New Records of Springtail Fauna (Hexapoda: Collembola: Entomobryomorpha) from Ordu Province in Turkey

Total Page:16

File Type:pdf, Size:1020Kb

New Records of Springtail Fauna (Hexapoda: Collembola: Entomobryomorpha) from Ordu Province in Turkey Turkish Journal of Zoology Turk J Zool (2017) 41: 24-32 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1509-28 New records of springtail fauna (Hexapoda: Collembola: Entomobryomorpha) from Ordu Province in Turkey 1 2, 3 Muhammet Ali ÖZATA , Hasan SEVGİLİ *, Igor J. KAPRUS 1 Demir Karamancı Anatolian High School, Melikgazi, Kayseri, Turkey 2 Department of Biology, Faculty of Arts and Sciences, Ordu University, Ordu, Turkey 3 State Museum of Natural History, Ukrainian National Academy of Sciences, L’viv, Ukraine Received: 14.09.2015 Accepted/Published Online: 27.04.2016 Final Version: 25.01.2017 Abstract: This study aims to elucidate the Collembola fauna of the province of Ordu, which is situated between the Middle and Eastern Black Sea regions of Turkey. Although a large number of Collembolan specimens had been collected, only Entomobryomorpha species were given emphasis. From 44 different sampled localities of the province of Ordu, we recorded 6 families, 14 genera, and 28 species. Six of these species were previously recorded and 20 of them are new records for Turkey. The results were not surprising, considering that the sampled region had not been studied previously, quite like many habitats in Turkey. With our 20 new records (Entomobryomorpha), the grand total of the springtail fauna of Turkey is increased to 73 species. This represents an increase of almost 40% of the current list of known species. These numbers show us that the diversity of Collembola in Turkey is not thoroughly known and it is clear that numerous species remain undiscovered or undescribed. Key words: Biodiversity, Hexapoda, Collembola, springtails, Entomobryomorpha, new records, Ordu Province, Turkey 1. Introduction geography of the province comprises largely rural areas Collembologists have described over 8000 species in the with mountain valleys and elevated high plateaus (e.g., world, but most species remain to be described (Bellinger Çambaşı and Perşembe). The natural forest in the area is et al., 2016). Although the springtail fauna of some deteriorated due to densely populated rural settlements and neighboring countries of Turkey has been extensively hazelnut farming, but there are still common productive investigated and over 400 species were discovered from single or mixed forests composed of Fagus orientalis each of the countries (Ulrich and Fiera, 2009), little is Lipsky, Alnus glutinosa (L.) Gaertn., Rhododendron spp., known about those in Turkey. The first attempt for a Abies sp., Picea orientalis (L.) Link, and Acer sp. from sea springtails check-list of Turkey was conducted by Sevgili level to 2000 m. Considering that diversity is significantly and Özata (2014) and 53 species were reported. The correlated with habitat diversity (Sousa et al., 2004), the researchers suggested that most springtail species remain Collembola fauna of Ordu should have rich species. It is to be reported and described from Turkey. Considering expected that the study area has a rich biodiversity that that Turkey is nearly covered by the Mediterranean, Balkan, contains both Caucasian and Balkan faunal elements. In African, Caucasus, and Irano-Anatolian biodiversity this study, although a large number of the collembolan hotspots, many interesting habitats are still completely specimens were collected, only the Entomobryomorpha unexplored (Şekercioğlu et al., 2011). species are given. Therefore, the current study aimed to identify the Collembola fauna of Ordu, situated between the Middle 2. Materials and methods and Eastern Black Sea regions of Turkey. Ordu has a total Species were collected