Analysis of a Species/Instars/Characters Table: a Theoretical Survey

Total Page:16

File Type:pdf, Size:1020Kb

Analysis of a Species/Instars/Characters Table: a Theoretical Survey Contributions to Zoology, 67 (3) 197-220 (1998) SPB Academic Publishing bv, The Hague of theoretical Analysis a species/instars/characters table: a survey on the use of chaetotaxy in ontophylogenetic studies Pierre Nayrolles Laboratoire de Zoologie, Ecobiologie des Arthropodes édaphiques, Université Paul Sabatier, 118 route de Narbonne F-31062 Toulouse Cedex France. E-mail: , [email protected] Keywords: Ontogeny, phytogeny, chaetotaxy, probabilistic organs, ontogenetic trajectories, arthropods, Collembola, Symphypleona Abstract opposant présences et absences. Dans une population, une soie donnée peut se révéler variable, une probabilité de présence studies of Phylogenetic on several groups arthropods, such as pouvant alors lui être attachée. Une soie variable pourrait être Acari (mites) or Collembola (springtails), make wide use of al- perçue comme la marque d’un polymorphisme (plusieurs chaetotaxy. Chaetotaxic characters, besides being morpho- lèles dans une population). En fait, cette variabilité doit être logical features (setal shape), often have a binary nature, that comprise comme la sommation de propensions individuelles, A be variable is presence vs. absence. seta can in a popula- ou en d’autres termes, comme la résultante d’une potentialité and to this seta. tion, one may attribute a presence probability à individu hasard. propre chaque exprimée au Vraisembla- In the for fact, presence probability should be defined each blement, un phénomène similaire à celui de l’inhibition laté- instar. One might think that a variable seta corresponds to a rale, phénomène qui explique comment une fluctuation au polymorphism (e.g., two or more alleles in a population); in hasard intervenue précocement peut déterminer le destin de of fact, setal variability should be regarded as the result a à des Un cellules, est l’origine organes probabilistes. tableau propensity intrinsic to individuals, i.e., a potentiality being tridimensionnel espèces/stades/caractères contenant les pro- random known expressed at among specimens. The phenomenon babilités de présence des soies peut être constitué. Deux sortes as lateral inhibition explains how an early random fluctuation de traitements, dans lesquels le problème des soies homéo- is of at the root the cell fate. Probabilistic organs are likely to types prend une place essentielle, sont alors applicables. Les from similar originate a phenomenon. A tridimensional spe- autres questions relatives à ces analyses sont la pertinence cies/instars/characters table (SIC table), containing setal pres- de l’utilisation des probabilités de soies et la réduction de be Two kinds of ence probabilities, can built up. analyses l’information redondante. Un premier traitement conduit à un may be applied to such a table. In these analyses, the problem tableau bidimensionnel dont les caractères sont en colonnes of homeotypic setae is emphasized. Related issues are the divisées et, en lignes, les espèces en stades. En utilisant des of setal and the of accuracy using probabilities problem re- statistiques multidimensionnelles, il est possible de dessiner of information. A first ducing redundancy process leads to a des et donc de les trajectoires ontogénétiques, comparer on- bidimensional in table with characters columns, and the spe- togenèses. Le but du deuxième traitement est l’obtention d’un cies divided into their instars in rows. By using multidimen- tableau être utilisé dans espèces/caractères qui pourra une sional statistics we can access ontogenetic trajectories, and in analyse cladistique. this way, ontogenetic comparisons can be achieved. The aim of the second process is to produce a species/characters table which can be used in a cladistic analysis. Introduction Résumé that several authors Andre (1988) emphasized were surprised that so little is known about insect im- Dans l’étude de phylogénétique plusieurs groupes d’Arthro- mature stages. He explained this fact by the lack tels les podes, que Acariens ou les Collemboles, il est large- of a method for the treatmentof ontogenetic data. ment fait appel à la chétotaxie. Outre le fait qu’ils puissent The aim of this as well as those Andre, être des traits purement morphologiques (forme des soies), paper, by les caractères chétotaxiques sont souvent de nature binaire, is to provide some theoretical ideas and several Downloaded from Brill.com10/10/2021 04:06:52PM via free access 198 P. Nayrolles - Chaetotaxy in ontophylogenetic studies techniques for studying arthropod ontophyloge- merit of mites and distinct from each other by “all netics (i.e., ontogenetics and phylogenetics con- or none” characters. sidered together) by means of chaetotaxy, i.e., The discrete characters used for differentiating the of the of - based the of study arrangement organs setae or, stases are generally on presence se- - considered this strictly speaking, sensilla produced by the in- tae. The characters in paper con- tegument of arthropods. Once chaetotaxic pat- cern only idionymic setae. Idionymy (Grandjean, have absence is the of terns been established, presence vs. 1949) “quality” a particular organ as or number of setae can be used to compare spe- distinct from other organs of the same nature; defined cies. such an organ occupies a position so that A general scientific procedure by which char- it can be designated by a name or a symbol, e.g., acters would be generated cannot be defined, be- our vertebrae are idionymic while our hairs are cause of the great diversity of features used (e.g., not. Idionymy of a set of setae is established by morphological, behavioral, biochemical features, comparisons of specimens within a species. De- etc.). Nevertheless, in some fields, a standard velopmental stage or sex should also be consid- method be set ered because setae be in larvae can up (e.g., morphometry). may idionymic This article focuses on the erection of charac- and not in adults. When setae are not idionymic, ters from brute chaetotaxic data with a special their positions are not constant but depend on attention paid to the problem of variable setae. their number, in other words the inter-setal dis- is of the setal number. Ontogeny, i.e., instar of appearance of setae, is tance a function Converse- used that char- when each has as a way to distinguish species, so ly, setae are idionymic, seta a fixed and if is the acters should embrace the ontogenetic dimension. position, a seta absent, position Polarization of characters and phylogenetic in- of the neighboring setae is not modified. ference and will discussed Setae that named are next steps not be appear during development are while setae” here. Even if phylogenetics is not directly ad- “secondary setae”, “primary are from dressed, this theme is underlying since building present the first instar on. Sometimes, at a up characters is a preliminary phase before any given instar, some setae are variable. Setal pres- phylogenetic - cladistic - work. ence probabilities must be defined at the level of An of is taken from In this the of example data processing a population. paper, concept proba- the group of Symphypleona, one of the major bilistic organs will be emphasized. divisions of the Collembola (Hexapoda). The onto- Analysis of a SIC table permits ontophyloge- genetic patterns of these arthropods are quite simple netic studies. For instance, it is possible to carry and constitute for the method out multidimensional statistics shed a good support pre- to light on sented. similarities dissimilarities instars of or among spe- The of cies. A dealt with of these postembryonic development arthropods recent paper application consists of a succession of forms separated by statistical methods (Nayrolles, 1996), but missing of life between molts the from it discussion the and molts. The period two is was a of nature possi- “intermolt”, also called “instar”. This paper de- ble uses of chaetotaxic characters. From my study of scribes a method for analyzing a table with three Symphypleona, it appears that data processing dimensions, these dimensions being species, their of chaetotaxic characters is rather burdensome instars, and characters, in other words a species/ because of the numerous setae that have to be instars/characters (SIC) table. In principle, my taken into account. Computer software wouldmake method can be applied to all arthropod species studies of SIC tables easier, but before undertak- exhibiting “stases” and associated discontinuous ing such a development it is important to outline The word the these characters. “stase” was coined by Grand- purpose and methods of analyses as for the and jean (1938) designating morphological stag- well as to specify properties of a SIC table its es succeeding one another during the develop- subsets. Downloaded from Brill.com10/10/2021 04:06:52PM via free access 67 - Contributions to Zoology, (3) 1998 199 Three basic and concepts: species, instar, to simplify the situation, sex will be left out to character avoid having four dimensions in the SIC table. Nixon & Wheeler (1990a, 1990b) made a dis- Andre (1986, discussed the of 1988) concept stase tinction between attributes that and vary attributes and proposed to extend it to other arthropods, that are constantly distributed among specimens particularly Collembola. According to Andre of an elementary division of the species-instar- each (1989a), intermolt of a mite or Col- juvenile sex The first spectrum. type was named a trait, lembola is a and the adult of stase, Collembola, the second a character, or more precisely, a char- which molts but does discontinu- not change by Three acter state. categories were established: 1) also ous characters, corresponds to one stase. Al- the trait as a variable attribute fitting with varia- the of and instar are differ- though concepts stase the bly distributed alleles, 2) character state as ent, I will use the word “instar” instead of “stase”, constant attribute permitting species diagnoses, because it has the of better known and advantage being 3) the character as a set of character states is based on among entomologists. My argument derived from one another through a series of trans- of a but Andre’s commonness term, conceptually formations.
