Stroke Association Glossary of Terms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
F(P,Q) = Ffeic(R+TQ)
674 MATHEMA TICS: N. H. McCOY PR.OC. N. A. S. ON THE FUNCTION IN QUANTUM MECHANICS WHICH CORRESPONDS TO A GIVEN FUNCTION IN CLASSICAL MECHANICS By NEAL H. MCCoy DEPARTMENT OF MATHEMATICS, SMrTH COLLEGE Communicated October 11, 1932 Let f(p,q) denote a function of the canonical variables p,q of classical mechanics. In making the transition to quantum mechanics, the variables p,q are represented by Hermitian operators P,Q which, satisfy the com- mutation rule PQ- Qp = 'y1 (1) where Y = h/2ri and 1 indicates the unit operator. From group theoretic considerations, Weyll has obtained the following general rule for carrying a function over from classical to quantum mechanics. Express f(p,q) as a Fourier integral, f(p,q) = f feiC(r+TQ) r(,r)d(rdT (2) (or in any other way as a linear combination of the functions eW(ffP+T)). Then the function F(P,Q) in quantum mechanics which corresponds to f(p,q) is given by F(P,Q)- ff ei(0P+7Q) t(cr,r)dodr. (3) It is the purpose of this note to obtain an explicit expression for F(P,Q), and although we confine our statements to the case in which f(p,q) is a polynomial, the results remain formally correct for infinite series. Any polynomial G(P,Q) may, by means of relation (1), be written in a form in which all of the Q-factors occur on the left in each term. This form of the function G(P,Q) will be denoted by GQ(P,Q). -
The Baseline Structure of the Enteric Nervous System and Its Role in Parkinson’S Disease
life Review The Baseline Structure of the Enteric Nervous System and Its Role in Parkinson’s Disease Gianfranco Natale 1,2,* , Larisa Ryskalin 1 , Gabriele Morucci 1 , Gloria Lazzeri 1, Alessandro Frati 3,4 and Francesco Fornai 1,4 1 Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; [email protected] (L.R.); [email protected] (G.M.); [email protected] (G.L.); [email protected] (F.F.) 2 Museum of Human Anatomy “Filippo Civinini”, University of Pisa, 56126 Pisa, Italy 3 Neurosurgery Division, Human Neurosciences Department, Sapienza University of Rome, 00135 Rome, Italy; [email protected] 4 Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, 86077 Pozzilli, Italy * Correspondence: [email protected] Abstract: The gastrointestinal (GI) tract is provided with a peculiar nervous network, known as the enteric nervous system (ENS), which is dedicated to the fine control of digestive functions. This forms a complex network, which includes several types of neurons, as well as glial cells. Despite extensive studies, a comprehensive classification of these neurons is still lacking. The complexity of ENS is magnified by a multiple control of the central nervous system, and bidirectional communication between various central nervous areas and the gut occurs. This lends substance to the complexity of the microbiota–gut–brain axis, which represents the network governing homeostasis through nervous, endocrine, immune, and metabolic pathways. The present manuscript is dedicated to Citation: Natale, G.; Ryskalin, L.; identifying various neuronal cytotypes belonging to ENS in baseline conditions. -
Control of Equilibrium Phases (M,T,S) in the Modified Aluminum Alloy
Materials Transactions, Vol. 44, No. 1 (2003) pp. 181 to 187 #2003 The Japan Institute of Metals EXPRESS REGULAR ARTICLE Control of Equilibrium Phases (M,T,S) in the Modified Aluminum Alloy 7175 for Thick Forging Applications Seong Taek Lim1;*, Il Sang Eun2 and Soo Woo Nam1 1Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1Guseong-dong, Yuseong-gu, Daejeon, 305-701,Korea 2Agency for Defence Development, P.O. Box 35-5, Yuseong-gu, Daejeon, 305-600, Korea Microstructural evolutions, especially for the coarse equilibrium phases, M-, T- and S-phase, are investigated in the modified aluminum alloy 7175 during the primary processing of large ingot for thick forging applications. These phases are evolved depending on the constitutional effect, primarily the change of Zn:Mg ratio, and cooling rate following solutionizing. The formation of the S-phase (Al2CuMg) is effectively inhibited by higher Zn:Mg ratio rather than higher solutionizing temperature. The formation of M-phase (MgZn2) and T-phase (Al2Mg3Zn3)is closely related with both constitution of alloying elements and cooling rate. Slow cooling after homogenization promotes the coarse precipitation of the M- and T-phases, but becomes less effective as the Zn:Mg ratio increases. In any case, the alloy with higher Zn:Mg ratio is basically free of both T and S-phases. The stability of these phases is discussed in terms of ternary and quaternary phase diagrams. In addition, the modified alloy, Al–6Zn–2Mg–1.3%Cu, has greatly reduced quench sensitivity through homogeneous precipitation, which is uniquely applicable in 7175 thick forgings. -
Distance Learning Program Anatomy of the Human Brain/Sheep Brain Dissection
