New Mexico Mineral Symposium 2000
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Washington State Minerals Checklist
Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
Iidentilica2tion and Occurrence of Uranium and Vanadium Identification and Occurrence of Uranium and Vanadium Minerals from the Colorado Plateaus
IIdentilica2tion and occurrence of uranium and Vanadium Identification and Occurrence of Uranium and Vanadium Minerals From the Colorado Plateaus c By A. D. WEEKS and M. E. THOMPSON A CONTRIBUTION TO THE GEOLOGY OF URANIUM GEOLOGICAL S U R V E Y BULL E TIN 1009-B For jeld geologists and others having few laboratory facilities.- This report concerns work done on behalf of the U. S. Atomic Energy Commission and is published with the permission of the Commission. UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1954 UNITED STATES DEPARTMENT OF THE- INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan. Director Reprint, 1957 For sale by the Superintendent of Documents, U. S. Government Printing Ofice Washington 25, D. C. - Price 25 cents (paper cover) CONTENTS Page 13 13 13 14 14 14 15 15 15 15 16 16 17 17 17 18 18 19 20 21 21 22 23 24 25 25 26 27 28 29 29 30 30 31 32 33 33 34 35 36 37 38 39 , 40 41 42 42 1v CONTENTS Page 46 47 48 49 50 50 51 52 53 54 54 55 56 56 57 58 58 59 62 TABLES TABLE1. Optical properties of uranium minerals ______________________ 44 2. List of mine and mining district names showing county and State________________________________________---------- 60 IDENTIFICATION AND OCCURRENCE OF URANIUM AND VANADIUM MINERALS FROM THE COLORADO PLATEAUS By A. D. WEEKSand M. E. THOMPSON ABSTRACT This report, designed to make available to field geologists and others informa- tion obtained in recent investigations by the Geological Survey on identification and occurrence of uranium minerals of the Colorado Plateaus, contains descrip- tions of the physical properties, X-ray data, and in some instances results of chem- ical and spectrographic analysis of 48 uranium arid vanadium minerals. -
The Minerals and Rocks of the Earth 5A: the Minerals- Special Mineralogy
Lesson 5 cont’d: The Minerals and Rocks of the Earth 5a: The minerals- special mineralogy A. M. C. Şengör In the previous lectures concerning the materials of the earth, we studied the most important silicates. We did so, because they make up more than 80% of our planet. We said, if we know them, we know much about our planet. However, on the surface or near-surface areas of the earth 75% is covered by sedimentary rocks, almost 1/3 of which are not silicates. These are the carbonate rocks such as limestones, dolomites (Americans call them dolostones, which is inappropriate, because dolomite is the name of a person {Dolomieu}, after which the mineral dolomite, the rock dolomite and the Dolomite Mountains in Italy have been named; it is like calling the Dolomite Mountains Dolo Mountains!). Another important category of rocks, including parts of the carbonates, are the evaporites including halides and sulfates. So we need to look at the minerals forming these rocks too. Some of the iron oxides are important, because they are magnetic and impart magnetic properties on rocks. Some hydroxides are important weathering products. This final part of Lesson 5 will be devoted to a description of the most important of the carbonate, sulfate, halide and the iron oxide minerals, although they play a very little rôle in the total earth volume. Despite that, they play a critical rôle on the surface of the earth and some of them are also major climate controllers. The carbonate minerals are those containing the carbonate ion -2 CO3 The are divided into the following classes: 1. -
Bromargyrite Agbr C 2001-2005 Mineral Data Publishing, Version 1