from 44 different localities of the area of 5952 km2 (Figure). Samsun, Tokat, Sivas, and province of Ordu from sea level to subalpine zones (about Giresun are the neighboring provinces as parts of the 2000 m) during 2012 and 2013 (Table 1). Specimens were Black Sea region. The climate of Ordu Province is typical extracted by Berlese funnel from soil, leaf litter, and moss of the Black Sea region with high humidity and year- and captured from the collection vial using a small brush, round rainfall compared with other regions of Turkey. The and they were fixed in 75% alcohol. They were cleared in * Correspondence: [email protected] 24 ÖZATA et al. / Turk J Zool Figure. Map of the study area, the province of Ordu in the Black Sea region of Turkey (from Google Maps). potassium hydroxide and mounted on a slide in Faure’s not listed here. The results were not surprising in terms solution. of richness, as the study region has not been extensively Literature information on the Collembola of Turkey studied compared with many habitats of Turkey. There was briefly reviewed by Sevgili and Özata (2014). The are few papers related to the Collembola of Turkey, which location, slide number, coordinates of the collection sites, were summarized by Sevgili and Özata (2014). With our collection dates, and examined materials are given in 20 new records (Entomobryomorpha), the total number Tables 1 and 2. of springtail fauna for Turkey has increased to 73 species. Thousands of Collembola samples were collected and This represents an increase of almost 40% of the current extracted, and 1045 specimens of springtails were identified list of known species. The fauna described here comprises (see Table 1 for details). The slides were deposited at the elements from mainly European and Caucasian in addition Zoology Laboratory of the Biology Department of Ordu to Palearctic and Holarctic regions (Bellinger et al., 2016). University, Turkey. These results show that the diversity of Collembola in Turkey is poorly known and it is clear that numerous 3. Results and discussion species remain to be discovered. Samples from 44 different localities of Ordu Province were 3.1. Faunistic part recorded as belonging to 6 families, 12 genera, and 28 Class: Collembola species. Six species were previously recorded and 20 are Order: Entomobryomorpha new records for Turkey (Tables 1 and 2). Some specimens Family Entomobryidae could not be identified to species level, and hence they were Entomobrya handschini Stach, 1922 25 ÖZATA et al. / Turk J Zool Table 1. Information on the distributions, collection dates, habitats, and altitudes of the species of Entomobryomorpha recorded from the province of Ordu. Location Collection Altitude Longitude Latitude Location Habitat no. date (m) (E) (N) 1 02.04.2012 Ulubey/Çorak Düzü district Hornbeam forest and moss 622 37°75′16″ 40°87′91″ 08.04.2012 2 17.05.2012 Gülyalı/Turnasuyu village/Divane district Pine forest and moss 41 38°11′81″ 40°53′22″ 16.09.2012 17.05.2012 3 Gülyalı/Turnasuyu village/Divane district Chestnut forest and soil 70 38°11′81″ 40°53′22″ 16.09.2012 4 28.04.2012 Ulubey/Sayacabaşı district Redwood forest 934 37°72′02″ 40°87′09″ 5 28.04.2012 Ulubey Sayacabaşı Kurşunçal road (2 km) Redwood forest 848 37°69′16″ 40°89′63″ 6 28.04.2012 Altınordu/Günören village (Kurşunçal forest) Redwood forest 580 37°68′45″ 40°92′82″ 7 13.05.2012 Altınordu/Bayadı village (Kurul Kayası district) Redwood forest and soil 280–298 37°89′50″ 40°90′32″ 8 13.05.2012 Gülyalı/Kestane Village (Kurt kayası district) Mixed forest and soil 550 38°06′07″ 40°91′37″ 01.06.2012 9 01.06.2013 Ünye/İnkur (Çet picnic spot) Pine forest and soil 348–446 37°19′59″ 41°06′45″ 05.07.2012 10 05.07.2012 Ünye/İnkur (2 km ) Oak forest 376 37°21′61″ 41°03′75″ 11 05.07.2012 Ünye (10 km southern) Redwood and soil 93 37°23′22″ 41°09′86″ 12 