Recommended publications
  • Alfalfa Insect Survey (2014F)62R
    2017 Alfalfa Insect Survey (2014F)62R Comprehensive report on Alberta alfalfa survey 2014-2016 Kathrin Sim and Scott Meers Alberta Agriculture and Forestry, Pest Surveillance Section Crop Diversification Centre South, 301 Horticultural Station Road East Brooks Alberta T1R 1E6 1 2014 - 2016 Alfalfa insect survey Table of Contents Introduction ..................................................................................................................................... 3 Methods........................................................................................................................................... 6 Field selection ............................................................................................................................. 6 Collection .................................................................................................................................... 7 Paired Lygus study .................................................................................................................... 11 Results and Discussion ................................................................................................................. 11 Alfalfa blotch leafminer ............................................................................................................ 11 Sweeps ...................................................................................................................................... 14 Pest insects ...........................................................................................................................
    [Show full text]
  • Blastodermal Cuticle Formation Contributes to Desiccation Resistance in Springtail Eggs: Eco-Evolutionary Implications for Insect Terrestrialization
    bioRxiv preprint doi: https://doi.org/10.1101/767947; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Vargas et. al., Springtail eggs. This preprint has not been submitted to any journal. September 12th, 2019. Blastodermal cuticle formation contributes to desiccation resistance in springtail eggs: eco-evolutionary implications for insect terrestrialization Helena Carolina Martins Vargas1,2; Kristen A. Panfilio3; Dick Roelofs2; Gustavo Lazzaro Rezende1,3 ¹Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil. ²Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, HV Amsterdam, The Netherlands. 3School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK. HCM: ORCID 0000-0001-8290-8423, [email protected] / KAP: ORCID 0000-0002-6417-251X, [email protected] DR: ORCID 0000-0003-3954-3590, [email protected] / GLR: ORCID 0000-0002-8904-7598, [email protected] /[email protected] Abstract Land colonization was a major event in the history of life. Among animals, insects had a staggering terrestrialization success, due to traits usually associated with post-embryonic life stages, while the egg stage has been largely overlooked in comparative studies. In many insects, after blastoderm differentiation, the extraembryonic serosal tissue wraps the embryo and synthesizes the serosal cuticle, an extracellular matrix that lies beneath the eggshell and protects the egg against water loss.
    [Show full text]
  • Wildlife Gardening Forum Soil Biodiversity in the Garden 24 June 2015 Conference Proceedings: June 2015 Acknowledgements
    Conference Proceedings: June 2015 Wildlife Gardening Forum Soil Biodiversity in the Garden 24 June 2015 Conference Proceedings: June 2015 Acknowledgements • These proceedings published by the Wildlife Gardening Forum. • Please note that these proceedings are not a peer-reviewed publication. The research presented herein is a compilation of the presentations given at the Conference on 24 June 2015, edited by the WLGF. • The Forum understands that the slides and their contents are available for publication in this form. If any images or information have been published in error, please contact the Forum and we will remove them. Conference Proceedings: June 2015 Programme Hyperlinks take you to the relevant sections • ‘Working with soil diversity: challenges and opportunities’ Dr Joanna Clark, British Society of Soil Science, & Director, Soil Research Centre, University of Reading. • ‘Journey to the Centre of the Earth, the First few Inches’ Dr. Matthew Shepherd, Senior Specialist – Soil Biodiversity, Natural England • ‘Mycorrhizal fungi and plants’ Dr. Martin I. Bidartondo, Imperial College/Royal Botanic Gardens Kew • ‘How soil biology helps food production and reduces reliance on artificial inputs’ Caroline Coursie, Conservation Adviser. Tewkesbury Town Council • ‘Earthworms – what we know and what they do for you’ Emma Sherlock, Natural History Museum • ‘Springtails in the garden’ Dr. Peter Shaw, Roehampton University • ‘Soil nesting bees’ Dr. Michael Archer. President Bees, Wasps & Ants Recording Society • Meet the scientists in the Museum’s Wildlife Garden – Pond life: Adrian Rundle, Learning Curator. – Earthworms: Emma Sherlock, Senior Curator of Free-living worms and Porifera. – Terrestrial insects: Duncan Sivell, Curator of Diptera and Wildlife Garden Scientific Advisory Group. – Orchid Observers: Kath Castillo, Botanist.