Bromargyrite AgBr c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Cubic. Point Group: 4/m 32/m. Crystals cubic, with {111} and {011}, to 1 cm; in parallel or subparallel groups; commonly as crusts and coatings, massive. Twinning: {111}, rare. Physical Properties: Fracture: Uneven to subconchoidal. Tenacity: Sectile, ductile, very plastic. Hardness = 2.5 D(meas.) = 6.474 D(calc.) = 6.477 May give off a strong “medicinal” odor when exposed to air. Optical Properties: Transparent to translucent. Color: Pale yellow, greenish brown, bright green. Streak: White to yellowish white. Luster: Resinous to adamantine, waxy. Optical Class: Isotropic. n = 2.253 Cell Data: Space Group: Fm3m. a = 5.7745 (synthetic). Z = 4 X-ray Powder Pattern: Synthetic. 2.886 (100), 2.041 (55), 1.667 (16), 1.291 (14), 1.1787 (10), 3.33 (8), 1.444 (8) Chemistry: (1) (2) Ag 57.56 65.16 Cl 10.71 Br 42.44 24.13 Total 100.00 100.00 (1) Rancho de San Onofre, Charcas, Mexico. (2) Ag(Br, Cl) with Br:Cl = 1:1. Polymorphism & Series: Dimorphous with chlorargyrite. Occurrence: A rare secondary mineral in the oxidation zones of silver deposits, notably in arid regions. Association: Silver, iodargyrite, smithsonite, Fe–Mn oxides. Distribution: While a rare mineral, nevertheless known from a number of localities. From Huelgoet, Finist`ere,France. At the Sch¨oneAussicht mine, near Dernbach, and at Bad Ems, Rhineland-Palatinate, Germany. In the USA, at Bisbee, Tombstone, and the Commonwealth mine, Pearce, Cochise Co., Arizona; from the Silver City district, Grant Co., and elsewhere in New Mexico; at Silver Cliff, Custer Co., and on Horse Mountain, 13 km south of Eagle, Eagle Co., Colorado. -
Chlorargyrite Agcl C 2001-2005 Mineral Data Publishing, Version 1
Chlorargyrite AgCl c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Cubic. Point Group: 4/m 32/m. Crystals cubic, modified by {111} and {011}, to 1 cm; in parallel or subparallel groups; rarely as stalactites or columnar to coralloidal aggregates; fibrous; commonly massive, forming crusts and films. Twinning: On {111}. Physical Properties: Fracture: Uneven to subconchoidal. Tenacity: Sectile and ductile; very plastic. Hardness = 2.5 D(meas.) = 5.556 D(calc.) = 5.57 Optical Properties: Transparent to translucent. Color: Colorless, pale yellow, gray; turns violet-brown to purple on exposure to light; colorless to yellow or green in transmitted light. Streak: White. Luster: Resinous to adamantine, waxy. Optical Class: Isotropic. n = 2.071 Cell Data: Space Group: Fm3m. a = 5.554 Z = 4 X-ray Powder Pattern: Cornwall, England. 2.77 (100), 1.961 (60), 1.240 (40), 3.22 (30), 1.134 (30), 0.926 (30), 1.672 (20) Chemistry: (1) (2) (3) Ag 75.27 67.28 65.16 Cl 24.73 14.36 10.71 Br 15.85 24.13 I 2.35 Total 100.00 99.84 100.00 (1) Cha˜narcillo, Chile. (2) Broken Hill, Australia. (3) Ag(Br, Cl) with Br:Cl = 1:1. Polymorphism & Series: Dimorphous with bromargyrite. Occurrence: May be a rich ore in the oxidized zone above silver deposits; commonly preserved in arid climates. Association: Silver, cerussite, iodargyrite, atacamite, malachite, jarosite, Fe–Mn oxides. Distribution: Only a few localities are given for fine crystals or exceptionally large or pure masses. In Germany, in Saxony, from Marienberg, Freiberg, Johanngeorgenstadt, Schneeberg, and others; at St. -
Mineralogical Magazine Volume 43 Number 328 December 1979
MINERALOGICAL MAGAZINE VOLUME 43 NUMBER 328 DECEMBER 1979 Girdite, oboyerite, fairbankite, and winstanleyite, four new tellurium minerals from Tombstone, Arizona S. A. WILLIAMS Phelps Dodge Corporation, Douglas, Arizona SUMMARY. Girdite, HzPb3(Te03)Te06 is white, H.= 2, species have been identified: hessite, empressite, D = 5.5. Crystals are complexly twinned and appear krennerite, rickardite, and tellurium. Altaite has monoclinic domatic. The X-ray cell is a = 6.24IA, b = not been found although relict galena is not 5.686, c = 8.719, /3 = 91°41'; Z = I. uncommon. Oboyerite is H6Pb6(Te03h(Te06Jz' 2HzO. H = 1.5, Girdite. About a dozen samples displaying this D = 6.4. Crystals appear to be triclinic but are too small for X-ray work. mineral were found. Girdite usually occurs as Fairbankite PbTe03 is triclinic a 7.8IA, b 7-JI, spherules up to 3 mm in diameter. These are dense, ()( = = c 6.96, 117°12', /3 4. chalky, and brittle with little hint of a crystalline = ()(= = 93°47", Y = 93°24', Z = Indices are = 2.29, /3 = 2.31, Y = 2.33. druse on the surface. The spherules resemble those Winstanleyite, TiTe30s, is cubic fa3, a = 10.963A. of oboyerite closely, they also resemble warty crusts Crystals are cubes, sometimes modified by the octa- of kaolin and hydronium alunite to be found at the hedron; colour Chinese yellow, H = 4, no = 2.34. locality. The first specimen found, however, was All of the above species were found in small amounts on exceptional. This has spherules and bow-tie aggre- the waste dumps of the Grand Central mine, Tombstone, gates of slender tapered prisms; these spherules are Arizona, associated with a wealth of other tellurites and tellurates. -
Identification and Occurrence of Uranium and Vanadium Minerals from the Colorado Plateaus
SpColl £2' 1 Energy I TEl 334 Identification and Occurrence of Uranium and Vanadium Minerals from the Colorado Plateaus ~ By A. D. Weeks and M. E. Thompson ~ I"\ ~ ~ Trace Elements Investigations Report 334 UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY IN REPLY REFER TO: UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY WASHINGTON 25, D. C. AUG 12 1953 Dr. PhilUp L. Merritt, Assistant Director Division of Ra1'r Materials U. S. AtoTILic Energy Commission. P. 0. Box 30, Ansonia Station New· York 23, Nei< York Dear Phil~ Transmitted herewith are six copies oi' TEI-334, "Identification and occurrence oi' uranium and vanadium minerals i'rom the Colorado Plateaus," by A , D. Weeks and M. E. Thompson, April 1953 • We are asking !41'. Hosted to approve our plan to publish this re:por t as a C.i.rcular .. Sincerely yours, Ak~f777.~ W. H. ~radley Chief' Geologist UNCLASSIFIED Geology and Mineralogy This document consists or 69 pages. Series A. UNITED STATES DEPARTMENT OF TEE INTERIOR GEOLOGICAL SURVEY IDENTIFICATION AND OCCURRENCE OF URANIUM AND VANADIUM MINERALS FROM TEE COLORADO PLATEAUS* By A• D. Weeks and M. E. Thompson April 1953 Trace Elements Investigations Report 334 This preliminary report is distributed without editorial and technical review for conformity with ofricial standards and nomenclature. It is not for public inspection or guotation. *This report concerns work done on behalf of the Division of Raw Materials of the u. s. Atomic Energy Commission 2 USGS GEOLOGY AllU MINEFALOGY Distribution (Series A) No. of copies American Cyanamid Company, Winchester 1 Argulllle National La:boratory ., ., ....... -
New Mineral Names*,†
American Mineralogist, Volume 106, pages 1537–1543, 2021 New Mineral Names*,† Dmitriy I. Belakovskiy1 and Yulia Uvarova2 1Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskiy Prospekt 18 korp. 2, Moscow 119071, Russia 2CSIRO Mineral Resources, ARRC, 26 Dick Perry Avenue, Kensington, Western Australia 6151, Australia In this issue This New Mineral Names has entries for 11 new species, including bohuslavite, fanfaniite, ferrierite-NH4, feynmanite, hjalmarite, kenngottite, potassic-richterite, rockbridgeite-group minerals (ferrirockbridgeite and ferro- rockbridgeite), rudabányaite, and strontioperloffite. Bohuslavite* show a very strong and broad absorption in the O–H stretching region –1 D. Mauro, C. Biagoni, E. Bonaccorsi, U. Hålenius, M. Pasero, H. Skogby, (3600–3000 cm ) and a prominent band at 1630 (H–O–H bending) with F. Zaccarini, J. Sejkora, J. Plášil, A.R. Kampf, J. Filip, P. Novotný, a shoulder indicating two slightly different H2O environments in the –1 3+ structure. The weaker band at ~5100 cm is assigned to H2O combination R. Škoda, and T. Witzke (2019) Bohuslavite, Fe4 (PO4)3(SO4)(OH) mode (bending + stretching). The IR spectrum of bohuslavite from HM (H2O)10·nH2O, a new hydrated iron phosphate-sulfate. European Journal of Mineralogy, 31(5-6), 1033–1046. shows bands at: 3350, 3103, 1626, 1100, 977, 828, 750, 570, and 472 cm–1. Polarized optical absorption spectra show absorption bands due to 3+ 3+ electronic transitions in octahedrally coordinated Fe at 23 475, 22 000, Bohuslavite (2018-074a), ideally Fe4 (PO4)3(SO4)(OH)(H2O)10·nH2O, –1 triclinic, was discovered in two occurrences, in the Buca della Vena baryte and 18 250 cm . -
