Restoration of Biological Soil Crust on Disturbed Gypsiferous Soils in Lake Mead National Recreation Area, Eastern Mojave Desert

Total Page:16

File Type:pdf, Size:1020Kb

Restoration of Biological Soil Crust on Disturbed Gypsiferous Soils in Lake Mead National Recreation Area, Eastern Mojave Desert UNLV Theses, Dissertations, Professional Papers, and Capstones 12-1-2012 Restoration of Biological Soil Crust on Disturbed Gypsiferous Soils in Lake Mead National Recreation Area, Eastern Mojave Desert Lindsay P. Chiquoine University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Biology Commons, Desert Ecology Commons, Environmental Health and Protection Commons, Natural Resources and Conservation Commons, and the Soil Science Commons Repository Citation Chiquoine, Lindsay P., "Restoration of Biological Soil Crust on Disturbed Gypsiferous Soils in Lake Mead National Recreation Area, Eastern Mojave Desert" (2012). UNLV Theses, Dissertations, Professional Papers, and Capstones. 1715. http://dx.doi.org/10.34917/4332696 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. RESTORATION OF BIOLOGICAL SOIL CRUSTS ON DISTURBED GYPSIFEROUS SOILS IN LAKE MEAD NATIONAL RECREATION AREA, EASTERN MOJAVE DESERT By Lindsay P. Chiquoine Bachelor of Arts in Environmental Humanities Northern Arizona University 2004 A thesis submitted in partial fulfillment of the requirement for the Master of Science in Environmental Science School of Environmental and Public Affairs Greenspun College of Urban Affairs The Graduate College University of Nevada, Las Vegas December 2012 Copyright by Lindsay P. Chiquoine, 2012 All Rights Reserved THE GRADUATE COLLEGE We recommend the thesis prepared under our supervision by Lindsay Chiquoine entitled Restoration of Biological Soil Crusts on Disturbed Gypsiferous Soils in Lake Mead National Recreation Area, Eastern Mojave Desert be accepted in partial fulfillment of the requirements for the degree of Master of Science in Environmental Science School of Environmental and Public Affairs Scott Abella, Ph.D., Committee Chair Lloyd Stark, Ph.D., Committee Member Matthew Bowker, Ph.D., Committee Member Stan Smith, Ph.D., Graduate College Representative Tom Piechota, Ph.D., Interim Vice President for Research & Dean of the Graduate College December 2012 ii ABSTRACT Restoration of Biological Soil Crust on Disturbed Gypsiferous Soils in Lake Mead National Recreation Area, Eastern Mojave Desert By Lindsay P. Chiquoine Dr. Scott Abella, Examination Committee Chair Associate Research Professor University of Nevada, Las Vegas Over the past several decades biological soil crust (BSC) research has demonstrated the importance of biotic crusts to desert ecosystems and the negative consequences of disturbance. Natural recovery takes many years, and active restoration decreases the recovery time of BSC organisms and their ecosystem functions. The purposes of this thesis were to investigate the applicability of restoration activities in gypsiferous soil types and to test restoration treatments in highly disturbed gypsiferous soils after a road reconstruction project in Lake Mead National Recreation Area in the eastern Mojave Desert. Field, greenhouse, and laboratory studies were used to examine the impacts of disturbance on BSC organisms, observe the impacts of storage, and test the use of salvaged BSCs as inocula. Field results revealed complex relationships between the BSC microscopic and macroscopic cover, soil stability, and available nitrogen with the main treatments, which included BSC inoculation, topsoil reapplication, wood shavings, and a native perennial shrub. Inocula increased the macroscopic and microscopic BSC organisms, stabilized the surface soils, reduced non-native annual plants, and increased ammonium. Topsoil alone increased cyanobacteria by 186% compared to plots without topsoil. Topsoil treatments also had the highest non-native annual cover. Topsoil and BSC treatments reduced non- iii natives cover. Due to issues with blowers, humidity, and temperature controls during the greenhouse study, it was difficult to maintain adequate temperatures and hydration levels. An evaluation of the study procedures and suggestions for future experiments are provided for methodological improvements. In the laboratory after approximately 3 and 4 years of storage, the BSC lichen Collema had reduced chlorophyll-fluorescence values compared to undisturbed field specimens. After 3 years of storage, glucose solutions increase the recovery and rate of fluorescence and mannitol solutions shortened the time for chlorophyll-fluorescence recovery. Slurry inoculation with glucose on autoclaved native gypsiferous soils resulted in higher cyanobacteria cover compared to inoculated only flats. Protection of these BSC systems is important for ecosystem sustainability and maintaining the resilience of BSC communities to current and future climate changes. Active restoration of disturbed BSCs in gypsiferous soils assists with rehabilitation of BSC ecosystem services. The results from this thesis research have direct implications for ecosystem management and restoration activities of BSCs and contribute to identifying the potential impacts of BSC restoration activities as well as the potential for salvaging and storing BSCS to use as inoculants in ecosystem restoration. iv ACKNOWLEDGEMENTS I would like to thank my thesis committee which was comprised of Scott Abella, Lloyd Stark, and Stan Smith from University of Nevada, Las Vegas, and Matthew Bowker from Northern Arizona University. I would particularly like to thank my thesis committee