Carbon Dioxide, Liquid CLASS 2.2 Carbon Dioxide, Liquid CLASS 2.2 T E C H S P E C S T E C H S P E C S

Total Page:16

File Type:pdf, Size:1020Kb

Carbon Dioxide, Liquid CLASS 2.2 Carbon Dioxide, Liquid CLASS 2.2 T E C H S P E C S T E C H S P E C S UN 2187 UN 2187 HAZCHEM 2RE HAZCHEM 2RE Carbon Dioxide, liquid CLASS 2.2 Carbon Dioxide, liquid CLASS 2.2 T E C H S P E C S T E C H S P E C S H A N D L I N G & S A F E T Y Liquid carbon dioxide is delivered by Air Liquide bulk road tankers to vacuum insulated and low temperature refrigerated storage and delivery USES Continued FIRST AID vessels installed on users’ premises. Carbon dioxide is employed in the laboratory as a For details of vessels available see separate sheet. carrier gas for gas analysis,and as a standard gas. If victim is conscious: Owing to its stimulating effect on the nerve centres, • Move to uncontaminated area to breathe fresh air. carbon dioxide is employed in medicine in mixtures • Keep warm and quiet. with oxygen, for reviving victims of asphyxiation • (drowning, electrocution, carbon dioxide poisoning, Call doctor. d i p h t h e ric toxin morphine, s c o p o l a m i n e ) . It also If victim is unconscious: serves in the treatment of certain skin lesions.Mixed • Move to uncontaminated area and give assisted with ethylene oxide, it is employed as a fumigant in respiration. the destruction of insects in grain silos, and in leguminous plants,dates and dried figs. • When breathing is restored, treatment as above. Continued treatment should be symptomatic and HAZARDS supportive. Cold burns/Frostbite: Inhalation of carbon dioxide in high concentration is • Flush with luke warm water for at least 10 minutes dangerous to respiration. At very high concentrations then treat as thermal burns. leads to loss of consciousness,and eventually death. • Seek hospital attention for all but the most Mental alertness (narcotic effect) and re s p i ra t i o n superficial cases. Do not apply direct heat or give begin to become af fected at a concentration of 2% in alcohol or cigarettes. air. Above 7%, loss of consciousness can occur very • SPECIFICATION • tapping of beer and prevention of ox i d a t i o n rapidly. Protect frozen parts from infection. through contact with the air. Hospital treatment of cold burns/frostbite may differ There is a risk of accumulation in low points (pits, from heat burns. Carbon Dioxide > 99.8% • accelerating the growth of farm produce as an c u l ve rt s , b a s e m e n t s , etc.) where it will cre a t e Moisture < 100 ppm atmospheric additive. hazardous conditions. It is employed in the chemical industry in the ADDITIONAL INFORMATION PHYSICAL DATA following applications: MATERIALS COMPATIBILITY The info rm a t i o n , recommendations and data • p re p a ration of sodium carbonate, a l k a l i n e contained in this publication are intended to give Chemical Symbol CO2 Carbon dioxide is non-corrosive and so any common bicarbonates, lead carbonate and various organic basic guidance to users of Air Liquide gases for their Vapour Pressure (kPa @ 15°C) 5090 metal is acceptable,provided equipment is designed substances (e.g.salicylic acid). safe handling and use. Relative Density (Air = 1) 1.53 to withstand process pressure. Molecular Weight 44.01 • neutralization of sedentary alkalis. Material Safety Data Sheets (MSDS) for gases and gas Sublimation Point -78.5°C • manufacture of foam rubber. PRECAUTIONS IN USE mixtures supplied by Air Liquide are also available. Critical Temperature 31.0°C • precipitation of lime after clarification of juices in It is essential for the safe use of gases that personnel Specific Volume (@101.3 kPa & 15°C) 0.535 m3/kg the sugar industry. Use only in a well ventilated area to preve n t a re pro p e r ly trained and are fully awa re of the • dehydration of penicillin. a c c u mulation of high concentration of carbon possible hazards. PROPERTIES • tanning of hides. d i ox i d e . E n s u re that ox y gen content of air is Further information and advice on any matter relating maintained above 18%. to the safe handling or use of these products may be • production of paints and varnishes. Carbon Dioxide is a colourless, o d o u r l e s s , n o n It is recommended that the user of liquid carbon obtained from the nearest Air Liquide office. flammable gas.It is heavier than air. It is employed as a protective atmosphere for arc d i oxide is familiar with re l evant sections of the welding and in reactor cooling circuits in nuclear Au s t ralian Standard 1894-1997 “The storage and USES power plants. handling of non-flammable cryogenic and