    [Show full text]
  • Allacma Fusca (L.) and Allacma Gallica (Carl) in Holland (Collembola: Sminthuridae)
    170 ENTOMOLOGISCHE BERICHTEN, DEEL 33, 1.IX.1973 Allacma fusca (L.) and Allacma gallica (Carl) in Holland (Collembola: Sminthuridae) by WILLEM N. ELLIS Instituut voor Taxonomische Zoölogie (Zoölogisch Museum), Amsterdam The presence of Allacma fusca (Linnaeus, 1758) in Holland was ascertained as early as 1859 by Snellen van Vollenhoven. His figure of A. fusca is far inferior to the first published drawing of this species, given by De Geer, 1743, but his description is sufficient to recognize the species. As a matter of fact, fusca is very common in our country, as a rule easily found in any stretch of deciduous woodland between about April and October. The presence of Allacma gallica (Carl, 1899) in the Netherlands was discovered only in 1969 by J. W. Bleys in the course of a study on the ecology of epigeic Collembola. He collected a fair number of specimens in the dune area near Castri- cum (territories of the “Provinciale Waterleidingduinen Noord-Holland”) with the use of a sweeping net (Bleys, in preparation). Afterwards the present author and his wife found large colonies of gallica in the deciduous woods in the old (inner) dunes at Bergen (Oude Hof), Santpoort (Duin en Kruidberg), and Vogelenzang (Amsterdamse Waterleidingduinen). It is striking that these sites are all situated within the dune region. Although we collected fusca in large numbers everywhere in the country, and specially searched for fusca and gallica on several occasions, we never found the latter species outside the dune area. It seems that outside of the Netherlands gallica is not common either. So far the species was known only from France and Switzerland.
    [Show full text]
  • Standardised Arthropod (Arthropoda) Inventory Across Natural and Anthropogenic Impacted Habitats in the Azores Archipelago
    Biodiversity Data Journal 9: e62157 doi: 10.3897/BDJ.9.e62157 Data Paper Standardised arthropod (Arthropoda) inventory across natural and anthropogenic impacted habitats in the Azores archipelago José Marcelino‡, Paulo A. V. Borges§,|, Isabel Borges ‡, Enésima Pereira§‡, Vasco Santos , António Onofre Soares‡ ‡ cE3c – Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group and Universidade dos Açores, Rua Madre de Deus, 9500, Ponta Delgada, Portugal § cE3c – Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group and Universidade dos Açores, Rua Capitão João d’Ávila, São Pedro, 9700-042, Angra do Heroismo, Portugal | IUCN SSC Mid-Atlantic Islands Specialist Group, Angra do Heroísmo, Portugal Corresponding author: Paulo A. V. Borges ([email protected]) Academic editor: Pedro Cardoso Received: 17 Dec 2020 | Accepted: 15 Feb 2021 | Published: 10 Mar 2021 Citation: Marcelino J, Borges PAV, Borges I, Pereira E, Santos V, Soares AO (2021) Standardised arthropod (Arthropoda) inventory across natural and anthropogenic impacted habitats in the Azores archipelago. Biodiversity Data Journal 9: e62157. https://doi.org/10.3897/BDJ.9.e62157 Abstract Background In this paper, we present an extensive checklist of selected arthropods and their distribution in five Islands of the Azores (Santa Maria. São Miguel, Terceira, Flores and Pico). Habitat surveys included five herbaceous and four arboreal habitat types, scaling up from native to anthropogenic managed habitats. We aimed to contribute
    [Show full text]
  • Neozygites Stninthuri Sp. Nov. (Zygomycetes, Entomophthorales), a Pathogen of the Springtail Sminthurus Viridis L
    ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Neozygites stninthuri sp. nov. (Zygomycetes, Entomophthorales), a pathogen of the springtail Sminthurus viridis L. (Collembola, Sminthuridae) Siegfried Keller & Tove Steenberg* Federal Research Station for Agroecology and Agriculture, Reckenholzstrasse 191, CH-8046 Zürich, Switzerland Royal Veterinary and Agricultural University, Section of Zoology, Bülowsvej 13, DK-1870 Frederiksberg C, Denmark Keller, S. & Steenberg, T. (1997). Neozygites sminthuri sp. nov. (Zygomycetes, Entomophthorales), a pathogen of the springtail Sminthurus viridis L. (Col- lembola, Sminthuridae). - Sydowia 49(1): 21-24. Neozygites sminthuri is described as a new species. The spherical hyphal bodies measure 12.1-14.6 |am and contain 4, rarely 3 nuclei. The conidiophores are unbranched and produce a single conidium. The primary conidia measure 13.2- 14.5x8.2-10.0 urn. Secondary conidia resembling the primary ones are produced on short, thick secondary conidiophores. Capilliconidia