chair Dr. Abella for urging me to work on this project, encouraging me to make it my thesis project, and for his constant enthusiasm and encouragement throughout this process. Additionally, I would like to thank Dr. Pete Fulé from Northern Arizona University for initially introducing me to biological soil crusts, my best friend Matthew Packard for his constant encouragement over the last 12 years, and my partner Joshua Greenwood for being my support and inspiration. I would like to acknowledge the Applied Ecology Research Group at the University of Nevada, Las Vegas (UNLV) and my co-workers over the past four years Cayenne Engle, Donovan Craig, Alex Suazo, Joslyn Curtis, Pam Sinanian and Sylvia Tran, and especially Sharon Altman for always taking good care of us all. Additional acknowledgement is given to John Brinda for assisting with critiquing methods and identifying mosses and Cheryl Vanier for providing statistical support and advice. This research was supported through a cooperative agreement between Lake Mead National Recreation Area, National Park Service, and UNLV. I would like to thank Lake Mead Vegetation Management staff Alice Newton, who coordinated this research opportunity, Carrie Norman, Dara Schrepenisse, Toshi Yoshida, Janis Lee, Ryan Howell, and Eric Cotto. v DEDICATION To Eric Cotto, thank you for your support and encouragement during my first two and a half years living and working in the Mojave Desert. And to Norma Dawson Cotto, in loving support to you who has lost her son too early. vi TABLE OF CONTENTS ABSTRACT ....................................................................................................................... iii ACKNOWLEDGEMENTS ................................................................................................v DEDICATION ................................................................................................................... vi LIST OFTABLES .............................................................................................................. ix LIST OF FIGURES ......................................................................................................... xiii CHAPTER 1 INTRODUCTION .......................................................................................1 Opportunity for Research ........................................................................................2 Justifications for Study ...........................................................................................3 Applied Restoration Research Goals ......................................................................3 CHAPTER 2 LITERATURE REVIEW ..............................................................................5 Introduction .............................................................................................................5 Biological Soil Crust Overview ..............................................................................6 Gypsiferous Soils and the Mojave Desert Climate .................................................7 Biological Soil Crust Ecosystem Properties, Functions, and Contributions..........10 Impacts of Disturbances to Biological Soil Crusts ...............................................17 Natural Recovery ..................................................................................................19 Factors Influencing Recovery and Potential Barriers ...........................................22 Assisted Recovery: Rehabilitation/Restoration ....................................................26
Recommended publications
  • Species Relationships in the Lichen Alga Trebouxia (Chlorophyta, Trebouxiophyceae): Molecular Phylogenetic Analyses of Nuclear-E
    Symbiosis, 23 (1997) 125-148 125 Balaban, Philadelphia/Rehovot Species Relationships in the Lichen Alga Trebouxia (Chlorophyta, Trebouxiophyceae): Molecular Phylogenetic Analyses of Nuclear-Encoded Large Subunit rRNA Gene Sequences THOMAS FRIEDL* and CLAUDIA ROKITTA Fachbereich Biologie, Allgemeine Botanik, Universitiit Kaiserslautern, POB 3049, 67653 Kaiserslautern, Germany, Tel. +49-631-2052360, Fax. +49-631-2052998, E-mail. [email protected] Received December 11, 1996; Accepted May 22, 1997 Abstract Sequences of the 5' region of the nuclear-encoded large subunit (26S) rRNA genes were determined for seven species of Trebouxia to investigate the evolutionary relationships among these coccoid green algae that form the most frequently occurring photobiont in lichen symbiosis. Phylogenies inferred from these data substantiate the importance of certain chloroplast characters for tracing species relationships within Trebouxia. The monophyletic origin of the "Trebouxia cluster" which comprises only those species that have centrally located chloroplasts and distinct pyrenoid matrices interdispersed by a thylakoid tubule network is clearly resolved. However, those species of Trebouxia with a chloroplast closely appressed to the cell wall at certain stages and an indistinct pyrenoid containing regular thylakoids are distantly related to the Trebouxia cluster; these species may represent an independent genus. These findings are corroborated by analyses of available complete 18S rDNA sequences from Trebouxia spp. There are about 1.5 times more variable positions in the partial 26S rDNA sequences than in the full 18S sequences, and most of these positions are .. The author to whom correspondence should be sent. Presented at the Third International Lichenological Symposium (IAL3), September 1-7, 1996, Salzburg, Austria 0334-5114/97 /$05.50 ©1997 Balaban 126 T.