refrigerated P re s s u rized carbon dioxide is employed in fi re liquids”, available from Standards Australia. The food industries consume most of the carbon ex t i n g u i s h e rs , ex t i n g u i s h e rs for airc raft and dioxide produced.It is employed for: torpedoes. It serves to inflate buoys and pneumatic PERSONAL PROTECTION rescue dinghies. It is also used as a propellant gas in • carbonation of soft drinks, lemonade, soda, fruit aerosols. juices,etc. .. Full face mask, well fitting leather gloves and full • recharging of natural mineral waters with carbon overalls without cuffs should be worn when handling dioxide. liquid carbon dioxide supply systems. • conservation of wine,unfermented grape juice and various fruit juices. 03227 09/99 Air Liquide Australia Limited A.C.N. 004 385 782 UN 2187 UN 2187 HAZCHEM 2RE HAZCHEM 2RE Carbon Dioxide, liquid CLASS 2.2 Carbon Dioxide, liquid CLASS 2.2 T E C H S P E C S T E C H S P E C S H A N D L I N G & S A F E T Y Liquid carbon dioxide is delivered by Air Liquide bulk road tankers to vacuum insulated and low temperature refrigerated storage and delivery USES Continued FIRST AID vessels installed on users’ premises. Carbon dioxide is employed in the laboratory as a For details of vessels available see separate sheet. carrier gas for gas analysis,and as a standard gas. If victim is conscious: Owing to its stimulating effect on the nerve centres, • Move to uncontaminated area to breathe fresh air. carbon dioxide is employed in medicine in mixtures • Keep warm and quiet. with oxygen, for reviving victims of asphyxiation • (drowning, electrocution, carbon dioxide poisoning, Call doctor. d i p h t h e ric toxin morphine, s c o p o l a m i n e ) . It also If victim is unconscious: serves in the treatment of certain skin lesions.Mixed • Move to uncontaminated area and give assisted with ethylene oxide, it is employed as a fumigant in respiration. the destruction of insects in grain silos, and in leguminous plants,dates and dried figs. • When breathing is restored, treatment as above. Continued treatment should be symptomatic and HAZARDS supportive. Cold burns/Frostbite: Inhalation of carbon dioxide in high concentration is • Flush with luke warm water for at least 10 minutes dangerous to respiration. At very high concentrations then treat as thermal burns. leads to loss of consciousness,and eventually death. • Seek hospital attention for all but the most Mental alertness (narcotic effect) and re s p i ra t i o n superficial cases. Do not apply direct heat or give begin to become af fected at a concentration of 2% in alcohol or cigarettes. air. Above 7%, loss of consciousness can occur very • SPECIFICATION • tapping of beer and prevention of ox i d a t i o n rapidly. Protect frozen parts from infection. through contact with the air. Hospital treatment of cold burns/frostbite may differ There is a risk of accumulation in low points (pits, from heat burns. Carbon Dioxide > 99.8% • accelerating the growth of farm produce as an c u l ve rt s , b a s e m e n t s , etc.) where it will cre a t e Moisture < 100 ppm atmospheric additive. hazardous conditions. It is employed in the chemical industry in the ADDITIONAL INFORMATION PHYSICAL DATA following applications: MATERIALS COMPATIBILITY The info rm a t i o n , recommendations and data • p re p a ration of sodium carbonate, a l k a l i n e contained in this publication are intended to give Chemical Symbol CO2 Carbon dioxide is non-corrosive and so any common bicarbonates, lead carbonate and various organic basic guidance to users of Air Liquide gases for their Vapour Pressure (kPa @ 15°C) 5090 metal is acceptable,provided equipment is designed substances (e.g.salicylic acid). safe handling and use. Relative Density (Air = 1) 1.53 to withstand process pressure. Molecular Weight 44.01 • neutralization of sedentary alkalis. Material Safety Data Sheets (MSDS) for gases and gas Sublimation Point -78.5°C • manufacture of foam rubber. PRECAUTIONS IN USE mixtures supplied by Air Liquide are also available. Critical Temperature 31.0°C • precipitation of lime after clarification of juices in It is essential for the safe use of gases that personnel Specific Volume (@101.3 kPa & 15°C) 0.535 m3/kg the sugar industry. Use only in a well ventilated area to preve n t a re pro p e r ly trained and are fully awa re of the • dehydration of penicillin. a c c u mulation of high concentration of carbon possible hazards. PROPERTIES • tanning of hides. d i ox i d e . E n s u re that ox y gen content of air is Further information and advice on any matter relating maintained above 18%.
