arthropod Specific NADPH Oxidase
    Gandara et al. BMC Evolutionary Biology (2017) 17:92 DOI 10.1186/s12862-017-0940-0 RESEARCH ARTICLE Open Access Evolutionary origin and function of NOX4- art, an arthropod specific NADPH oxidase Ana Caroline Paiva Gandara1*†, André Torres2†, Ana Cristina Bahia3, Pedro L. Oliveira1,4 and Renata Schama2,4* Abstract Background: NADPH oxidases (NOX) are ROS producing enzymes that perform essential roles in cell physiology, including cell signaling and antimicrobial defense. This gene family is present in most eukaryotes, suggesting a common ancestor. To date, only a limited number of phylogenetic studies of metazoan NOXes have been performed, with few arthropodgenes.Inarthropods,onlyNOX5andDUOXgeneshavebeenfoundandagenecalledNOXmwasfoundin mosquitoes but its origin and function has not been examined. In this study, we analyzed the evolution of this gene family in arthropods. A thorough search of genomes and transcriptomes was performed enabling us to browse most branches of arthropod phylogeny. Results: We have found that the subfamilies NOX5 and DUOX are present in all arthropod groups. We also show that a NOX gene, closely related to NOX4 and previously found only in mosquitoes (NOXm), can also be found in other taxonomic groups, leading us to rename it as NOX4-art. Although the accessory protein p22-phox, essential for NOX1-4 activation, was not found in any of the arthropods studied, NOX4-art of Aedes aegypti encodes an active protein that produces H2O2. Although NOX4-art has been lost in a number of arthropod lineages, it has all the domains and many signature residues and motifs necessary for ROS production and, when silenced, H2O2 production is considerably diminished in A.
    [Show full text]
  • Origin of a Complex Key Innovation in an Obligate Insect–Plant Mutualism
    Origin of a complex key innovation in an obligate insect–plant mutualism Olle Pellmyr*† and Harald W. Krenn‡ *Department of Biology, Vanderbilt University, Box 1812 Station B, Nashville, TN 37235; and ‡Department of Evolutionary Biology, Institute of Zoology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria Edited by May R. Berenbaum, University of Illinois at Urbana–Champaign, Urbana, IL, and approved January 30, 2002 (received for review November 2, 2001) Evolutionary key innovations give organisms access to new eco- cles to propose a possible developmental genetic basis for the logical resources and cause rapid, sometimes spectacular adaptive trait. radiation. The well known obligate pollination mutualism between yuccas and yucca moths is a major model system for studies of The Function of the Tentacles. The pollinating yucca moth genera coevolution, and it relies on the key innovation in the moths of Tegeticula and Parategeticula constitute a monophyletic group complex tentacles used for pollen collecting and active pollination. within the Prodoxidae (Fig. 1). Jointly they contain at least 25 These structures lack apparent homology in other insects, making extant species (5), two of which are derived nonpollinating them a rare example of a novel limb. We performed anatomical and Tegeticula species that oviposit into yucca fruit created by behavioral studies to determine their origin and found evidence of coexisting pollinator species (16). The sister group Prodoxus a remarkably simple mechanism. Morphological analyses of the coexists with the pollinators on yuccas but feed as larvae on plant tentacles and adjacent mouthparts in pollinators and closely re- parts other than the seeds. Their radiation was thus directly lated taxa showed that the tentacle appears abruptly in female facilitated by the pollinator radiation.
