Avian Reproductive System—Female

Total Page:16

File Type:pdf, Size:1020Kb

Avian Reproductive System—Female eXtension Avian Reproductive System—Female articles.extension.org/pages/65372/avian-reproductive-systemfemale Written by: Dr. Jacquie Jacob, University of Kentucky For anyone interested in raising chickens for eggs, whether for eating or incubation, an understanding of the female avian reproductive system is essential for recognizing problems that may occur and taking action to correct them. The avian reproductive system is designed to accommodate the risks associated with being a bird. Other than birds of prey (such as hawks, eagles, and falcons), most birds are prey. Being close to the bottom of the food chain, birds require unique strategies for reproducing that also allow them to retain the ability to fly. For most birds, these unique strategies include producing many offspring and tending to the needs of the offspring for only a short period of time. The amount of time that birds devote to caring for their offspring depends on whether they are precocial or altricial birds, with the latter requiring more post-hatch parental care. Another reproductive strategy of birds is to produce offspring that develop outside the mother's body in eggs. All the nutrients needed for an embryo to fully develop are provided in the egg before it is laid. It is for this reason that eggs are so nutritious for humans. Poultry lay eggs in clutches. A clutch is a group of eggs laid by a hen on consecutive days. After laying a clutch, a hen has a rest period of about a day or more and then lays another clutch. Clutch sizes are species- and breed-specific. For commercial egg layers, clutch size is typically large. Clutch size, as well as the number of clutches laid in a hen's laying cycle, varies by species, but the principle is the same across species. An overview of the female chicken reproductive system helps explain why hens lay eggs in clutches. The reproductive system of a chicken hen is made up of two parts: the ovary and the oviduct. Ova (yolks) develop in the ovary. When an ovum (singular of ova) has matured, it is released from the ovary into the oviduct. This release of the ovum is ovulation. In the oviduct, glands secrete substances that form other parts of the egg, such as the albumen (egg white) and the shell. The total time a hen's body takes to transform a yolk into a fully developed egg and lay that egg is about 25 to 26 hours. Typically, about 30 to 75 minutes after a hen lays an egg, the ovary releases the next ovum. However, the female chicken reproductive system is sensitive to light exposure, especially the number of hours of light in a day. In chicken hens, ovulation usually occurs under normal daylight conditions and almost never after 3:00 p.m. So, when a hen lays an egg too late in the day, the next ovulation occurs the following day, and the hen has a day when it does not lay an egg. Parts of the Female Chicken Reproductive System As stated, the female chicken reproductive system is made up of the ovary and the oviduct. (Figure 1 shows the female chicken reproductive system, and Figure 2 shows the location of the reproductive system in the body.) In almost all species of birds, including poultry, only the left ovary and oviduct are functional. Although the female embryo has two ovaries, only the left one develops. The right one typically regresses during development and is nonfunctional in the adult bird. (There have been cases in which the left ovary has been damaged and the right one has developed to replace it.) Fig. 1. Reproductive tract of a female chicken. Source: Jacquie Jacob, University of Kentucky Fig. 2. Location of the reproductive tract in a female chicken. Source: Public domain Ovary The ovary (shown in Figure 3) is a cluster of developing ova, and is located midway between the neck and the tail of the bird and attached at the back. The ovary is fully formed when a pullet chick hatches but is very small until the chick reaches sexual maturity. At hatch, a pullet chick has tens of thousands of ova, or potential eggs that theoretically could be laid, although most never develop to the point of ovulation. The maximum number of eggs a hen can lay is determined when it hatches because no new ova form after the chick hatches. Fig. 3. Ovary of a chicken in egg production. Source: Jacquie Jacob, University of Kentucky Each ovum starts as a single cell surrounded by a vitelline membrane. As the ovum develops, additional yolk forms. The color of the yolk comes from fat-soluble pigments, called xanthophylls, contained in the hen's diet. Hens fed diets with yellow maize (field corn) or allowed to range on grass typically produce eggs with dark yellow yolks. Hens fed diets with white maize, sorghum, millet, or wheat typically produce eggs with pale yolks. The color of yolks can be improved (made darker) by the addition of marigold petals to feed to provide the desired level of xanthophylls. The ovum is enclosed in a sac that ruptures along the stigma, or suture line, during ovulation. Oviduct When ovulation occurs, the ovum (yolk) enters the oviduct. The oviduct is a twisted tube that is 25 to 27 inches long when fully developed and is divided into five major sections. These sections are the infundibulum, magnum, isthmus, shell gland, and vagina. The first part of the oviduct, the infundibulum (or funnel) is 3 to 4 inches long and engulfs the ovum released from the ovary. The term funnel is an inaccurate name for this section because it suggests that the infundibulum is waiting for the yolk to fall into it, which is not the case. Instead, the released