Recommended publications
  • Briefing on Carbon Dioxide Specifications for Transport 1St Report of the Thematic Working Group On: CO2 Transport, Storage
    Briefing on carbon dioxide specifications for transport 1st Report of the Thematic Working Group on: CO2 transport, storage and networks Release Status: FINAL Author: Dr Peter A Brownsort Date: 29th November 2019 Filename and version: Briefing-CO2-Specs-FINAL-v1.docx EU CCUS PROJECTS NETWORK (No ENER/C2/2017-65/SI2.793333) This project is financed by the European Commission under service contract No. ENER/C2/2017-65/SI2.793333 1 About the CCUS Projects Network The CCUS Projects Network comprises and supports major industrial projects underway across Europe in the field of carbon capture and storage (CCS) and carbon capture and utilisation (CCU). Our Network aims to speed up delivery of these technologies, which the European Commission recognises as crucial to achieving 2050 climate targets. By sharing knowledge and learning from each other, our project members will drive forward the delivery and deployment of CCS and CCU, enabling Europe’s member states to reduce emissions from industry, electricity, transport and heat. http://www.ccusnetwork.eu/ © European Union, 2019 No third-party textual or artistic material is included in the publication without the copyright holder’s prior consent to further dissemination by other third parties. Reproduction is authorised provided the source is acknowledged. This project is financed by the European Commission under service contract No. ENER/C2/2017-65/SI2.793333 2 (Intentionally blank) This project is financed by the European Commission under service contract No. ENER/C2/2017-65/SI2.793333 3 Executive summary There are two types of specification generally relevant to carbon dioxide (CO2) transport, the product specification for end use and the requirement specification for transport.
    [Show full text]
  • Carbon Dioxide (Refrigerated Liquid)
    Carbon dioxide, refrigerated liquid Safety Data Sheet P-4573 This SDS conforms to U.S. Code of Federal Regulations 29 CFR 1910.1200, Hazard Communication. Date of issue: 01/01/1997 Revision date: 01/30/2021 Supersedes: 09/08/2020 Version: 2.0 SECTION: 1. Product and company identification 1.1. Product identifier Product form : Substance Substance name : Carbon dioxide, refrigerated liquid CAS-No. : 124-38-9 Formula : CO2 Other means of identification : Liquiflow Liquid Carbon Dioxide, Medipure Liquid Carbon Dioxide 1.2. Relevant identified uses of the substance or mixture and uses advised against Use of the substance/mixture : Medical applications. Industrial use Food applications. 1.3. Details of the supplier of the safety data sheet Linde Inc. 10 Riverview Drive Danbury, CT 06810-6268 - USA 1.4. Emergency telephone number Emergency number : Onsite Emergency: 1-800-645-4633 CHEMTREC, 24hr/day 7days/week — Within USA: 1-800-424-9300, Outside USA: 001-703-527-3887 (collect calls accepted, Contract 17729) SECTION 2: Hazard identification 2.1. Classification of the substance or mixture GHS US classification Simple asphyxiant Press. Gas (Ref. Liq.) H281 2.2. Label elements GHS US labeling Hazard pictograms (GHS US) : GHS04 Signal word (GHS US) : Warning Hazard statements (GHS US) : H281 - CONTAINS REFRIGERATED GAS; MAY CAUSE CRYOGENIC BURNS OR INJURY OSHA-H01 - MAY DISPLACE OXYGEN AND CAUSE RAPID SUFFOCATION. CGA-HG03 - MAY INCREASE RESPIRATION AND HEART RATE. Precautionary statements (GHS US) : P202 - Do not handle until all safety precautions have been read and understood. P271+P403 - Use and store only outdoors or in a well-ventilated place.