05.07.2012 Ünye (around Ünye Castle) Redwood forest 166 37°23′72″ 41°09′55″ 05.07.2012 37°34′75″ 41°10′13″ 13 12.05.2013 Ünye/Asarkale (Kent ormanı) Pine, spruce, beech mixed forest 160–356 37°20′83″ 41°05′62″ 01.06.2013 05.07.2012 14 Perşembe/Kurtulmuş village Redwood forest 136 37°75′35″ 40°97′64″ 30.09.2012 15 08.07.2012 Ünye/İnkur-Tekkiraz road Redwood forest 476 37°08′18″ 41°00′03″ 16 08.07.2012 Between Akkuş and Niksar (Tokat) Pine and oak forest 1218 37°34′12″ 40°75′30″ 17 08.07.2012 Akkuş Pine forest 1226 37°35′54″ 40°86′14″ 18 08.07.2012 Akkuş-Ünye road Oak forest 939 37°21′54″ 40°78′50″ 19 08.07.2012 Akkuş Oak forest 1014 37°08′36″ 40°90′94″ 20 08.07.2012 Ünye/Tekkiraz Oak forest 696 37°14′00″ 40°96′00″ 21 08.07.2012 Akkuş Beech forest 1254 37°02′00″ 40°84′35″ 10.07.2012 30.09.2012 37°26′68″ 41°03′92″ 22 Fatsa (Cıngırt Castle) Moss, chestnut, oak forest 161–240 12.05.2013 37°04′49″ 41°06′55″ 01.06.2013 23 10.07.2012 Fatsa/around Gaga Lake Redwood forest 59 37°50′42″ 40°97′36″ 24 10.07.2012 Fatsa/Kabakdağ village Redwood forest 260 37°52′78″ 40°97′31″ 25 17.07.2012 Gölköy/Kozören village Redwood forest 1001 37°66′14″ 40°67′80″ 26 17.07.2012 Gölköy/Karagöz district Redwood forest 1083 37°60′96″ 40°63′84″ 27 17.07.2012 Gölköy/Ulugöl Beech forest 1216 37°64′63″ 40°62′81″ 28 17.07.2012 Gölköy/Kozören village Oak forest 1004 37°66′54″ 40°68′44″ 29 17.07.2012 Gölköy/Tilkini district Beech forest 1199 37°62′09″ 40°63′29″ 30 17.07.2012 Gölköy/Harçbeli district Beech forest 1409 37°62′40″ 40°60′51″ 17.07.2012 37°40′49″ 40°51′56″ 31 Ulubey/Refaiye village Spruce forest and soil 1056–1078 14.07.2013 37°67′27″ 40°85′89″ 32 12.05.2013 Fatsa/Yalıköy Leaf litter of Prunus laurocerasus 33 37°37′11″ 41°03′88″ 33 12.05.2013 Fatsa/Yalıköy Leaf litter of Diospyros kaki and soil 33 37°37′11″ 41°03′88″ 34 12.05.2013 Perşembe/Mersin village Leaf litter of Daphne and soil 88 37°46′75″ 41°05′58″ 26 ÖZATA et al.
Recommended publications
  • Diversity of Commensals Within Nests of Ants of the Genus Neoponera (Hymenoptera: Formicidae: Ponerinae) in Bahia, Brazil Erica S
    Annales de la Société entomologique de France (N.S.), 2019 https://doi.org/10.1080/00379271.2019.1629837 Diversity of commensals within nests of ants of the genus Neoponera (Hymenoptera: Formicidae: Ponerinae) in Bahia, Brazil Erica S. Araujoa,b, Elmo B.A. Kochb,c, Jacques H.C. Delabie*b,d, Douglas Zeppelinie, Wesley D. DaRochab, Gabriela Castaño-Menesesf,g & Cléa S.F. Marianoa,b aLaboratório de Zoologia de Invertebrados, Universidade Estadual de Santa Cruz – UESC, Ilhéus, BA 45662-900, Brazil; bLaboratório de Mirmecologia, CEPEC/CEPLAC, Itabuna, BA 45-600-900, Brazil; cPrograma de Pós-Graduação em Ecologia e Biomonitoramento, Instituto de Biologia, Universidade Federal da Bahia - UFBA, Salvador, BA 40170-290, Brazil; dDepartamento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz, – UESC, Ilhéus, BA 45662-900, Brazil; eDepartamento de Biologia, Universidade Estadual da Paraíba, Campus V, João Pessoa, PB 58070-450, Brazil; fEcología de Artrópodos en Ambientes Extremos, Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México - UNAM, Campus Juriquilla, Boulevard Juriquilla 3001, 76230, Querétaro, Mexico; gEcología y Sistemática de Microartrópodos, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México - UNAM, Distrito Federal, México 04510, Mexico (Accepté le 5 juin 2019) Summary. Nests of ants in the Ponerinae subfamily harbor a rich diversity of invertebrate commensals that maintain a range of interactions which are still poorly known in the Neotropical Region. This study aims to investigate the diversity of these invertebrates in nests of several species of the genus Neoponera and search for possible differences in their commensal fauna composition in two distinct habitats: the understory and the ground level of cocoa tree plantations.