Distance Learning Program Anatomy of the Human Brain/Sheep Brain Dissection This guide is for middle and high school students participating in AIMS Anatomy of the Human Brain and Sheep Brain Dissections. Programs will be presented by an AIMS Anatomy Specialist. In this activity students will become more familiar with the anatomical structures of the human brain by observing, studying, and examining human specimens. The primary focus is on the anatomy, function, and pathology. Those students participating in Sheep Brain Dissections will have the opportunity to dissect and compare anatomical structures. At the end of this document, you will find anatomical diagrams, vocabulary review, and pre/post tests for your students. The following topics will be covered: 1. The neurons and supporting cells of the nervous system 2. Organization of the nervous system (the central and peripheral nervous systems) 4. Protective coverings of the brain 5. Brain Anatomy, including cerebral hemispheres, cerebellum and brain stem 6. Spinal Cord Anatomy 7. Cranial and spinal nerves Objectives: The student will be able to: 1. Define the selected terms associated with the human brain and spinal cord; 2. Identify the protective structures of the brain; 3. Identify the four lobes of the brain; 4. Explain the correlation between brain surface area, structure and brain function. 5. Discuss common neurological disorders and treatments. 6. Describe the effects of drug and alcohol on the brain. 7. Correctly label a diagram of the human brain National Science Education -
General Probability, II: Independence and Conditional Proba- Bility
Math 408, Actuarial Statistics I A.J. Hildebrand General Probability, II: Independence and conditional proba- bility Definitions and properties 1. Independence: A and B are called independent if they satisfy the product formula P (A ∩ B) = P (A)P (B). 2. Conditional probability: The conditional probability of A given B is denoted by P (A|B) and defined by the formula P (A ∩ B) P (A|B) = , P (B) provided P (B) > 0. (If P (B) = 0, the conditional probability is not defined.) 3. Independence of complements: If A and B are independent, then so are A and B0, A0 and B, and A0 and B0. 4. Connection between independence and conditional probability: If the con- ditional probability P (A|B) is equal to the ordinary (“unconditional”) probability P (A), then A and B are independent. Conversely, if A and B are independent, then P (A|B) = P (A) (assuming P (B) > 0). 5. Complement rule for conditional probabilities: P (A0|B) = 1 − P (A|B). That is, with respect to the first argument, A, the conditional probability P (A|B) satisfies the ordinary complement rule. 6. Multiplication rule: P (A ∩ B) = P (A|B)P (B) Some special cases • If P (A) = 0 or P (B) = 0 then A and B are independent. The same holds when P (A) = 1 or P (B) = 1. • If B = A or B = A0, A and B are not independent except in the above trivial case when P (A) or P (B) is 0 or 1. In other words, an event A which has probability strictly between 0 and 1 is not independent of itself or of its complement. -
How Can We Create Environments Where Hate Cannot Flourish?
How can we create environments where hate cannot flourish? Saturday, February 1 9:30 a.m. – 10:00 a.m. Check-In and Registration Location: Field Museum West Entrance 10:00 a.m. – 10:30 a.m. Introductions and Program Kick-Off JoAnna Wasserman, USHMM Education Initiatives Manager Location: Lecture Hall 1 10:30 a.m. – 11:30 a.m. Watch “The Path to Nazi Genocide” and Reflections JoAnna Wasserman, USHMM Education Initiatives Manager Location: Lecture Hall 1 11:30 a.m. – 11:45 a.m. Break and walk to State of Deception 11:45 a.m. – 12:30 p.m. Visit State of Deception Interpretation by Holocaust Survivor Volunteers from the Illinois Holocaust Museum Location: Upper level 12:30 p.m. – 1:00 p.m. Breakout Session: Reflections on Exhibit Tim Kaiser, USHMM Director, Education Initiatives David Klevan, USHMM Digital Learning Strategist JoAnna Wasserman, USHMM Education Initiatives Manager Location: Lecture Hall 1, Classrooms A and B Saturday, February 2 (continued) 1:00 p.m. – 1:45 p.m. Lunch 1:45 p.m. – 2:45 p.m. A Survivor’s Personal Story Bob Behr, USHMM Survivor Volunteer Interviewed by: Ann Weber, USHMM Program Coordinator Location: Lecture Hall 1 2:45 p.m. – 3:00 p.m. Break 3:00 p.m. – 3:45 p.m. Student Panel: Beyond Indifference Location: Lecture Hall 1 Moderator: Emma Pettit, Sustained Dialogue Campus Network Student/Alumni Panelists: Jazzy Johnson, Northwestern University Mary Giardina, The Ohio State University Nory Kaplan-Kelly, University of Chicago 3:45 p.m. – 4:30 p.m. Breakout Session: Sharing Personal Reflections Tim Kaiser, USHMM Director, Education Initiatives David Klevan, USHMM Digital Learning Strategist JoAnna Wasserman, USHMM Education Initiatives Manager Location: Lecture Hall 1, Classrooms A and B 4:30 p.m. -