    [Show full text]
  • Folsomia Candida and the Results of a Ringtest
    Toxicity testing with the collembolans Folsomia fimetaria and Folsomia candida and the results of a ringtest P.H. Krogh DMU/AU, Denmark Department of Terrestrial Ecology With contributions from: Mónica João de Barros Amorim, Pilar Andrés, Gabor Bakonyi, Kristin Becker van Slooten, Xavier Domene, Ine Geujin, Nobuhiro Kaneko, Silvio Knäbe, Vladimír Kocí, Jan Lana, Thomas Moser, Juliska Princz, Maike Schaefer, Janeck J. Scott-Fordsmand, Hege Stubberud, Berndt-Michael Wilke August 2008 1 Contents 1 PREFACE 3 2 BIOLOGY AND ECOTOXICOLOGY OF F. FIMETARIA AND F. CANDIDA 4 2.1 INTRODUCTION TO F. FIMETARIA AND F. CANDIDA 4 2.2 COMPARISON OF THE TWO SPECIES 6 2.3 GENETIC VARIABILITY 7 2.4 ALTERNATIVE COLLEMBOLAN TEST SPECIES 8 2.5 DIFFERENCES IN SUSCEPTIBILITY OF THE TWO SPECIES 8 2.6 VARIABILITY IN REPRODUCTION RATES 8 3 TESTING RESULTS OBTAINED AT NERI, 1994 TO 1999 10 3.1 INTRODUCTION 10 3.2 PERFORMANCE 10 3.3 INFLUENCE OF SOIL TYPE 10 3.4 CONCLUSION 11 4 RINGTEST RESULTS 13 4.1 TEST GUIDELINE 13 4.2 PARTICIPANTS 13 4.3 MODEL CHEMICALS 14 4.4 RANGE FINDING 14 4.5 STATISTICAL ANALYSIS 14 4.6 EXPERIMENTAL DESIGN 15 4.7 TEST CONDITIONS 15 4.8 CONTROL MORTALITY 15 4.9 CONTROL REPRODUCTION 16 4.10 VARIABILITY OF TESTING RESULTS 17 4.11 CONCLUSION 18 5 SUMMARY AND CONCLUSIONS 27 6 ACKNOWLEDGEMENTS 29 7 REFERENCES 30 ANNEX 1 PARTICIPANTS 36 ANNEX 2 LABORATORY CODE 38 ANNEX 3 BIBLIOMETRIC STATISTICS 39 ANNEX 4 INTRALABORATORY VARIABILITY 40 ANNEX 5 CONTROL MORTALITY AND REPRODUCTION 42 ANNEX 6 DRAFT TEST GUIDELINE 44 2 1 Preface Collembolans have been used for ecotoxicological testing for about 4 decades now but they have not yet had the privilege to enter into the OECD test guideline programme.
    [Show full text]
  • Analysis of a Species/Instars/Characters Table: a Theoretical Survey
    Contributions to Zoology, 67 (3) 197-220 (1998) SPB Academic Publishing bv, The Hague of theoretical Analysis a species/instars/characters table: a survey on the use of chaetotaxy in ontophylogenetic studies Pierre Nayrolles Laboratoire de Zoologie, Ecobiologie des Arthropodes édaphiques, Université Paul Sabatier, 118 route de Narbonne F-31062 Toulouse Cedex France. E-mail: , [email protected] Keywords: Ontogeny, phytogeny, chaetotaxy, probabilistic organs, ontogenetic trajectories, arthropods, Collembola, Symphypleona Abstract opposant présences et absences. Dans une population, une soie donnée peut se révéler variable, une probabilité de présence studies of Phylogenetic on several groups arthropods, such as pouvant alors lui être attachée. Une soie variable pourrait être Acari (mites) or Collembola (springtails), make wide use of al- perçue comme la marque d’un polymorphisme (plusieurs chaetotaxy. Chaetotaxic characters, besides being morpho- lèles dans une population). En fait, cette variabilité doit être logical features (setal shape), often have a binary nature, that comprise comme la sommation de propensions individuelles, A be variable is presence vs. absence. seta can in a popula- ou en d’autres termes, comme la résultante d’une potentialité and to this seta. tion, one may attribute a presence probability à individu hasard. propre chaque exprimée au Vraisembla- In the for fact, presence probability should be defined each blement, un phénomène similaire à celui de l’inhibition laté- instar. One might think that a variable seta corresponds to a rale, phénomène qui explique comment une fluctuation au polymorphism (e.g., two or more alleles in a population); in hasard intervenue précocement peut déterminer le destin de of fact, setal variability should be regarded as the result a à des Un cellules, est l’origine organes probabilistes.