    [Show full text]
  • Unexpected Diversity in Neelipleona Revealed by Molecular Phylogeny Approach (Hexapoda, Collembola)
    S O I L O R G A N I S M S Volume 83 (3) 2011 pp. 383–398 ISSN: 1864-6417 Unexpected diversity in Neelipleona revealed by molecular phylogeny approach (Hexapoda, Collembola) Clément Schneider1, 3, Corinne Cruaud2 and Cyrille A. D’Haese1 1 UMR7205 CNRS, Département Systématique et Évolution, Muséum National d’Histoire Naturelle, CP50 Entomology, 45 rue Buffon, 75231 Paris cedex 05, France 2 Genoscope, Centre National de Sequençage, 2 rue G. Crémieux, CP5706, 91057 Evry cedex, France 3 Corresponding author: Clément Schneider (email: [email protected]) Abstract Neelipleona are the smallest of the four Collembola orders in term of species number with 35 species described worldwide (out of around 8000 known Collembola). Despite this apparent poor diversity, Neelipleona have a worldwide repartition. The fact that the most commonly observed species, Neelus murinus Folsom, 1896 and Megalothorax minimus Willem, 1900, display cosmopolitan repartition is striking. A cladistic analysis based on 16S rDNA, COX1 and 28S rDNA D1 and D2 regions, for a broad collembolan sampling was performed. This analysis included 24 representatives of the Neelipleona genera Neelus Folsom, 1896 and Megalothorax Willem, 1900 from various regions. The interpretation of the phylogenetic pattern and number of transformations (branch length) indicates that Neelipleona are more diverse than previously thought, with probably many species yet to be discovered. These results buttress the rank of Neelipleona as a whole order instead of a Symphypleona family. Keywords: Collembola, Neelidae, Megalothorax, Neelus, COX1, 16S, 28S 1. Introduction 1.1. Brief history of Neelipleona classification The Neelidae family was established by Folsom (1896), who described Neelus murinus from Cambridge (USA).
    [Show full text]
  • Why Are There So Many Exotic Springtails in Australia? a Review
    90 (3) · December 2018 pp. 141–156 Why are there so many exotic Springtails in Australia? A review. Penelope Greenslade1, 2 1 Environmental Management, School of School of Health and Life Sciences, Federation University, Ballarat, Victoria 3353, Australia 2 Department of Biology, Australian National University, GPO Box, Australian Capital Territory 0200, Australia E-mail: [email protected] Received 17 October 2018 | Accepted 23 November 2018 Published online at www.soil-organisms.de 1 December 2018 | Printed version 15 December 2018 DOI 10.25674/y9tz-1d49 Abstract Native invertebrate assemblages in Australia are adversely impacted by invasive exotic plants because they are replaced by exotic, invasive invertebrates. The reasons have remained obscure. The different physical, chemical and biotic characteristics of the novel habitat seem to present hostile conditions for native species. This results in empty niches. It seems the different ecologies of exotic invertebrate species may be better adapted to colonise these novel empty niches than native invertebrates. Native faunas of other southern continents that possess a highly endemic fauna, such as South America, South Africa and New Zealand, may have suffered the same impacts from exotic species but insufficient survey data and unreliable and old taxonomy makes this uncertain. Here I attempt to discover what particular characteristics of these novel habitats are hostile to native invertebrates. I chose the Collembola as a target taxon. They are a suitable group because the Australian collembolan fauna consists of a high percentage of endemic taxa, but also exotic, non-native, species. Most exotic Collembola species in Australia appear to have originated from Europe, where they occur at low densities (Fjellberg 1997, 2007).