yolk stays in place, and the muscular infundibulum moves to surround it. The yolk remains in the infundibulum for 15 to 17 minutes. Fertilization, if it is going to occur, takes place in the infundibulum. The next section of the oviduct is the magnum. At 13 inches long, it is the largest section of the oviduct, as its name implies (magnum being the Latin word for "large"). The yolk remains here 3 hours, during which time the thick albumen (egg white) forms. The third section of the oviduct is the isthmus, which is 4 inches long. The isthmus, as its name implies, is slightly constricted (the term isthmus referring to a narrow strip of land joining two larger tracts of land). The isthmus is where the inner and outer shell membranes form. The developing egg remains here for 75 minutes. The next section of the oviduct is the shell gland (or uterus), which is 4 to 5 inches long. In this section, the shell forms on the egg. The shell largely is made of calcium carbonate. The hen's body mobilizes 8 to 10 percent of body calcium from its bones to make the egg's shell. Bone calcium provides 47 percent of the calcium required to make a shell, and the hen's diet provides the remainder. Pigment deposition, if there is any, occurs in the shell gland. The egg remains here for 20 or more hours. The last part of the oviduct is the vagina, which is about 4 to 5 inches long. The vagina does not really play a part in egg formation but is important in the laying of the egg. The vagina is made of muscle that helps push the egg out of the hen's body. The bloom, or cuticle, forms on the egg in the vagina prior to oviposition (the laying of the fully formed egg). The egg travels through the oviduct small end first but turns in the vagina and comes out large end first. Near the junction of the shell gland and the vagina are deep glands known as sperm host glands that can store sperm for long periods of time, typically 10 days to 2 weeks. (One of the unique things about birds is that the sperm remain viable at body temperature.) When a hen lays an egg, sperm can be squeezed out of these glands into the oviduct and then can migrate to the infundibulum to fertilize an ovum. Egg Irregularities Various events can occur during reproduction that cause irregularities in eggs. Some of these irregularities affect the quality of the egg or consumer acceptance of the egg. If the vitelline membrane surrounding the yolk becomes damaged, pale spots or blotches develop on the yolk. This irregularity is referred to as mottling. Although the appearance of the yolk has changed, there is no effect on the egg's nutritional value and typically the mottling is not noticed by consumers. A high incidence of yolk mottling, however, adversely affects consumer acceptance. The use of cottonseed meal (which contains gossypol) and sorghum (which contains tannin) in the diet can increase the incidence of mottling. A calcium-deficient diet also has this effect. Occasionally, a hen produces double-yolked eggs. This phenomenon can be related to hen age, but genetic factors also are involved. Young hens sometimes release two yolks from the ovary in quick succession. Double-yolked eggs are typically larger in size than single-yolked eggs. Double-yolked eggs are not suitable for hatching as they typically have inadequate nutrients and space available for two chicks to fully develop and hatch. It has happened, but it is rare. It is rare, but not impossible, for a young hen to produce an egg with no yolk at all. Yolk-less eggs (sometimes referred to as pullet eggs) are usually formed when a bit of tissue is sloughed off the ovary or oviduct.
Recommended publications
  • Oogenesis and Mode of Reproduction in the Soybean Cyst Nematode, Heterodera Glycines1)
    OOGENESIS AND MODE OF REPRODUCTION IN THE SOYBEAN CYST NEMATODE, HETERODERA GLYCINES1) BY A. C. TRIANTAPHYLLOU and HEDWIG HIRSCHMANN Departments of Genetics and Plant Pathology, North Carolina State College, Raleigh, North Carolina, U.S.A. Oögenesis and mode of reproduction were studied in four populations of the soybean cyst nematode, Heterodera glycines. Oögonial divisions occurred before and during the fourth molt. Maturation of oöcytes proceeded only in inseminated females and was normal, consisting of two meiotic divisions and the formation of two polar nuclei. Nine bivalents were present at metaphase I in all populations. Sperm entered the oöcytes at late prophase or early metaphase I. Following the second maturation division, sperm and egg pronuclei fused to form the zygote nucleus. Six females obtained from 200 larval inoculations of soybean seedlings failed to produce embryonated eggs and showed marked retardation in growth. In conclusion, H. glycines has a normal meiotic cycle and reproduces by cross fertilization. "Prior to 1940, there was a strong tendency to refer all of the cyst-forming nematodes to a single species, Heterodera schachtii Schmidt ..." (Taylor, 1957 ) . Infraspecific categories identified on the basis of host preferences were later distinguished by slight morphological differences and were described as separate species. Although as many as fifteen or sixteen species have been recognized, the taxonomic situation is far from satisfactory. The specific rank of some species is questionable, whereas other species contain forms which may well deserve specific rank. Cytological and, furthermore, cytogenetical studies may elucidate the evolutionary relationships among the various Heterodera species. Information on various aspects of oogenesis of six Heterodera species is already available (Mulvey, 1957, 1958, 1960; Riley & Chapman, 1957; Cotten, 1960).