214 CHAPTER 5 [T, D]-DELETION in ENGLISH in English, a Coronal Stop
CHAPTER 5 [t, d]-DELETION IN ENGLISH In English, a coronal stop that appears as last member of a word-final consonant cluster is subject to variable deletion – i.e. a word such as west can be pronounced as either [wEst] or [wEs]. Over the past thirty five years, this phenomenon has been studied in more detail than probably any other variable phonological phenomenon. Final [t, d]-deletion has been studied in dialects as diverse as the following: African American English (AAE) in New York City (Labov et al., 1968), in Detroit (Wolfram, 1969), and in Washington (Fasold, 1972), Standard American English in New York and Philadelphia (Guy, 1980), Chicano English in Los Angeles (Santa Ana, 1991), Tejano English in San Antonio (Bayley, 1995), Jamaican English in Kingston (Patrick, 1991) and Trinidadian English (Kang, 1 1994), etc.TP PT Two aspects that stand out from all these studies are (i) that this process is strongly grammatically conditioned, and (ii) that the grammatical factors that condition this process are the same from dialect to dialect. Because of these two facts [t, d]-deletion is particularly suited to a grammatical analysis. In this chapter I provide an analysis for this phenomenon within the rank-ordering model of EVAL. The factors that influence the likelihood of application of [t, d]-deletion can be classified into three broad categories: the following context (is the [t, d] followed by a consonant, vowel or pause), the preceding context (the phonological features of the consonant preceding the [t, d]), the grammatical status of the [t, d] (is it part of the root or 1 TP PT This phenomenon has also been studied in Dutch – see Schouten (1982, 1984) and Hinskens (1992, 1996). -
ISO Basic Latin Alphabet
ISO basic Latin alphabet The ISO basic Latin alphabet is a Latin-script alphabet and consists of two sets of 26 letters, codified in[1] various national and international standards and used widely in international communication. The two sets contain the following 26 letters each:[1][2] ISO basic Latin alphabet Uppercase Latin A B C D E F G H I J K L M N O P Q R S T U V W X Y Z alphabet Lowercase Latin a b c d e f g h i j k l m n o p q r s t u v w x y z alphabet Contents History Terminology Name for Unicode block that contains all letters Names for the two subsets Names for the letters Timeline for encoding standards Timeline for widely used computer codes supporting the alphabet Representation Usage Alphabets containing the same set of letters Column numbering See also References History By the 1960s it became apparent to thecomputer and telecommunications industries in the First World that a non-proprietary method of encoding characters was needed. The International Organization for Standardization (ISO) encapsulated the Latin script in their (ISO/IEC 646) 7-bit character-encoding standard. To achieve widespread acceptance, this encapsulation was based on popular usage. The standard was based on the already published American Standard Code for Information Interchange, better known as ASCII, which included in the character set the 26 × 2 letters of the English alphabet. Later standards issued by the ISO, for example ISO/IEC 8859 (8-bit character encoding) and ISO/IEC 10646 (Unicode Latin), have continued to define the 26 × 2 letters of the English alphabet as the basic Latin script with extensions to handle other letters in other languages.[1] Terminology Name for Unicode block that contains all letters The Unicode block that contains the alphabet is called "C0 Controls and Basic Latin". -
Nuclear Data Library for Incident Proton Energies to 150 Mev
LA-UR-00-1067 Approved for public release; distribution is unlimited. 7Li(p,n) Nuclear Data Library for Incident Proton Title: Energies to 150 MeV Author(s): S. G. Mashnik, M. B. Chadwick, P. G. Young, R. E. MacFarlane, and L. S. Waters Submitted to: http://lib-www.lanl.gov/la-pubs/00393814.pdf Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty- free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness. FORM 836 (10/96) Li(p,n) Nuclear Data Library for Incident Proton Energies to 150 MeV S. G. Mashnik, M. B. Chadwick, P. G. Young, R. E. MacFarlane, and L. S. Waters Los Alamos National Laboratory, Los Alamos, NM 87545 Abstract Researchers at Los Alamos National Laboratory are considering the possibility of using the Low Energy Demonstration Accelerator (LEDA), constructed at LANSCE for the Ac- celerator Production of Tritium program (APT), as a neutron source. Evaluated nuclear data are needed for the p+ ¡ Li reaction, to predict neutron production from thin and thick lithium targets. -
B1. the Generating Functional Z[J]