    [Show full text]
  • Trifolium Resupinatum L.) Populations from Ordu Province (Turkey
    Morphological variability in some persian clover (Trifolium resupinatum L.) populations from Ordu province (Turkey) Onal Asci O., Kasko Arici Y., Nalbanto F., Deveci M., Acar Z. in Kyriazopoulos A.P. (ed.), López-Francos A. (ed.), Porqueddu C. (ed.), Sklavou P. (ed.). Ecosystem services and socio-economic benefits of Mediterranean grasslands Zaragoza : CIHEAM Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 114 2016 pages 201-204 Article available on line / Article disponible en ligne à l’adresse : -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- http://om.ciheam.org/article.php?IDPDF=00007510 -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- To cite this article / Pour citer cet article -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Onal Asci O., Kasko Arici Y., Nalbanto F., Deveci M., Acar Z. Morphological variability in some persian clover (Trifolium resupinatum L.) populations from Ordu province (Turkey). In : Kyriazopoulos A.P. (ed.), López-Francos A. (ed.), Porqueddu C. (ed.), Sklavou P. (ed.). Ecosystem services and socio-economic benefits of Mediterranean grasslands. Zaragoza : CIHEAM, 2016. p. 201- 204 (Options Méditerranéennes : Série A. Séminaires
    [Show full text]
  • Folsomia Candida and the Results of a Ringtest
    Toxicity testing with the collembolans Folsomia fimetaria and Folsomia candida and the results of a ringtest P.H. Krogh DMU/AU, Denmark Department of Terrestrial Ecology With contributions from: Mónica João de Barros Amorim, Pilar Andrés, Gabor Bakonyi, Kristin Becker van Slooten, Xavier Domene, Ine Geujin, Nobuhiro Kaneko, Silvio Knäbe, Vladimír Kocí, Jan Lana, Thomas Moser, Juliska Princz, Maike Schaefer, Janeck J. Scott-Fordsmand, Hege Stubberud, Berndt-Michael Wilke August 2008 1 Contents 1 PREFACE 3 2 BIOLOGY AND ECOTOXICOLOGY OF F. FIMETARIA AND F. CANDIDA 4 2.1 INTRODUCTION TO F. FIMETARIA AND F. CANDIDA 4 2.2 COMPARISON OF THE TWO SPECIES 6 2.3 GENETIC VARIABILITY 7 2.4 ALTERNATIVE COLLEMBOLAN TEST SPECIES 8 2.5 DIFFERENCES IN SUSCEPTIBILITY OF THE TWO SPECIES 8 2.6 VARIABILITY IN REPRODUCTION RATES 8 3 TESTING RESULTS OBTAINED AT NERI, 1994 TO 1999 10 3.1 INTRODUCTION 10 3.2 PERFORMANCE 10 3.3 INFLUENCE OF SOIL TYPE 10 3.4 CONCLUSION 11 4 RINGTEST RESULTS 13 4.1 TEST GUIDELINE 13 4.2 PARTICIPANTS 13 4.3 MODEL CHEMICALS 14 4.4 RANGE FINDING 14 4.5 STATISTICAL ANALYSIS 14 4.6 EXPERIMENTAL DESIGN 15 4.7 TEST CONDITIONS 15 4.8 CONTROL MORTALITY 15 4.9 CONTROL REPRODUCTION 16 4.10 VARIABILITY OF TESTING RESULTS 17 4.11 CONCLUSION 18 5 SUMMARY AND CONCLUSIONS 27 6 ACKNOWLEDGEMENTS 29 7 REFERENCES 30 ANNEX 1 PARTICIPANTS 36 ANNEX 2 LABORATORY CODE 38 ANNEX 3 BIBLIOMETRIC STATISTICS 39 ANNEX 4 INTRALABORATORY VARIABILITY 40 ANNEX 5 CONTROL MORTALITY AND REPRODUCTION 42 ANNEX 6 DRAFT TEST GUIDELINE 44 2 1 Preface Collembolans have been used for ecotoxicological testing for about 4 decades now but they have not yet had the privilege to enter into the OECD test guideline programme.