    [Show full text]
  • Evaluating and Treating the Reproductive System
    18_Reproductive.qxd 8/23/2005 11:44 AM Page 519 CHAPTER 18 Evaluating and Treating the Reproductive System HEATHER L. BOWLES, DVM, D ipl ABVP-A vian , Certified in Veterinary Acupuncture (C hi Institute ) Reproductive Embryology, Anatomy and Physiology FORMATION OF THE AVIAN GONADS AND REPRODUCTIVE ANATOMY The avian gonads arise from more than one embryonic source. The medulla or core arises from the meso- nephric ducts. The outer cortex arises from a thickening of peritoneum along the root of the dorsal mesentery within the primitive gonadal ridge. Mesodermal germ cells that arise from yolk-sac endoderm migrate into this gonadal ridge, forming the ovary. The cells are initially distributed equally to both sides. In the hen, these germ cells are then preferentially distributed to the left side, and migrate from the right to the left side as well.58 Some avian species do in fact have 2 ovaries, including the brown kiwi and several raptor species. Sexual differ- entiation begins by day 5 in passerines and domestic fowl and by day 11 in raptor species. Differentiation of the ovary is characterized by development of the cortex, while the medulla develops into the testis.30,58 As the embryo develops, the germ cells undergo three phases of oogenesis. During the first phase, the oogonia actively divide for a defined time period and then stop at the first prophase of the first maturation division. During the second phase, the germ cells grow in size to become primary oocytes. This occurs approximately at the time of hatch in domestic fowl. During the third phase, oocytes complete the first maturation division to 18_Reproductive.qxd 8/23/2005 11:44 AM Page 520 520 Clinical Avian Medicine - Volume II become secondary oocytes.
    [Show full text]
  • Sperm Storage in the Oviduct of the American Alligator DANIEL H
    JOURNAL OF EXPERIMENTAL ZOOLOGY 309A:581–587 (2008) Sperm Storage in the Oviduct of the American Alligator DANIEL H. GIST1Ã, APRIL BAGWILL2, VALENTINE LANCE3, 2 4 DAVID M. SEVER , AND RUTH M. ELSEY 1Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio 2Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana 3San Diego State University, Graduate School of Public Health, San Diego, California 4Louisiana Department of Wildlife and Fisheries, Rockefeller Wildlife Refuge, Grand Chenier, Louisiana ABSTRACT Oviducts of the American alligator (Alligator mississippiensis) were examined histologically for the presence of stored sperm. Two regions containing sperm were identified, one at the junction of the posterior uterus and the vagina (UVJ) and the other at the junction of the tube and isthmus (TIJ). In these areas, sperm were found in the lumina of oviductal glands. The glands in these areas of the oviduct are diffuse and shallow and appear to allow better access to sperm than glands located elsewhere. Histochemically, the glands of the UVJ reacted weakly for carbohydrates and proteins, whereas those of the TIJ reacted strongly for these same two components, secretions of which are associated with sperm storage structures in other reptiles. Sperm were not in contact with the glandular epithelium, and glands at the UVJ contained more sperm than those at the TIJ. Oviductal sperm storage was observed not only in recently mated females but in all females possessing uterine eggs as well as all females known to be associated with a nest. We conclude that female alligators are capable of storing sperm in their oviductal glands, but not from one year to the next.