    [Show full text]
  • Liquid Carbon Dioxide (CO2) SDS (Safety Data Sheet) P-4573-D
    Product: Carbon Dioxide, Refrigerated Liquid P-4573-D Date: December 2009 Praxair Material Safety Data Sheet 1. Chemical Product and Company Identification Product Name: Carbon dioxide, refrigerated liquid Trade Names: Liquiflow™ Liquid Carbon (MSDS No. P-4573-D) Dioxide, Medipure® Liquid Carbon Dioxide Chemical Name: Carbon dioxide Synonyms: Carbon dioxide (cryogenic liquid), LCO2, liquefied CO2 Chemical Family: Acid anhydride Product Grades: Industrial, USP Telephone: Emergencies: 1-800-645-4633* Company Name: Praxair, Inc. CHEMTREC: 1-800-424-9300* 39 Old Ridgebury Road Routine: 1-800-PRAXAIR Danbury, CT 06810-5113 * Call emergency numbers 24 hours a day only for spills, leaks, fire, exposure, or accidents involving this product. For routine information, contact your supplier, Praxair sales representative, or call 1-800-PRAXAIR (1-800-772-9247). 2. Hazards Identification EMERGENCY OVERVIEW WARNING! Cold liquid and gas under pressure. Can cause rapid suffocation. Can increase respiration and heart rate. May cause nervous system damage. May cause frostbite. May cause dizziness and drowsiness. Self-contained breathing apparatus and protective clothing may be required by rescue workers. This product is a colorless, odorless liquid that transforms to white crystalline particles when discharged from its container. The gas is slightly acidic and may be felt to have a slight, pungent odor and biting taste. OSHA REGULATORY STATUS: This material is considered hazardous by the OSHA Hazard Communications Standard (29 CFR 1910.1200). POTENTIAL HEALTH EFFECTS: Effects of a Single (Acute) Overexposure Inhalation. Carbon dioxide gas is an asphyxiant with effects due to lack of oxygen. It is also physiologically active, affecting circulation and breathing.
    [Show full text]
  • Ocean Storage
    277 6 Ocean storage Coordinating Lead Authors Ken Caldeira (United States), Makoto Akai (Japan) Lead Authors Peter Brewer (United States), Baixin Chen (China), Peter Haugan (Norway), Toru Iwama (Japan), Paul Johnston (United Kingdom), Haroon Kheshgi (United States), Qingquan Li (China), Takashi Ohsumi (Japan), Hans Pörtner (Germany), Chris Sabine (United States), Yoshihisa Shirayama (Japan), Jolyon Thomson (United Kingdom) Contributing Authors Jim Barry (United States), Lara Hansen (United States) Review Editors Brad De Young (Canada), Fortunat Joos (Switzerland) 278 IPCC Special Report on Carbon dioxide Capture and Storage Contents EXECUTIVE SUMMARY 279 6.7 Environmental impacts, risks, and risk management 298 6.1 Introduction and background 279 6.7.1 Introduction to biological impacts and risk 298 6.1.1 Intentional storage of CO2 in the ocean 279 6.7.2 Physiological effects of CO2 301 6.1.2 Relevant background in physical and chemical 6.7.3 From physiological mechanisms to ecosystems 305 oceanography 281 6.7.4 Biological consequences for water column release scenarios 306 6.2 Approaches to release CO2 into the ocean 282 6.7.5 Biological consequences associated with CO2 6.2.1 Approaches to releasing CO2 that has been captured, lakes 307 compressed, and transported into the ocean 282 6.7.6 Contaminants in CO2 streams 307 6.2.2 CO2 storage by dissolution of carbonate minerals 290 6.7.7 Risk management 307 6.2.3 Other ocean storage approaches 291 6.7.8 Social aspects; public and stakeholder perception 307 6.3 Capacity and fractions retained
    [Show full text]
  • Carbon Dioxide
    Safetygram 18 Carbon dioxide Carbon dioxide is nonflammable, colorless, and odorless in the gaseous and liquid states. Carbon dioxide is a minor but important constituent of the atmosphere, averaging about 0.036% or 360 ppm by volume. It is also a normal end-prod- uct of human and animal metabolism. Dry carbon dioxide is a relatively inert gas. In the event moisture is present in high concentrations, carbonic acid may be formed and materials resistant to this acid should be used. High flow rates or rapid depressurization of a system can cause temperatures approaching the sublimation point (–109.3°F [–78.5°C]) to be attained within the system. Carbon dioxide will convert directly from a liquid to a solid if the liquid is depressurized below 76 psia (61 psig). The use of ma- terials which become brittle at low temperatures should be avoided in applications where temperatures less than –20°F (–29°C) are expected. Vessels and piping used in carbon dioxide service should be designed to the American Society of Mechanical Engineers (ASME) or Department of Transportation (DOT) codes for the pressures and temperatures involved. Physical properties are listed in Table 1. Carbon dioxide in the gaseous state is colorless and odorless and not easily detectable. Gaseous carbon dioxide is 1.5 times denser than air and therefore is found in greater concentrations at low levels. Ventilation systems should be designed to exhaust from the lowest levels and allow make-up air to enter at a higher level. Manufacture Carbon dioxide is produced as a crude by-product of a number of manufactur- ing processes.