    [Show full text]
  • Biodiversidad De Collembola (Hexapoda: Entognatha) En México
    Revista Mexicana de Biodiversidad, Supl. 85: S220-S231, 2014 220 Palacios-Vargas.- BiodiversidadDOI: 10.7550/rmb.32713 de Collembola Biodiversidad de Collembola (Hexapoda: Entognatha) en México Biodiversity of Collembola (Hexapoda: Entognatha) in Mexico José G. Palacios-Vargas Laboratorio de Ecología y Sistemática de Microartrópodos, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito exterior s/n, Cd. Universitaria, 04510 México, D. F. [email protected] Resumen. Se hace una breve evaluación de la importancia del grupo en los distintos ecosistemas. Se describen los caracteres morfológicos más distintivos, así como los biotopos donde se encuentran y su tipo de alimentación. Se hace una evaluación de la biodiversidad, encontrando que existen citados más de 700 taxa, muchos de ellos a nivel genérico, de 24 familias. Se discute su distribución geográfica por provincias biogeográficas, así como la diversidad de cada estado. Se presentan cuadros con la clasificación ecológica con ejemplos mexicanos; se indican las familias y su riqueza a nivel mundial y nacional, así como la curva acumulativa de especies mexicanas por quinquenio. Palabras clave: Collembola, biodiversidad, distribución, ecología, acumulación de especies. Abstract. A brief assessment of the importance of the group in different ecosystems is done. A description of the most distinctive morphological characters, as well as biotopes where they live is included. An evaluation of their biodiversity is presented; finding that more than 700 taxa have been cited, many of them at the generic level, in 24 families. Their geographical distribution is discussed and the state richness is pointed out. Tables of ecological classification applied to Mexican species are given.
    [Show full text]
  • Formation of the Entognathy of Dicellurata, Occasjapyx Japonicus (Enderlein, 1907) (Hexapoda: Diplura, Dicellurata)
    S O I L O R G A N I S M S Volume 83 (3) 2011 pp. 399–404 ISSN: 1864-6417 Formation of the entognathy of Dicellurata, Occasjapyx japonicus (Enderlein, 1907) (Hexapoda: Diplura, Dicellurata) Kaoru Sekiya1, 2 and Ryuichiro Machida1 1 Sugadaira Montane Research Center, University of Tsukuba, Sugadaira Kogen, Ueda, Nagano 386-2204, Japan 2 Corresponding author: Kaoru Sekiya (e-mail: [email protected]) Abstract The development of the entognathy in Dicellurata was examined using Occasjapyx japonicus (Enderlein, 1907). The formation of entognathy involves rotation of the labial appendages, resulting in a tandem arrangement of the glossa, paraglossa and labial palp. The mandibular, maxillary and labial terga extend ventrally to form the mouth fold. The intercalary tergum also participates in the formation of the mouth fold. The labial coxae extending anteriorly unite with the labial terga, constituting the posterior region of the mouth fold, the medial half of which is later partitioned into the admentum. The labial appendages of both sides migrate medially, and the labial subcoxae fuse to form the postmentum, which posteriorly confines the entognathy. The entognathy formation in Dicellurata is common to that in another dipluran suborder, Rhabdura. The entognathy of Diplura greatly differs from that of Protura and Collembola in the developmental plan, preventing homologization of the entognathies of Diplura and other two entognathan orders. Keywords: Entognatha, comparative embryology, mouth fold, admentum, postmentum 1. Introduction The Diplura, a basal clade of the Hexapoda, have traditionally been placed within Entognatha [= Diplura + Collembola + Protura], a group characterized by entognathy (Hennig 1969). However, Hennig’s ‘Entognatha-Ectognatha System’, especially the validity of Entognatha, has been challenged by various disciplines.