and resting spores were not found, but the fungal structures observed allow the inclusion of this species in the genus Neozygites. Keywords: Insect pathogens, taxonomy, morphology, Neozygites, Collembola, Sminthurus, lucerne. Fungal pathogens have only rarely been recorded from spring- tails (Visser & al., 1987; Balazy, 1993). An entomophthoralean fungus (Zygomycetes: Entomophthorales), however, was recently found in populations of the lucerne flea Sminthurus viridis L. (Collembola: Sminthuridae) in Denmark. Fungus infected specimens of S. viridis were collected at three sites in the western and in the eastern part of Denmark. The fungus was recorded in two consecutive seasons and only infected a small proportion of the host population (Steenberg & al.,1996). The fungus was identified as a hitherto unknown species of Neozygites Witlaczil (1885).
    [Show full text]
  • Effects of Miniaturization in the Anatomy of the Minute Springtail Mesaphorura Sylvatica (Hexapoda: Collembola: Tullbergiidae)
    Effects of miniaturization in the anatomy of the minute springtail Mesaphorura sylvatica (Hexapoda: Collembola: Tullbergiidae) Irina V. Panina1, Mikhail B. Potapov2,3 and Alexey A. Polilov1 1 Department of Entomology, Faculty of Biology, Moscow State University, Moscow, Russia 2 Department of Zoology and Ecology, Institute of Biology and Chemistry, Moscow State Pedagogical University, Moscow, Russia 3 Senckenberg Museum of Natural History Görlitz, Görlitz, Germany ABSTRACT Smaller animals display pecular characteristics related to their small body size, and miniaturization has recently been intensely studied in insects, but not in other arthropods. Collembola, or springtails, are abundant soil microarthropods and form one of the four basal groups of hexapods. Many of them are notably smaller than 1 mm long, which makes them a good model for studying miniaturization effects in arthropods. In this study we analyze for the first time the anatomy of the minute springtail Mesaphorura sylvatica (body length 400 mm). It is described using light and scanning electron microscopy and 3D computer reconstruction. Possible effects of miniaturization are revealed based on a comparative analysis of data from this study and from studies on the anatomy of larger collembolans. Despite the extremely small size of M. sylvatica, some organ systems, e.g., muscular and digestive, remain complex. On the other hand, the nervous system displays considerable changes. The brain has two pairs of apertures with three pairs of muscles running through them, and all ganglia Submitted 18 June 2019 are shifted posteriad by one segment. The relative volumes of the skeleton, brain, and Accepted 15 October 2019 Published 13 November 2019 musculature are smaller than those of most microinsects, while the relative volumes of other systems are greater than or the same as in most microinsects.
    [Show full text]
  • Soil Biota in a Megadiverse Country: Current Knowledge and Future Research Directions in South Africa
    Pedobiologia 59 (2016) 129–174 Contents lists available at ScienceDirect Pedobiologia - Journal of Soil Ecology journal homepage: www.elsevier.de/pedobi Soil biota in a megadiverse country: Current knowledge and future research directions in South Africa a,b,c, a a,d c Charlene Janion-Scheepers *, John Measey , Brigitte Braschler , Steven L. Chown , e b,f g h,i Louise Coetzee , Jonathan F. Colville , Joanna Dames , Andrew B. Davies , a j k c Sarah J. Davies , Adrian L.V. Davis , Ansie S. Dippenaar-Schoeman , Grant A. Duffy , l m n o Driekie Fourie , Charles Griffiths , Charles R. Haddad , Michelle Hamer , p,q e,n k r David G. Herbert , Elizabeth A. Hugo-Coetzee , Adriaana Jacobs , Karin Jacobs , n a e n Candice Jansen van Rensburg , Siviwe Lamani , Leon N. Lotz , Schalk vdM. Louw , k s t e,n Robin Lyle , Antoinette P. Malan , Mariette Marais , Jan-Andries Neethling , p p,q u b,f Thembeka C. Nxele , Danuta J. Plisko , Lorenzo Prendini , Ariella N. Rink , t l k k,l Antoinette Swart , Pieter Theron , Mariette Truter , Eddie Ueckermann , k v q a,b Vivienne M. Uys , Martin H. Villet , Sandi Willows-Munro , John R.U. Wilson a Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa b South African National Biodiversity Institute, Kirstenbosch Research Centre, Claremont 7735, South Africa c School of Biological Sciences, Monash University, Victoria 3800, Australia d Section of Conservation Biology, Department of Environmental Sciences, University of Basel, St. Johanns-Vorstadt 10, CH-4056 Basel, Switzerland e National Museum, P.O.