    [Show full text]
  • Carbon Dioxide (Co2)
    CARBON DIOXIDE (CO2) Carbon dioxide (CO2) is colorless. At low concentrations, the gas is odorless. At higher concentrations it has a sharp, acidic odor. It is slightly toxic and has a threshold limit value of 5,000 ppm. At standard temperature and pressure, the density of carbon dioxide is around 1.98 kg/m3, about 1.5 times that of air. At atmospheric pressure and a temperature of −78.51 °C (−109.32 °F), carbon dioxide changes directly from a solid phase to a gaseous phase through sublimation, or from gaseous to solid through deposition. Liquid carbon dioxide forms only at pressures above 5.1 atm; the triple point of carbon dioxide is about 518 kPa at −56.6 °C. The boiling point of the liquid is -70°F to +88°F, depending on pressure. When vaporized at 60°F, the expansion ratio is 535:1. CO2 exists as a gas or solid below 60 psig. In liquid form, carbon dioxide weighs 4.9 pounds per gallon. In gaseous form it is slightly heavier than air. CO2 is mainly produced as an unrecovered side product of four technologies: combustion of fossil fuels, production of hydrogen by steam reforming, ammonia synthesis, and fermentation. It can be obtained by or from air distillation, however, this method is inefficient. Acute carbon dioxide physiological effect is hypercapnia or asphyxiation. Inhalation of CO2 can be tolerated at three percent inspired concentrations for at least one month and four percent inspired concentrations for over a week. Increased concentrations increase the breathing rate – e.g., 5% CO2 in air increases breathing rate by 300%.
    [Show full text]
  • Development of Process for Purification of Α and Β-Vetivone from Vetiver Essential Oil & Investigation of Effects of Heavy
    UNIVERSITY OF NEW SOUTH WALES PhD Thesis Proposal Development of process for purification of α and β-vetivone from Vetiver essential oil & Investigation of effects of heavy metals on quality and quantity of extracted Vetiver oil Thai Danh Luu {B. Agric. Sc. (Qld University, Australia), M. Sc. (VUB, Belgium)} School of Chemical Sciences and Engineering Unversity of New South Wales, Sydney 1 Supervisor: Prof Neil Foster Supervisor: Prof Neil Foster Co-supervisors: Prof Tam Tran 2 and Dr Paul Truong 3 1 School of Chemical Sciences and Engineering, UNSW 2 Division of Engineering, Science and Technology, UNSW-Asia 3 Veticon Consulting and International Vetiver Network, Brisbane 1 I. INTRODUCTION In recent years, there is an increasing trend in research of essential oils extracted from various herbs and aromatic plants due to the continuous discoveries of their multifunctional properties other than their classical roles as food additives and/or fragrances. New properties of many essential oils, such as antibacterial, antifungal, antioxidant, and anti-inflammatory activities have been found and confirmed (Aruoma et al, 1996; Hammer et al, 1999; Güllüce et al, 2003). The pharmacological properties of essential oils extracted from plants have received the greatest interest of academic institutes and pharmaceutical companies (Ryman, 1992; Loza- Tavera, 1999; Courreges et al, 2000; Carnesecchi et al, 2002 and Salim et al, 2003). On the other hand, the insecticidal activities of essential oils are more favored by agricultural scientists and agri-business. Consequently, many investigation and new findings have significantly prompted and expanded novel applications of essential oils which are now been widely used as natural insecticides, cosmeceuticals, and aroma therapeutic agents.