    [Show full text]
  • Evolution of Oviductal Gestation in Amphibians MARVALEE H
    THE JOURNAL OF EXPERIMENTAL ZOOLOGY 266394-413 (1993) Evolution of Oviductal Gestation in Amphibians MARVALEE H. WAKE Department of Integrative Biology and Museum of Vertebrate Zoology, University of California,Berkeley, California 94720 ABSTRACT Oviductal retention of developing embryos, with provision for maternal nutrition after yolk is exhausted (viviparity) and maintenance through metamorphosis, has evolved indepen- dently in each of the three living orders of amphibians, the Anura (frogs and toads), the Urodela (salamanders and newts), and the Gymnophiona (caecilians). In anurans and urodeles obligate vivi- parity is very rare (less than 1%of species); a few additional species retain the developing young, but nutrition is yolk-dependent (ovoviviparity) and, at least in salamanders, the young may be born be- fore metamorphosis is complete. However, in caecilians probably the majority of the approximately 170 species are viviparous, and none are ovoviviparous. All of the amphibians that retain their young oviductally practice internal fertilization; the mechanism is cloaca1 apposition in frogs, spermato- phore reception in salamanders, and intromission in caecilians. Internal fertilization is a necessary but not sufficient exaptation (sensu Gould and Vrba: Paleobiology 8:4-15, ’82) for viviparity. The sala- manders and all but one of the frogs that are oviductal developers live at high altitudes and are subject to rigorous climatic variables; hence, it has been suggested that cold might be a “selection pressure” for the evolution of egg retention. However, one frog and all the live-bearing caecilians are tropical low to middle elevation inhabitants, so factors other than cold are implicated in the evolu- tion of live-bearing.
    [Show full text]
  • Study on the Ovary, Oviduct And
    T it le of the paper : STUDY ON THE OVARY, OVIDUCT AND UTERUS OF THE EWE. By: ROBERT HADEK, Dr.Med.Vet.-, Vienna. From: The Department of Veterinary Histology and Embryology of The University of Glasgow Veterinary School. Submitted as Thesis for the Degree of Bi.D. in the Faculty of Medicine. ProQuest Number: 13838881 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13838881 Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 I A4 Contents V ol. I . Introduction Page 1 L iterature 1 M aterial & Methods Anatomical observations and measurements 5 H isto lo g ic a l and histochem ical technique 6 The breeding season and the sexual cy cle in the ewe 10 The ovary Gross Anatomy 11 H istology 12 Oogenesis and follicular development 14 The growth of the follicle and ovum 19 Multinuclear ova, polyovular follicles and accessory oocytes 20 Follicular degeneration and atresia 22 The rupture of the follicle 23 The corpus luteum 24 Histochemical reactions in the ovary 30 Histochemical reactions in the follicle
    [Show full text]
  • Oogenesis [PDF]
    Oogenesis Dr Navneet Kumar Professor (Anatomy) K.G.M.U Dr NavneetKumar Professor Anatomy KGMU Lko Oogenesis • Development of ovum (oogenesis) • Maturation of follicle • Fate of ovum and follicle Dr NavneetKumar Professor Anatomy KGMU Lko Dr NavneetKumar Professor Anatomy KGMU Lko Oogenesis • Site – ovary • Duration – 7th week of embryo –primordial germ cells • -3rd month of fetus –oogonium • - two million primary oocyte • -7th month of fetus primary oocyte +primary follicle • - at birth primary oocyte with prophase of • 1st meiotic division • - 40 thousand primary oocyte in adult ovary • - 500 primary oocyte attain maturity • - oogenesis completed after fertilization Dr Navneet Kumar Dr NavneetKumar Professor Professor (Anatomy) Anatomy KGMU Lko K.G.M.U Development of ovum Oogonium(44XX) -In fetal ovary Primary oocyte (44XX) arrest till puberty in prophase of 1st phase meiotic division Secondary oocyte(22X)+Polar body(22X) 1st phase meiotic division completed at ovulation &enter in 2nd phase Ovum(22X)+polarbody(22X) After fertilization Dr NavneetKumar Professor Anatomy KGMU Lko Dr NavneetKumar Professor Anatomy KGMU Lko Dr Navneet Kumar Dr ProfessorNavneetKumar (Anatomy) Professor K.G.M.UAnatomy KGMU Lko Dr NavneetKumar Professor Anatomy KGMU Lko Maturation of follicle Dr NavneetKumar Professor Anatomy KGMU Lko Maturation of follicle Primordial follicle -Follicular cells Primary follicle -Zona pallucida -Granulosa cells Secondary follicle Antrum developed Ovarian /Graafian follicle - Theca interna &externa -Membrana granulosa -Antrial
    [Show full text]
  • Infertility Investigations for Women
    Infertility investigations for women Brooke Building Gynaecology Department 0161 206 5224 © G21031001W. Design Services, Salford Royal NHS Foundation Trust, All Rights Reserved 2021. Document for issue as handout. Unique Identifier: SURG08(21). Review date: May 2023. This booklet is aimed for women undergoing fertility LH (Luteinising Hormone) Progesterone investigations. Its’ aim is to Oligomenorrhoea - When the provide you with some useful periods are occurring three In women, luteinising hormone Progesterone is a female information regarding your or four times a year (LH) is linked to ovarian hormone produced by the hormone production and egg ovaries after ovulation. It investigations. Irregular cycle - Periods that maturation. LH is used to causes the endometrial lining vary in length We hope you !nd this booklet measure a woman’s ovarian of the uterus to get thicker, helpful. The following blood tests are reserve (egg supply). making it receptive for a used to investigate whether You will be advised to have some It causes the follicles to grow, fertilised egg. ovulation (production of an egg) or all of the following tests: mature and release the eggs Progesterone levels increase is occurring each month and also for fertilisation. It reaches its after ovulation, reaching a to help determine which fertility Hormone blood tests highest level (the LH surge) in maximum level seven days treatments to offer. Follicular bloods tests the middle of the menstrual before the start of the next cycle 48 hours prior to ovulation period. The progesterone test is These routine blood tests are FSH (Follicle Stimulating i.e. days 12-14 of a 28 day cycle.