    [Show full text]
  • Animal Phylum Poster Porifera
    Phylum PORIFERA CNIDARIA PLATYHELMINTHES ANNELIDA MOLLUSCA ECHINODERMATA ARTHROPODA CHORDATA Hexactinellida -- glass (siliceous) Anthozoa -- corals and sea Turbellaria -- free-living or symbiotic Polychaetes -- segmented Gastopods -- snails and slugs Asteroidea -- starfish Trilobitomorpha -- tribolites (extinct) Urochordata -- tunicates Groups sponges anemones flatworms (Dugusia) bristleworms Bivalves -- clams, scallops, mussels Echinoidea -- sea urchins, sand Chelicerata Cephalochordata -- lancelets (organisms studied in detail in Demospongia -- spongin or Hydrazoa -- hydras, some corals Trematoda -- flukes (parasitic) Oligochaetes -- earthworms (Lumbricus) Cephalopods -- squid, octopus, dollars Arachnida -- spiders, scorpions Mixini -- hagfish siliceous sponges Xiphosura -- horseshoe crabs Bio1AL are underlined) Cubozoa -- box jellyfish, sea wasps Cestoda -- tapeworms (parasitic) Hirudinea -- leeches nautilus Holothuroidea -- sea cucumbers Petromyzontida -- lamprey Mandibulata Calcarea -- calcareous sponges Scyphozoa -- jellyfish, sea nettles Monogenea -- parasitic flatworms Polyplacophora -- chitons Ophiuroidea -- brittle stars Chondrichtyes -- sharks, skates Crustacea -- crustaceans (shrimp, crayfish Scleropongiae -- coralline or Crinoidea -- sea lily, feather stars Actinipterygia -- ray-finned fish tropical reef sponges Hexapoda -- insects (cockroach, fruit fly) Sarcopterygia -- lobed-finned fish Myriapoda Amphibia (frog, newt) Chilopoda -- centipedes Diplopoda -- millipedes Reptilia (snake, turtle) Aves (chicken, hummingbird) Mammalia
    [Show full text]
  • Chapter 10 • Principles of Conserving the Arctic's Biodiversity
    Chapter 10 Principles of Conserving the Arctic’s Biodiversity Lead Author Michael B. Usher Contributing Authors Terry V.Callaghan, Grant Gilchrist, Bill Heal, Glenn P.Juday, Harald Loeng, Magdalena A. K. Muir, Pål Prestrud Contents Summary . .540 10.1. Introduction . .540 10.2. Conservation of arctic ecosystems and species . .543 10.2.1. Marine environments . .544 10.2.2. Freshwater environments . .546 10.2.3. Environments north of the treeline . .548 10.2.4. Boreal forest environments . .551 10.2.5. Human-modified habitats . .554 10.2.6. Conservation of arctic species . .556 10.2.7. Incorporating traditional knowledge . .558 10.2.8. Implications for biodiversity conservation . .559 10.3. Human impacts on the biodiversity of the Arctic . .560 10.3.1. Exploitation of populations . .560 10.3.2. Management of land and water . .562 10.3.3. Pollution . .564 10.3.4. Development pressures . .566 10.4. Effects of climate change on the biodiversity of the Arctic . .567 10.4.1. Changes in distribution ranges . .568 10.4.2. Changes in the extent of arctic habitats . .570 10.4.3. Changes in the abundance of arctic species . .571 10.4.4. Changes in genetic diversity . .572 10.4.5. Effects on migratory species and their management . .574 10.4.6. Effects caused by non-native species and their management .575 10.4.7. Effects on the management of protected areas . .577 10.4.8. Conserving the Arctic’s changing biodiversity . .579 10.5. Managing biodiversity conservation in a changing environment . .579 10.5.1. Documenting the current biodiversity . .580 10.5.2.
    [Show full text]
  • Downloaded from Brill.Com10/07/2021 07:28:06AM Via Free Access - 152 P
    Bijdragen tot de Dierkunde, 64 (3) 151-162 (1994) SPB Academie Publishing bv, The Hague A standardized description of European Sminthuridae (Collembola, Symphypleona), 2: review of four species of the genera Allacma and Spatulosminthurus Pierre Nayrolles Laboratoire de Zoologie, Ecobiologie des Arthropodes édaphiques, UPR CNRS 90 14, Université Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse Cédex, France Keywords: Collembola, Symphypleona, Allacma, Spatulosminthurus, taxonomy, chaetotaxy, Europe Abstract et al., 1970), thick cuticle with a particular archi- tecture, and well-developed tracheal system with According to our standard of the appendicular chaetotaxy, the chiasmata at the forelegs. Moreover, Betsch & following species are redescribed: Allacma fusca (Linné, 1758), Waller (in press) point out the presence of a secon- Allacma gallica (Carl, 1899), Spatulosminthurus lesnei (Carl, dary (ontogenetic) neochaetosis on the great abdo- 1899), and Spatulosminthurus betschi Nayrolles, 1990. men as a synapomorphy of these three genera (like- ly the consequence of an ontogenetic delay in- The Résumé volving originally primary setae). following putative evolved characters can be added: setae (AD)iO, (AD)i+ 1, and (AD)i + 2 small and slender Nous redécrivons, d’après la standardisation donnée pour la chétotaxie appendiculaire, les espèces suivantes: Allacma fusca on a large base, and mucronal anterior lamella (Linné, 1758), Allacma gallica (Cari, 1899), Spatulosminthurus double. lesnei (Cari, 1899) et Spatulosminthurus betschi Nayrolles, I recall the abbreviations which correspond 1990. neither to setal symbols nor to the legend of the chaetotaxic tables; these were accurately explained in my first Introduction paper. abd. = abdomen This is the second part of a series dealing with the ad.