    [Show full text]
  • Carbon Dioxide
    www.scifun.org CARBON DIOXIDE Atmospheric Carbon Dioxide Carbon dioxide, CO2, is one of the gases in our atmosphere. Both natural processes and human activities contribute to its presence at a present concentration of about 0.040% [406 parts per million (ppm) on January 7, 2017], uniformly distributed over the Earth. Commercially, CO2 finds uses as a refrigerant (dry ice is solid CO2), in beverage carbonation, and in fire extinguishers. Because the concentration of CO2 in the atmosphere is low, no practical process has yet been developed to obtain the gas by extracting it from air. Most commercial CO2 is recovered as a by-product of other processes, such as the production of ethanol by fermentation and the manufacture of ammonia. Some CO2 is obtained from the combustion of coke or other carbon-containing fuels. C(coke) + O2(g) → CO2(g) Carbon dioxide is released into our atmosphere when carbon-containing fossil fuels such as oil, natural gas, and coal are burned in air. As a result of the tremendous world-wide consumption of such fossil fuels, the amount of CO2 in the atmosphere has increased over the past two centuries, now rising at a rate of about 2-3 ppm per year, Figure 1. Figure 1. This is the Keeling curve, named for the scientist, Charles Keeling, who began systematic monitoring of the atmospheric CO2 concentration at a site on the top of the Mauna Loa volcano in Hawaii in 1957. These are the usual measurements quoted in news reports and articles on atmospheric CO2 levels. Other stations around the world are now also monitoring atmospheric CO2, but Keeling’s are the longest continuous measurements.
    [Show full text]
  • Food and Nutrition Board Committee on Food Chemicals Codex
    Institute of Medicine Food and Nutrition Board Committee on Food Chemicals Codex Revised Monograph - Carbon Dioxide Please send comments to the Committee on Food Chemicals Codex, National Academy of Sciences, FO 3042, 2101 Constitution Avenue, N.W., Washington, DC 20418 or email them to [email protected]. All comments must be received by December 15, 1996, for consideration for the First Supplement. ______________________________________________________________________________ July 9, 1996 Carbon Dioxide CO2 Formula wt 44.01 INS: 290 CAS: [124-38-9] DESCRIPTION A colorless, odorless gas, 1 L of which weighs about 1.98 g at 0° and a pressure of 760 mm of mercury. Under a pressure of about 59 atmospheres it may be condensed to a liquid, a portion of which forms a white solid ("dry ice") upon rapid vaporization. Solid Carbon Dioxide evaporates without melting upon exposure to air. One volume of the gas dissolves in about 1 volume of water, forming a solution that is acid to litmus. Functional Use in Foods Propellant and aerating agent; direct-contact freezing agent. REQUIREMENTS Identification A. Pass 100 ± 5 mL, released from the vapor phase of the contents of the container, through a carbon dioxide detector tube (see Detector Tubes under Solutions and Indicators) at the rate specified for the tube: The indicator change extends throughout the entire indicating range of the tube. B. The gas, when passed through barium hydroxide TS, forms a precipitate that dissolves with effervescence in acetic acid. Assay Not less than 99.5% of CO2, by volume. Carbonyl Sulfide Not more than 0.5 ppm, by volume.