    [Show full text]
  • Understanding Your Menstrual Cycle If You're Trying to Conceive
    IS MY PERIOD NORMAL? Understanding Your Menstrual Cycle If You’re Trying to Conceive More than 70% 11% 95% of women have or more of of U.S. women start irregular menstrual American women their periods by cycles as menopause suffer from age 16. approaches. endometriosis.1 10% 12% of U.S. women are of women have affected by PCOS trouble getting or (polycystic ovary staying pregnant.3 syndrome).2 Fortunately, your menstrual cycle can tell you a lot about your fertility if you know what to look for. TYPES OF MENSTRUAL CYCLES Only 15% of About Normal = women have 30% of women are fertile only during 21 to 35 days the “perfect” the “normal” fertility 28-day cycle. window—between days 10 and 17 of the menstrual cycle. Day 1 Period starts (aka menses) 27 28 1 2 26 3 25 4 24 5 Day 15-28 23 6 Day 2-14 Luteal phase; Follicular phase; progesterone** 22 WHAT’S NORMAL? 7 FSH released, (follicle- uterine lining 21 8 stimulating matures Give or take a few days, hormone) and a normal cycle looks like this: estrogen released, 20 9 ovulation* begins 19 10 18 11 17 12 16 15 14 13 *ovulation: the process of an ovum (egg) being released from the ovary; occurs 10-14 days before menses. **progesterone: a steroid hormone that tells the uterus to prepare for pregnancy At least 30% of women have an “irregular” cycle either short, long or inconsistent. Short = Long = < 21 days > 35 days May be a sign of: May be a sign of: Hormonal imbalance Hormonal imbalance Ovaries with fewer eggs Lack of ovulation Approach of menopause Other fertility issues Reduced fertility4 Increased risk of miscarriage SIGNS TO WATCH FOR Your menstrual cycle provides valuable clues about your body’s reproductive health.
    [Show full text]
  • A Fixed Formula to Define the Fertile Window of the Menstrual Cycle As the Basis of a Simple Method of Natural Family Planning
    ORIGINAL RESEARCH ARTICLE A Fixed Formula to Define the Fertile Window of the Menstrual Cycle as the Basis of a Simple Method of Natural Family Planning Marcos Are´valo,* Irit Sinai,* and Victoria Jennings* A significant number of women worldwide use periodic basis of the proposed Standard Days method, a simple abstinence as their method of family planning. Many of method of natural family planning (NFP). Survey data them use some type of calendar-based approach to deter- from a number of countries around the world show mine when they should abstain from unprotected inter- that a substantial number of women worldwide use course to avoid pregnancy; yet they often lack correct periodic abstinence as their method of family plan- knowledge of when during their menstrual cycle they are ning.1 Many of these women use calendar-based ap- most likely to become pregnant. A simple method of proaches to determine when they should abstain from natural family planning (NFP) based on a fixed formula to unprotected intercourse to avoid pregnancy. How- define the fertile window could be useful to these women. ever, research also indicates that a significant per- This article reports the results of an analysis of the appli- centage of women who claim to use periodic absti- cation of a fixed formula to define the fertile window. A nence lack correct knowledge of when during their large existing data set from a World Health Organization menstrual cycle they are most likely to become study of the Ovulation Method was used to estimate the pregnant.a Most of these women simply abstain from theoretical probability of pregnancy using this formula.