    [Show full text]
  • Redalyc.Biodiversidad De Collembola (Hexapoda: Entognatha) En México
    Revista Mexicana de Biodiversidad ISSN: 1870-3453 [email protected] Universidad Nacional Autónoma de México México Palacios-Vargas, José G. Biodiversidad de Collembola (Hexapoda: Entognatha) en México Revista Mexicana de Biodiversidad, vol. 85, 2014, pp. 220-231 Universidad Nacional Autónoma de México Distrito Federal, México Disponible en: http://www.redalyc.org/articulo.oa?id=42529679040 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Revista Mexicana de Biodiversidad, Supl. 85: S220-S231, 2014 220 Palacios-Vargas.- BiodiversidadDOI: 10.7550/rmb.32713 de Collembola Biodiversidad de Collembola (Hexapoda: Entognatha) en México Biodiversity of Collembola (Hexapoda: Entognatha) in Mexico José G. Palacios-Vargas Laboratorio de Ecología y Sistemática de Microartrópodos, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito exterior s/n, Cd. Universitaria, 04510 México, D. F. [email protected] Resumen. Se hace una breve evaluación de la importancia del grupo en los distintos ecosistemas. Se describen los caracteres morfológicos más distintivos, así como los biotopos donde se encuentran y su tipo de alimentación. Se hace una evaluación de la biodiversidad, encontrando que existen citados más de 700 taxa, muchos de ellos a nivel genérico, de 24 familias. Se discute su distribución geográfica por provincias biogeográficas, así como la diversidad de cada estado. Se presentan cuadros con la clasificación ecológica con ejemplos mexicanos; se indican las familias y su riqueza a nivel mundial y nacional, así como la curva acumulativa de especies mexicanas por quinquenio.
    [Show full text]
  • Animal Phylum Poster Porifera
    Phylum PORIFERA CNIDARIA PLATYHELMINTHES ANNELIDA MOLLUSCA ECHINODERMATA ARTHROPODA CHORDATA Hexactinellida -- glass (siliceous) Anthozoa -- corals and sea Turbellaria -- free-living or symbiotic Polychaetes -- segmented Gastopods -- snails and slugs Asteroidea -- starfish Trilobitomorpha -- tribolites (extinct) Urochordata -- tunicates Groups sponges anemones flatworms (Dugusia) bristleworms Bivalves -- clams, scallops, mussels Echinoidea -- sea urchins, sand Chelicerata Cephalochordata -- lancelets (organisms studied in detail in Demospongia -- spongin or Hydrazoa -- hydras, some corals Trematoda -- flukes (parasitic) Oligochaetes -- earthworms (Lumbricus) Cephalopods -- squid, octopus, dollars Arachnida -- spiders, scorpions Mixini -- hagfish siliceous sponges Xiphosura -- horseshoe crabs Bio1AL are underlined) Cubozoa -- box jellyfish, sea wasps Cestoda -- tapeworms (parasitic) Hirudinea -- leeches nautilus Holothuroidea -- sea cucumbers Petromyzontida -- lamprey Mandibulata Calcarea -- calcareous sponges Scyphozoa -- jellyfish, sea nettles Monogenea -- parasitic flatworms Polyplacophora -- chitons Ophiuroidea -- brittle stars Chondrichtyes -- sharks, skates Crustacea -- crustaceans (shrimp, crayfish Scleropongiae -- coralline or Crinoidea -- sea lily, feather stars Actinipterygia -- ray-finned fish tropical reef sponges Hexapoda -- insects (cockroach, fruit fly) Sarcopterygia -- lobed-finned fish Myriapoda Amphibia (frog, newt) Chilopoda -- centipedes Diplopoda -- millipedes Reptilia (snake, turtle) Aves (chicken, hummingbird) Mammalia
    [Show full text]
  • Chapter 10 • Principles of Conserving the Arctic's Biodiversity