    [Show full text]
  • Agricultural Soil Compaction: Causes and Management
    October 2010 Agdex 510-1 Agricultural Soil Compaction: Causes and Management oil compaction can be a serious and unnecessary soil aggregates, which has a negative affect on soil S form of soil degradation that can result in increased aggregate structure. soil erosion and decreased crop production. Soil compaction can have a number of negative effects on Compaction of soil is the compression of soil particles into soil quality and crop production including the following: a smaller volume, which reduces the size of pore space available for air and water. Most soils are composed of • causes soil pore spaces to become smaller about 50 per cent solids (sand, silt, clay and organic • reduces water infiltration rate into soil matter) and about 50 per cent pore spaces. • decreases the rate that water will penetrate into the soil root zone and subsoil • increases the potential for surface Compaction concerns water ponding, water runoff, surface soil waterlogging and soil erosion Soil compaction can impair water Soil compaction infiltration into soil, crop emergence, • reduces the ability of a soil to hold root penetration and crop nutrient and can be a serious water and air, which are necessary for water uptake, all of which result in form of soil plant root growth and function depressed crop yield. • reduces crop emergence as a result of soil crusting Human-induced compaction of degradation. • impedes root growth and limits the agricultural soil can be the result of using volume of soil explored by roots tillage equipment during soil cultivation or result from the heavy weight of field equipment. • limits soil exploration by roots and Compacted soils can also be the result of natural soil- decreases the ability of crops to take up nutrients and forming processes.
    [Show full text]
  • Biological Soil Crust Community Types Differ in Key Ecological Functions
    UC Riverside UC Riverside Previously Published Works Title Biological soil crust community types differ in key ecological functions Permalink https://escholarship.org/uc/item/2cs0f55w Authors Pietrasiak, Nicole David Lam Jeffrey R. Johansen et al. Publication Date 2013-10-01 DOI 10.1016/j.soilbio.2013.05.011 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Soil Biology & Biochemistry 65 (2013) 168e171 Contents lists available at SciVerse ScienceDirect Soil Biology & Biochemistry journal homepage: www.elsevier.com/locate/soilbio Short communication Biological soil crust community types differ in key ecological functions Nicole Pietrasiak a,*, John U. Regus b, Jeffrey R. Johansen c,e, David Lam a, Joel L. Sachs b, Louis S. Santiago d a University of California, Riverside, Soil and Water Sciences Program, Department of Environmental Sciences, 2258 Geology Building, Riverside, CA 92521, USA b University of California, Riverside, Department of Biology, University of California, Riverside, CA 92521, USA c Biology Department, John Carroll University, 1 John Carroll Blvd., University Heights, OH 44118, USA d University of California, Riverside, Botany & Plant Sciences Department, 3113 Bachelor Hall, Riverside, CA 92521, USA e Department of Botany, Faculty of Science, University of South Bohemia, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic article info abstract Article history: Soil stability, nitrogen and carbon fixation were assessed for eight biological soil crust community types Received 22 February 2013 within a Mojave Desert wilderness site. Cyanolichen crust outperformed all other crusts in multi- Received in revised form functionality whereas incipient crust had the poorest performance. A finely divided classification of 17 May 2013 biological soil crust communities improves estimation of ecosystem function and strengthens the Accepted 18 May 2013 accuracy of landscape-scale assessments.