    [Show full text]
  • Collembolans Folsomia Fimetaria and Folsomia Candida and the Results of a Ringtest
    Toxicity testing with the collembolans Folsomia fimetaria and Folsomia candida and the results of a ringtest Paul Henning Krogh Danmarks Miljøundersøgelser Aarhus Universitet Environmental Project No. 1256 2009 Miljøprojekt The Danish Environmental Protection Agency will, when opportunity offers, publish reports and contributions relating to environmental research and development projects financed via the Danish EPA. Please note that publication does not signify that the contents of the reports necessarily reflect the views of the Danish EPA. The reports are, however, published because the Danish EPA finds that the studies represent a valuable contribution to the debate on environmental policy in Denmark. Contents 1 PREFACE 5 2 BIOLOGY AND ECOTOXICOLOGY OF F. FIMETARIA AND F. CANDIDA 7 2.1 INTRODUCTION TO F. FIMETARIA AND F. CANDIDA 7 2.2 COMPARISON OF THE TWO SPECIES 9 2.3 GENETIC VARIABILITY 10 2.4 ALTERNATIVE COLLEMBOLAN TEST SPECIES 11 2.5 DIFFERENCES IN SUSCEPTIBILITY OF THE TWO SPECIES 11 2.6 VARIABILITY IN REPRODUCTION RATES 11 3 TESTING RESULTS OBTAINED AT NERI, 1994 TO 1999 13 3.1 INTRODUCTION 13 3.2 PERFORMANCE 13 3.3 INFLUENCE OF SOIL TYPE 13 3.4 CONCLUSION 14 4 RINGTEST RESULTS 17 4.1 TEST GUIDELINE 17 4.2 PARTICIPANTS 18 4.3 MODEL CHEMICALS 18 4.4 RANGE FINDING 18 4.5 STATISTICAL ANALYSIS 18 4.6 EXPERIMENTAL DESIGN 19 4.7 TEST CONDITIONS 19 4.8 CONTROL MORTALITY 20 4.9 CONTROL REPRODUCTION 20 4.10 VARIABILITY OF TESTING RESULTS 21 4.11 CONCLUSION 22 5 SUMMARY AND CONCLUSIONS 31 6 ACKNOWLEDGEMENTS 33 REFERENCES 35 3 4 1 Preface Collembolans have been used for ecotoxicological testing for about four decades now but they have not yet had the privilege to enter into the OECD test guideline programme.
    [Show full text]
  • 1 Biology 205: Partial Classification Of
    [Leander – University of British Columbia] BIOLOGY 205: PARTIAL CLASSIFICATION OF INVERTEBRATES You are responsible for knowing the following taxa in bold font (Ranks are arbitrary & listed for pedagogical purposes) --------------------------------------------------------------------------------------------------------------------------------------- Domain Eukaryota 1. Subdomain Excavata (Giardia, trichomonads, trypanosomatids, euglenids etc.) 2. Subdomain Rhizaria (forams, radiolarians, cercomonads, chlorarchniophytes etc.) 3. Subdomain Chromalveolata (brown algae, diatoms, ciliates, dinoflagellates etc.) 4. Subdomain Plantae (red algae, green algae, land plants etc.) 5. Subdomain Opisthokonta (animals, fungi, slime molds etc.) Superkingdom Amoebozoa (dictyostelids, myxomycetes, lobose amoebae etc.) Superkingdom Fungi (chytrids, mushrooms, yeasts etc.) Superkingdom Choanozoa Kingdom Choanoflagellata (choanoflagellates) ‘invertebrates’ ------------------------------------------------------------------------------------------------------------------- ⇓ Kingdom Animalia (= Metazoa) Phylum Porifera (sponges) Class Calcarea (calcareous sponges) Class Hexactinellida (glass sponges) Class Demospongiae (demosponges) Phylum Placozoa (Trichoplax) Eumetazoa ----------------------------------------------------------------------------------------------------------------------- ⇓ Phylum Cnidaria (cnidarians) Class Hydrozoa (hydroids & hydromedusae) Class Anthozoa (anemones, corals & sea pens) Class Scyphozoa (‘true’ sea jellies) Phylum Myxozoa Phylum
    [Show full text]
  • Scope: Munis Entomology & Zoology Publishes a Wide Variety of Papers
    _____________ Mun. Ent. Zool. Vol. 4, No. 1, January 2009___________ I MUNIS ENTOMOLOGY & ZOOLOGY Ankara / Turkey II _____________ Mun. Ent. Zool. Vol. 4, No. 1, January 2009___________ Scope: Munis Entomology & Zoology publishes a wide variety of papers on all aspects of Entomology and Zoology from all of the world, including mainly studies on systematics, taxonomy, nomenclature, fauna, biogeography, biodiversity, ecology, morphology, behavior, conservation, paleobiology and other aspects are appropriate topics for papers submitted to Munis Entomology & Zoology. Submission of Manuscripts: Works published or under consideration elsewhere (including on the internet) will not be accepted. At first submission, one double spaced hard copy (text and tables) with figures (may not be original) must be sent to the Editors, Dr. Hüseyin Özdikmen for publication in MEZ. All