    Chapter 10 Principles of Conserving the Arctic’s Biodiversity Lead Author Michael B. Usher Contributing Authors Terry V.Callaghan, Grant Gilchrist, Bill Heal, Glenn P.Juday, Harald Loeng, Magdalena A. K. Muir, Pål Prestrud Contents Summary . .540 10.1. Introduction . .540 10.2. Conservation of arctic ecosystems and species . .543 10.2.1. Marine environments . .544 10.2.2. Freshwater environments . .546 10.2.3. Environments north of the treeline . .548 10.2.4. Boreal forest environments . .551 10.2.5. Human-modified habitats . .554 10.2.6. Conservation of arctic species . .556 10.2.7. Incorporating traditional knowledge . .558 10.2.8. Implications for biodiversity conservation . .559 10.3. Human impacts on the biodiversity of the Arctic . .560 10.3.1. Exploitation of populations . .560 10.3.2. Management of land and water . .562 10.3.3. Pollution . .564 10.3.4. Development pressures . .566 10.4. Effects of climate change on the biodiversity of the Arctic . .567 10.4.1. Changes in distribution ranges . .568 10.4.2. Changes in the extent of arctic habitats . .570 10.4.3. Changes in the abundance of arctic species . .571 10.4.4. Changes in genetic diversity . .572 10.4.5. Effects on migratory species and their management . .574 10.4.6. Effects caused by non-native species and their management .575 10.4.7. Effects on the management of protected areas . .577 10.4.8. Conserving the Arctic’s changing biodiversity . .579 10.5. Managing biodiversity conservation in a changing environment . .579 10.5.1. Documenting the current biodiversity . .580 10.5.2.
    [Show full text]
  • Mesofauna at the Soil-Scree Interface in a Deep Karst Environment
    diversity Article Mesofauna at the Soil-Scree Interface in a Deep Karst Environment Nikola Jureková 1,* , Natália Raschmanová 1 , Dana Miklisová 2 and L’ubomír Kováˇc 1 1 Department of Zoology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, SK-04180 Košice, Slovakia; [email protected] (N.R.); [email protected] (L’.K.) 2 Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, SK-04001 Košice, Slovakia; [email protected] * Correspondence: [email protected] Abstract: The community patterns of Collembola (Hexapoda) were studied at two sites along a microclimatically inversed scree slope in a deep karst valley in the Western Carpathians, Slovakia, in warm and cold periods of the year, respectively. Significantly lower average temperatures in the scree profile were noted at the gorge bottom in both periods, meaning that the site in the lower part of the scree, near the bank of creek, was considerably colder and wetter compared to the warmer and drier site at upper part of the scree slope. Relatively high diversity of Collembola was observed at two fieldwork scree sites, where cold-adapted species, considered climatic relicts, showed considerable abundance. The gorge bottom, with a cold and wet microclimate and high carbon content even in the deeper MSS horizons, provided suitable environmental conditions for numerous psychrophilic and subterranean species. Ecological groups such as trogloxenes and subtroglophiles showed decreasing trends of abundance with depth, in contrast to eutroglophiles and a troglobiont showing an opposite distributional pattern at scree sites in both periods. Our study documented that in terms of soil and Citation: Jureková, N.; subterranean mesofauna, colluvial screes of deep karst gorges represent (1) a transition zone between Raschmanová, N.; Miklisová, D.; the surface and the deep subterranean environment, and (2) important climate change refugia.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]