    [Show full text]
  • ASC-201: Avian Female Reproductive System
    COOPERATIVE EXTENSION SERVICE UNIVERSITY OF KENTUCKY COLLEGE OF AGRICULTURE, FOOD AND ENVIRONMENT, LEXINGTON, KY, 40546 ASC-201 Avian Female Reproductive System Jacquie Jacob and Tony Pescatore, Animal Sciences nyone raising poultry for While mammals typically give Although the embryo has two ova- eggs, whether for eating or birth to their offpsring, the off- ries and oviducts, only the left pair forA incubation, should have an spring of birds develop outside (i.e., ovary and oviduct) develops. understanding of the reproduc- the body of the parents—in eggs. The right typically regresses during tive system. This will help them When carried in the womb, mam- development and is non-functional understand any problems that may malian embryos receive their daily in the adult bird. There have been occur and how to correct them. requirement for nutrients directly cases, however, where the left ova- The avian reproductive system is from their mother via the placenta. ry and oviduct have been damaged different from that of mammals. For birds, however, all the nutri- and the right one has developed to Nature has designed it to better ents that will be needed for the replace it. suit the risks associated with being embryo to fully develop must be Theovary is a cluster of devel- a bird. Unless you are a bird of prey provided in the egg before it is laid. oping yolks or ova and is located (a hawk, eagle or falcon), you are The female reproductive system midway between the neck and the faced with the fact that everyone is of the chicken is shown in Figure tail of the bird, attached to the trying to eat you.
    [Show full text]
  • Changes Before the Change1.06 MB
    Changes before the Change Perimenopausal bleeding Although some women may abruptly stop having periods leading up to the menopause, many will notice changes in patterns and irregular bleeding. Whilst this can be a natural phase in your life, it may be important to see your healthcare professional to rule out other health conditions if other worrying symptoms occur. For further information visit www.imsociety.org International Menopause Society, PO Box 751, Cornwall TR2 4WD Tel: +44 01726 884 221 Email: [email protected] Changes before the Change Perimenopausal bleeding What is menopause? Strictly defined, menopause is the last menstrual period. It defines the end of a woman’s reproductive years as her ovaries run out of eggs. Now the cells in the ovary are producing less and less hormones and menstruation eventually stops. What is perimenopause? On average, the perimenopause can last one to four years. It is the period of time preceding and just after the menopause itself. In industrialized countries, the median age of onset of the perimenopause is 47.5 years. However, this is highly variable. It is important to note that menopause itself occurs on average at age 51 and can occur between ages 45 to 55. Actually the time to one’s last menstrual period is defined as the perimenopausal transition. Often the transition can even last longer, five to seven years. What hormonal changes occur during the perimenopause? When a woman cycles, she produces two major hormones, Estrogen and Progesterone. Both of these hormones come from the cells surrounding the eggs. Estrogen is needed for the uterine lining to grow and Progesterone is produced when the egg is released at ovulation.
    [Show full text]
  • Implantation of the Human Embryo
    14 Implantation of the Human Embryo Russell A. Foulk University of Nevada, School of Medicine USA 1. Introduction Implantation is the final frontier to embryogenesis and successful pregnancy. Over the past three decades, there have been tremendous advances in the understanding of human embryo development. Since the advent of In Vitro Fertilization, the embryo has been readily available to study outside the body. Indeed, the study has led to much advancement in embryonic stem cell derivation. Unfortunately, it is not so easy to evaluate the steps of implantation since the uterus cannot be accessed by most research tools. This has limited our understanding of early implantation. Both the physiological and pathological mechanisms of implantation occur largely unseen. The heterogeneity of these processes between species also limits our ability to develop appropriate animal models to study. In humans, there is a precise coordinated timeline in which pregnancy can occur in the uterus, the so called “window of implantation”. However, in many cases implantation does not occur despite optimal timing and embryo quality. It is very frustrating to both a patient and her clinician to transfer a beautiful embryo into a prepared uterus only to have it fail to implant. This chapter will review the mechanisms of human embryo implantation and discuss some reasons why it fails to occur. 2. Phases of human embryo implantation The human embryo enters the uterine cavity approximately 4 to 5 days post fertilization. After passing down the fallopian tube or an embryo transfer catheter, the embryo is moved within the uterine lumen by rhythmic myometrial contractions until it can physically attach itself to the endometrial epithelium.
    [Show full text]