B1. The generating functional Z[J] The generating functional Z[J] is a key object in quantum field theory - as we shall see it reduces in ordinary quantum mechanics to a limiting form of the 1-particle propagator G(x; x0jJ) when the particle is under thje influence of an external field J(t). However, before beginning, it is useful to look at another closely related object, viz., the generating functional Z¯(J) in ordinary probability theory. Recall that for a simple random variable φ, we can assign a probability distribution P (φ), so that the expectation value of any variable A(φ) that depends on φ is given by Z hAi = dφP (φ)A(φ); (1) where we have assumed the normalization condition Z dφP (φ) = 1: (2) Now let us consider the generating functional Z¯(J) defined by Z Z¯(J) = dφP (φ)eφ: (3) From this definition, it immediately follows that the "n-th moment" of the probability dis- tribution P (φ) is Z @nZ¯(J) g = hφni = dφP (φ)φn = j ; (4) n @J n J=0 and that we can expand Z¯(J) as 1 X J n Z Z¯(J) = dφP (φ)φn n! n=0 1 = g J n; (5) n! n ¯ so that Z(J) acts as a "generator" for the infinite sequence of moments gn of the probability distribution P (φ). For future reference it is also useful to recall how one may also expand the logarithm of Z¯(J); we write, Z¯(J) = exp[W¯ (J)] Z W¯ (J) = ln Z¯(J) = ln dφP (φ)eφ: (6) 1 Now suppose we make a power series expansion of W¯ (J), i.e., 1 X 1 W¯ (J) = C J n; (7) n! n n=0 where the Cn, known as "cumulants", are just @nW¯ (J) C = j : (8) n @J n J=0 The relationship between the cumulants Cn and moments gn is easily found. -
Form 1095-B Health Coverage Department of the Treasury ▶ Do Not Attach to Your Tax Return
560118 VOID OMB No. 1545-2252 Form 1095-B Health Coverage Department of the Treasury ▶ Do not attach to your tax return. Keep for your records. CORRECTED 2020 Internal Revenue Service ▶ Go to www.irs.gov/Form1095B for instructions and the latest information. Part I Responsible Individual 1 Name of responsible individual–First name, middle name, last name 2 Social security number (SSN) or other TIN 3 Date of birth (if SSN or other TIN is not available) 4 Street address (including apartment no.) 5 City or town 6 State or province 7 Country and ZIP or foreign postal code 9 Reserved 8 Enter letter identifying Origin of the Health Coverage (see instructions for codes): . ▶ Part II Information About Certain Employer-Sponsored Coverage (see instructions) 10 Employer name 11 Employer identification number (EIN) 12 Street address (including room or suite no.) 13 City or town 14 State or province 15 Country and ZIP or foreign postal code Part III Issuer or Other Coverage Provider (see instructions) 16 Name 17 Employer identification number (EIN) 18 Contact telephone number 19 Street address (including room or suite no.) 20 City or town 21 State or province 22 Country and ZIP or foreign postal code Part IV Covered Individuals (Enter the information for each covered individual.) (a) Name of covered individual(s) (b) SSN or other TIN (c) DOB (if SSN or other (d) Covered (e) Months of coverage First name, middle initial, last name TIN is not available) all 12 months Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 23 24 25 26 27 28 For Privacy Act and Paperwork Reduction Act Notice, see separate instructions. -
State of New Physics in B->S Transitions
New physics in b ! s transitions after LHC run 1 Wolfgang Altmannshofera and David M. Straubb a Perimeter Institute for Theoretical Physics, 31 Caroline St. N, Waterloo, Ontario, Canada N2L 2Y5 b Excellence Cluster Universe, TUM, Boltzmannstr. 2, 85748 Garching, Germany E-mail: [email protected], [email protected] We present results of global fits of all relevant experimental data on rare b s decays. We observe significant tensions between the Standard Model predictions! and the data. After critically reviewing the possible sources of theoretical uncer- tainties, we find that within the Standard Model, the tensions could be explained if there are unaccounted hadronic effects much larger than our estimates. Assuming hadronic uncertainties are estimated in a sufficiently conservative way, we discuss the implications of the experimental results on new physics, both model indepen- dently as well as in the context of the minimal supersymmetric standard model and models with flavour-changing Z0 bosons. We discuss in detail the violation of lepton flavour universality as hinted by the current data and make predictions for additional lepton flavour universality tests that can be performed in the future. We find that the ratio of the forward-backward asymmetries in B K∗µ+µ− and B K∗e+e− at low dilepton invariant mass is a particularly sensitive! probe of lepton! flavour universality and allows to distinguish between different new physics scenarios that give the best description of the current data. Contents 1. Introduction2 2. Observables and uncertainties3 2.1. Effective Hamiltonian . .4 2.2. B Kµ+µ− .....................................4 2.3. B ! K∗µ+µ− and B K∗γ ............................6 ! + − ! 2.4.