Geology, Mines, & Minerals, Tombstone, Arizona
Geology, Mines, & Minerals, Tombstone, Arizona by Jan C. Rasmussen Jan Rasmussen Geology, Mines, Minerals of Tombstone April 14, 2012 Acknowledgements • SRK Consulting, Tucson • Burton Devere – Bonanzas to Borrascas • Peter Megaw – photomicrograph specimens • Sugar White – photography of Megaw specimens • TGMS 2012 show displays • Mindat.org • Jim Briscoe Jan Rasmussen Geology, Mines, Minerals of Tombstone April 14, 2012 Location: Cochise Co., SE Arizona Source: SRK Consulting Jan Rasmussen Geology, Mines, Minerals of Tombstone April 14, 2012 Geologic map, Cochise County Source: AZGS map 35 Jan Rasmussen Geology, Mines, Minerals of Tombstone April 14, 2012 Geologic map, Tombstone Hills Source: Drewes, USGS geologic map Jan Rasmussen Geology, Mines, Minerals of Tombstone April 14, 2012 Gilluly geologic map Jan Rasmussen Geology, Mines, Minerals of Tombstone April 14, 2012 Tombstone Hills, looking north Jan Rasmussen Geology, Mines, Minerals of Tombstone April 14, 2012 Paleozoic Jan and Colina Limestone (Permian) Jan Rasmussen Geology, Mines, Minerals of Tombstone April 14, 2012 Bisbee Group – Lower Cretaceous Jan Rasmussen Geology, Mines, Minerals of Tombstone April 14, 2012 Laramide orogeny Orogenic Age Phase (Ma) Sedimentation Magmatism Structures Resources widespread, 2-mica, garnet- muscovite granitoid stocks, SW-directed, low-angle thrusts mesothermal, Pb-Zn-Ag veins, minor batholithic sills, aplo-pegmatite widespread, shallowly dipping mylonitic Cu-Au veins, Au in quartz veins, Late 55-43 none dikes, peraluminous, calc-alkalic zones, -
Standard X-Ray Diffraction Powder Patterns NATIONAL BUREAU of STANDARDS
NBS MONOGRAPH 25—SECTION 1 9 CO Q U.S. DEPARTMENT OF COMMERCE/National Bureau of Standards Standard X-ray Diffraction Powder Patterns NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act of Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is per- formed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology. THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essentia! services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration -
Densitie @F Minerals , and ~Ela I Ed
Selecte,d , ~-ray . ( I Crystallo ~raphic Data Molar· v~ lumes,.and ~ Densitie @f Minerals , and ~ela i ed. Substances , GEO ,LOGICAL ~"l!JRVEY BULLETIN 1248 I ' " \ f • . J ( \ ' ' Se Iecte d .L\.-ray~~~T Crystallo:~~raphic Data Molar v·olumes, and Densities of Minerals and Related Substances By RICHARD A. ROBIE, PHILIP M. BETHKE, and KEITH M. BEARDSLEY GEOLOGICAL SURVEY BULLETIN 1248 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1967 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of Congress catalog-card No. 67-276 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 3 5 cents (paper cover) OC)NTENTS Page Acknowledgments ________ ·-·· ·- _____________ -· ___ __ __ __ __ __ _ _ __ __ __ _ _ _ IV Abstract___________________________________________________________ 1 Introduction______________________________________________________ 1 Arrangement of data _______ .. ________________________________________ 2 X-ray crystallographic data of minerals________________________________ 4 Molar volumes and densities. of minerals_______________________________ 42 References_________________________________________________________ 73 III ACKNOWLEDGMENTS We wish to acknowledge the help given in the preparation of these tables by our colleagues at the U.S. Geological Survey, particularly Mrs. Martha S. Toulmin who aided greatly in compiling and checking the unit-cell parameters of the sulfides and related minerals and Jerry L. Edwards who checked most of the other data and prepared the bibliography. Wayne Buehrer wrote the computer program for the calculation of the cell volumes, molar volumes, and densities. We especially wish to thank Ernest L. Dixon who wrote the control programs for the photo composing machine. IV SELECTED X-RAY CRYSTALLOGRAPHIC DATA, MOLAR VOLUMES, AND DENSITIES OF !'.IINERALS AND RELATED SUBSTANCES By RICHARD A.