    [Show full text]
  • Komoditas : KAMBING
    Komoditas : KAMBING Title:Thermal balance of livestock 1. A parsimonious model View Article: Agricultural and Forest Meteorology. 2000. 101 (1). 15- 27 CD Volume:325 Print Article: Pages: 15-27 Author(s):Turnpenny J R McArthur A J Clark J A Wathes C M Author Affiliation:Division of Environmental Science, School of Biological Sciences, University of Nottingham, Sutton Boninghon Campus, Loughborough, Leics, LE12 5RD, UK Language:English Abstract:A mathematical model based on the physics of heat transfer, predicted the thermal balance of a homeotherm, given standard meteorological data as input. While certain assumptions made the model tractable, it was based on established physical relationships and documented physiological processes. Its application to animals indoors and outdoors in the UK showed that greater sophistication is probably unwarranted Descriptors:livestock. environment. heat-flow. heat-loss. heat- transfer. mathematical-models. heat-stress. thermal-analysis. meteorological-factors Geographic Locator:UK Organism Descriptors:sheep Supplemental Descriptors:Ovis. Bovidae. ruminants. Artiodactyla. mammals. vertebrates. Chordata. animals. ungulates. British-Isles. Western-Europe. Europe. Developed-Countries. Commonwealth-of- Nations. European-Union-Countries. OECD-Countries Subject Codes:LL860. LL180 Supplementary Info:60 ref ISSN:0168-1923 Year:2000 Journal Title:Agricultural and Forest Meteorology Copyright:Copyright CAB International Title:Thermal balance of livestock. 2. Applications of a parsimonious model View Article: Agricultural and Forest Meteorology. 2000. 101 (1). 29- 52 CD Volume:325 Print Article: Pages: 29-52 Author(s):Turnpenny J R Wathes C M Clark J A McArthur A J Author Affiliation:Division of Environmental Science, School of Biological Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leics, LE12 5RD, UK Language:English Abstract:A mathematical model developed from heat transfer principles to predict the thermal status of a homeotherm was applied to sheep and cattle outdoors and pigs and broiler chickens indoors.
    [Show full text]
  • Sminthurus Viridis) En Uruguay
    PasturasPasturas ASPECTOS BIOLÓGICOS Y DAÑO DE LA PULGUILLA DE LA ALFALFA (SMINTHURUS VIRIDIS) EN URUGUAY BSc. (MSc) Ximena Cibils, Ing. Agr. (Dra) Stella Zerbino Protección Vegetal, Entomología, INIA La Estanzuela RELEVANCIA • La pulguilla de la alfalfa provoca daño en otoño y pri- mavera, principalmente en leguminosas forrajeras. La pulguilla de la alfalfa (Sminthurus viridis) es un co- lémbolo que tiene una distribución cosmopolita. Está • Se identifica por su forma globosa (1,5-2 mm) y por reportado en Europa, América del Norte, Asia, Austra- saltar al ser perturbada lia, Nueva Zelandia, África y América del Sur. • El daño es fácil de reconocer ya que las hojas que- Este insecto es un habitante frecuente de nuestras pas- dan transparentes (rae la epidermis). turas, aunque su daño es esporádico, dado que sólo sucede cuando las poblaciones aumentan temprano en • El manejo se basa inicialmente en pastorear o cortar el otoño; situación que se registró en el pasado año en la pastura dañada, y revisar luego de 7 días. Los in- algunas chacras (Cibils, 2016). En Nueva Zelanda se secticidas solo se utilizan en casos de daño severo y determinó que este insecto completa 5 generaciones persistente. anuales y que densidades poblacionales altas pueden Marzo 2017 - Revista INIA 25 Pasturas situaciones con mayor porcentaje de plantas de hoja ancha, como el trébol (alta preferencia) y suelos con alto contenido de limo y arcilla los cuales son preferidos para la ovoposición. Períodos de déficit hídrico durante los meses de invierno causan alta mortalidad. En el ve- rano, la especie se encuentra en estado de dormancia.