manuscripts should be submitted as Word file or PDF file in an e-mail attachment. If electronic submission is not possible due to limitations of electronic space at the sending or receiving ends, unavailability of e-mail, etc., we will accept “hard” versions, in triplicate, accompanied by an electronic version stored in a floppy disk, a CD-ROM. Review Process: When submitting manuscripts, all authors provides the name, of at least three qualified experts (they also provide their address, subject fields and e-mails). Then, the editors send to experts to review the papers. The review process should normally be completed within 45-60 days. After reviewing papers by reviwers: Rejected papers are discarded. For accepted papers, authors are asked to modify their papers according to suggestions of the reviewers and editors. Final versions of manuscripts and figures are needed in a digital format.
    [Show full text]
  • Alfalfa Insect Survey (2014F)62R
    2017 Alfalfa Insect Survey (2014F)62R Comprehensive report on Alberta alfalfa survey 2014-2016 Kathrin Sim and Scott Meers Alberta Agriculture and Forestry, Pest Surveillance Section Crop Diversification Centre South, 301 Horticultural Station Road East Brooks Alberta T1R 1E6 1 2014 - 2016 Alfalfa insect survey Table of Contents Introduction ..................................................................................................................................... 3 Methods........................................................................................................................................... 6 Field selection ............................................................................................................................. 6 Collection .................................................................................................................................... 7 Paired Lygus study .................................................................................................................... 11 Results and Discussion ................................................................................................................. 11 Alfalfa blotch leafminer ............................................................................................................ 11 Sweeps ...................................................................................................................................... 14 Pest insects ...........................................................................................................................
    [Show full text]
  • De Springstaarten Van Nederland: Het Genus ORCHESELLA (Hexapoda: Entognatha: Collembola) Matty Berg
    de springstaarten van nederland: het genus ORCHESELLA (hexapoda: entognatha: collembola) Matty Berg Springstaarten kruipen al minstens 450 miljoen jaar op aarde rond en komen in bijna elk ecosysteem voor. Ze zijn vaak in grote aantallen aanwezig en hebben dan een zeer belangrijke functie. Enerzijds zijn ze betrokken bij de afbraak van organisch materiaal en anderzijds als voedsel voor allerlei predatoren. Uit Nederland zijn ruim 200 soorten springstaarten bekend en nog tientallen soorten zijn te verwachten. Een samenvatting van de kennis is zeer tijdrovend. Daarom is besloten tot een reeks artikelen, waarbij steeds een of meerdere genera worden behandeld, met een tabel tot de soorten, ver- spreidingskaarten en een ecologisch profiel. In dit eerste artikel wordt het genus Orchesella behandeld, met vier bekende soorten in ons land. inleiding nieuwe soorten gevonden voor onze fauna. De Al sinds 1887 wordt gepubliceerd over het voorko- nieuwe soorten worden genoemd in de hand- men van springstaarten in ons land. In dat jaar leiding voor het karteren van springstaarten publiceerde Oudemans in zijn proefschrift een (Berg 2002), maar de vondsten worden hier naamlijst van de Nederlandse Collembola, met niet onderbouwd met bewijsmateriaal en nadere 36 soorten. Pas in 1930 verschijnt een nieuwe gegevens. Het is dus hoog tijd voor een kritische lijst met 54 soorten en 17 variëteiten (Buitendijk naamlijst van de Nederlandse springstaarten. 1930). Een aanvulling komt elf jaar later (Buiten- dijk 1941), met 62 soorten en 16 variëteiten. Dit Een volledige revisie van de Nederlandse naam- is de laatste officiële naamlijst van springstaarten lijst is zeer tijdrovend, zeker als elke nieuwe die voor ons land is verschenen.
    [Show full text]