    [Show full text]
  • WO 2018/071818 Al 19 April 2018 (19.04.2018) W ! P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/071818 Al 19 April 2018 (19.04.2018) W ! P O PCT (51) International Patent Classification: (72) Inventor; and C25B 9/08 (2006.01) C12G 3/04 (2006.01) (71) Applicant: SHEEHAN, Stafford Wheeler [US/US]; 201 C25B 9/18 (2006.01) C12G 3/00 (2006.01) Stoney Hollow Rd., Tiverton, RI 02878 (US). C25B / 0 (2006.01) (74) Agent: ATKINS, Lucas P. et al; Foley Hoag LLP, 155 (21) International Application Number: Seaport Boulevard, Boston, MA 02210-2600 (US). PCT/US2017/056589 (81) Designated States (unless otherwise indicated, for every (22) International Filing Date: kind of national protection available): AE, AG, AL, AM, 13 October 2017 (13.10.2017) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (25) Filing Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (26) Publication Language: English HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (30) Priority Data: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 62/408,172 14 October 2016 (14.10.2016) US OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 62/433,828 14 December 2016 (14.12.2016) US SC, SD, SE, SG, SK, SL, SM, ST, SV, SY,TH, TJ, TM, TN, 62/468,676 08 March 20 17 (08.03 .20 17) US TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Safety Data Sheet Material Name CARBON DIOXIDE, LIQUID SDS ID: 00225010
    Safety Data Sheet Material Name CARBON DIOXIDE, LIQUID SDS ID: 00225010 * * *Section 1 - IDENTIFICATION* * * Product Identifier: CARBON DIOXIDE, LIQUID Trade Names/Synonyms CARBONIC ACID; CARBON DIOXIDE LIQUID; CARBON DIOXIDE, REFRIGERATED LIQUID; CARBONIC ANHYDRIDE, REFRIGERATED LIQUID; UN 2187; CO2 Chemical Family inorganic liquid Recommended Use industrial Restrictions on Use None known. Manufacturer Information MATHESON TRI-GAS, INC. General Information: 1-800-416-2505 150 Allen Road, Suite 302 Emergency #: 1-800-424-9300 (CHEMTREC) Basking Ridge, NJ 07920 Outside the US: 703-527-3887 (Call collect) * * *Section 2 - HAZARDS IDENTIFICATION* * * Classification in accordance with 29 CFR 1910.1200 Gas under pressure, Refrigerated liquefied gas Specific Target Organ Toxicity - Single Exposure, Category 3 (central nervous system) GHS LABEL ELEMENTS Symbol(s) Signal Word WARNING Hazard Statement(s) Contains refrigerated gas; may cause cryogenic burns or injury May cause drowsiness and dizziness Precautionary Statement(s) Prevention Wear cold insulating gloves/face shield/eye protection. Avoid breathing gas. Use only outdoors or in a well- ventilated area. Response Thaw frosted parts with lukewarm water. Get immediate medical advice/attention. IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing. Call a POISON CENTER or doctor/physician if you feel unwell. ____________________________________________________________ Page 1 of 8 Issue Date 12/10/2014 Revision 3.0600 Print Date: 12/10/2014 Safety Data Sheet Material Name CARBON DIOXIDE, LIQUID SDS ID: 00225010 Storage Store in a well-ventilated place. Keep container tightly closed. Store locked up. Disposal Dispose in accordance with all applicable regulations. Hazard(s) Not Otherwise Classified May cause frostbite upon sudden release of liquefied gas.
    [Show full text]
  • Solvent Supercritical Fluid Technologies to Extract Bioactive Compounds from Natural Sources: a Review
    molecules Review Solvent Supercritical Fluid Technologies to Extract Bioactive Compounds from Natural Sources: A Review Kooi-Yeong Khaw ID , Marie-Odile Parat ID , Paul Nicholas Shaw ID and James Robert Falconer * School of Pharmacy, Pharmacy Australia Centre of Excellence, University of Queensland, Brisbane, QLD 4102, Australia; [email protected] (K.-Y.K.); [email protected] (M.-O.P.); [email protected] (P.N.S.) * Correspondence: [email protected]; Tel.: +86-10-8210-8797 Received: 16 June 2017; Accepted: 12 July 2017; Published: 14 July 2017 Abstract: Supercritical fluid technologies offer a propitious method for drug discovery from natural sources. Such methods require relatively short processing times, produce extracts with little or no organic co-solvent, and are able to extract bioactive molecules whilst minimising degradation. Supercritical fluid extraction (SFE) provides a range of benefits, as well as offering routes to overcome some of the limitations that exist with the conventional methods of extraction. Unfortunately, SFE-based methods are not without their own shortcomings; two major ones being: (1) the high establishment cost; and (2) the selective solvent nature of CO2, i.e., that CO2 only dissolves small non-polar molecules, although this can be viewed as a positive outcome provided bioactive molecules are extracted during solvent-based SFE. This review provides an update of SFE methods for natural products and outlines the main operating parameters for extract recovery. Selected processing considerations are presented regarding supercritical fluids and the development and application of ultrasonic-assisted SFE methods, as well as providing some of the key aspects of SFE scalability.
    [Show full text]