    [Show full text]
  • NACC Small Landholder Guide the NORTHERN AGRICULTURAL REGION
    ACKNOWLEDGEMENTS This Guide has been technically reviewed by Department of Agriculture and Food, Western Australia staff including: Mike Clarke, Angela Stuart-Street, Mike Jones, Tim Stevens, Yolandee Jones, Andrew Reeves, Russell Speed, Wayne Parker, Andrew Blake, Rob Grima and Hayley Smythe. It has been compiled by Dr Jill Wilson of Rural Solutions WA, with initial drafting from Peter Elliott-Lockhart of Planfarm, and input from Sarah Craze, Alison Cooke, Sarah Jeffery, Marieke Jansen, Mark Logue, Fiona Falconer and Lucinda Jose. Funding by the Northern Agricultural Catchments Council with assistance from the Australian Government’s National Landcare Network Initiative. Coordinated by Stanley Yokwe, Regional Landcare Facilitator for the Northern Agricultural Region. NACC, 201 Lester Avenue, Geraldton Western Australia DISCLAIMER The information contained in this publication is provided for general information purposes only. Neither the Northern Agricultural Catchments Council, nor any of the contributors, accept any responsibility for any errors or omissions it may contain, whether caused by negligence, or for any loss however caused, or sustained by any person who relies on it. JUNE 2014 OVERVIEW INTRODUCTION This Small Landholder Guide has been compiled for noteworthy Small Landholder Series managers and prospective managers of small holdings The Department of Agriculture and Food, Western in the Northern Agricultural Region (NAR) of Western Australia (DAFWA) has a well organised Small Australia. The Guide is intended to assist people who Landholder Information Service (SLIS) based in manage a block of land that is between 2.5 acres Waroona. For many years they have provided (1 ha) and 500 acres (200 ha) in area. The Guide is workshops and information for small landholders, but divided into several parts: most activity has occurred in the southern part of the state, not the NAR.
    [Show full text]
  • Which Types of Landscape/Habitat Management Are Effective at Providing Natural Pest Control ?
    KNEU WP3 – Habitat management for natural pest control WHICH TYPES OF LANDSCAPE/HABITAT MANAGEMENT ARE EFFECTIVE AT PROVIDING NATURAL PEST CONTROL ? LIVOREIL, Barbara.1, HUTCHISON, James2, ZULKA, Klaus Peter3, , GRENIER, Anne-Sophie 4, LEPERCHEC, Sophie 5, DICKS, Lynn2 & SUTHERLAND, William. J.2 1. Fondation pour la Recherche sur la Biodiversité, 195 rue St Jacques, 75013 Paris, France. 2. Conservation Science Group, Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK 3. Environment Agency Austria (EAA), Spittelauer Lände 5, 1090 Vienna, Austria 4 INRA, UMR 1349 IGEPP, F-35653 Le Rheu, France 5 INRA Centre de Recherche de Rennes, DV-IST Erist - Délégation à l’expertise scientifique collective, à la prospective et aux études (DEPE) - Bibliothèque UMR SAS, 65 rue de Saint-Brieuc 35042 Rennes cedex Corresponding author: [email protected] Telephone +00 33 180 05 89 54 KNEU WP3 – Habitat management for natural pest control ABSTRACT Background To provide resources to 9 billion human beings in the near future, to preserve ecosystem services and biodiversity altogether, and to face climate change are challenging agriculture. Using fewer pesticides should help restoring populations of natural enemies acting against these pests. Relying on local ecosystems to effectively provide natural pest control allows farmers to decrease costs on pesticides and to avoid costs linked to release of commercially captive-bred bio-control agents. This review aims at listing the interventions on habitat management which favour a sustainable presence of natural pest control agents. A second objective is to assess the effectiveness of such interventions on control agents and/or pests and/or yield.
    [Show full text]