    [Show full text]
  • 1307 Fungi Representing 1139 Infrageneric Taxa, 317 Genera and 66 Families ⇑ Jolanta Miadlikowska A, , Frank Kauff B,1, Filip Högnabba C, Jeffrey C
    Molecular Phylogenetics and Evolution 79 (2014) 132–168 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families ⇑ Jolanta Miadlikowska a, , Frank Kauff b,1, Filip Högnabba c, Jeffrey C. Oliver d,2, Katalin Molnár a,3, Emily Fraker a,4, Ester Gaya a,5, Josef Hafellner e, Valérie Hofstetter a,6, Cécile Gueidan a,7, Mónica A.G. Otálora a,8, Brendan Hodkinson a,9, Martin Kukwa f, Robert Lücking g, Curtis Björk h, Harrie J.M. Sipman i, Ana Rosa Burgaz j, Arne Thell k, Alfredo Passo l, Leena Myllys c, Trevor Goward h, Samantha Fernández-Brime m, Geir Hestmark n, James Lendemer o, H. Thorsten Lumbsch g, Michaela Schmull p, Conrad L. Schoch q, Emmanuël Sérusiaux r, David R. Maddison s, A. Elizabeth Arnold t, François Lutzoni a,10, Soili Stenroos c,10 a Department of Biology, Duke University, Durham, NC 27708-0338, USA b FB Biologie, Molecular Phylogenetics, 13/276, TU Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany c Botanical Museum, Finnish Museum of Natural History, FI-00014 University of Helsinki, Finland d Department of Ecology and Evolutionary Biology, Yale University, 358 ESC, 21 Sachem Street, New Haven, CT 06511, USA e Institut für Botanik, Karl-Franzens-Universität, Holteigasse 6, A-8010 Graz, Austria f Department of Plant Taxonomy and Nature Conservation, University of Gdan´sk, ul. Wita Stwosza 59, 80-308 Gdan´sk, Poland g Science and Education, The Field Museum, 1400 S.
    [Show full text]
  • Anatomy of a Sub-Cambrian Paleosol in Wisconsin
    Anatomy of a Sub-Cambrian Paleosol in Wisconsin: Mass Fluxes of Chemical Weathering and Climatic Conditions in North America during Formation of the Cambrian Great Unconformity L. Gordon Medaris Jr.,1,* Steven G. Driese,2 Gary E. Stinchcomb,3 John H. Fournelle,1 Seungyeol Lee,1,4 Huifang Xu,1,4 Lyndsay DiPietro,2 Phillip Gopon,5 and Esther K. Stewart6 1. Department of Geoscience, University of Wisconsin, Madison, Wisconsin 53706, USA; 2. Department of Geosciences, Terrestrial Paleoclimatology Research Group, Baylor University, Waco, Texas 76798, USA; 3. Department of Geosciences and Watershed Studies Institute, Murray State University, Murray, Kentucky 42071, USA; 4. NASA Astrobiology Institute, University of Wisconsin, Madison, Wisconsin 53706, USA; 5. Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, United Kingdom; 6. Wisconsin Geological and Natural History Survey, Madison, Wisconsin 53705, USA ABSTRACT A paleosol beneath the Upper Cambrian Mount Simon Sandstone in Wisconsin provides an opportunity to evaluate the characteristics of Cambrian weathering in a subtropical climate, having been located at 207S paleolatitude 500 My ago. The 285-cm-thick paleosol resulted from advanced chemical weathering of a gabbroic protolith, recording a total mass loss of 50%. Weathering of hornblende and plagioclase produced a pedogenic assemblage of quartz, chlorite, kaolinite, goethite, and, in the lowest part of the profile, siderite. Despite the paucity of quartz in the protolith and 40% removal of SiO2 from the profile, quartz constitutes 11%–23% of the pedogenic mineral assemblage. Like many other Precambrian and Cambrian paleosols in the Lake Superior region, the paleosol experienced potassium metasomatism, now con- taining 10%–25% mixed-layer illite-vermiculite and 5%–44% potassium feldspar.
    [Show full text]
  • Soil Crusts Structural Soil Crusts Are Relatively Thin, Dense, Somewhat Continuous Layers of Non-Aggregated Soil Particles on the Surface of Tilled and Exposed Soils
    Indicator Test Function USDA Natural Resources Conservation Service P F W Soil Quality Indicators Soil Crusts Structural soil crusts are relatively thin, dense, somewhat continuous layers of non-aggregated soil particles on the surface of tilled and exposed soils. Structural crusts develop when a sealed-over soil surface dries out after rainfall or irrigation. Water droplets striking soil aggregates and water flowing across soil breaks aggregates into individual soil particles. Fine soil particles wash, settle into and block surface pores causing the soil surface to seal over and preventing water from soaking into the soil. As the muddy soil surface dries out, it crusts over. Left: Note the surface crust on this soil. The field was in tall fescue sod for 11 years. It was cleared and plowed using conventional Structural crusts range from a few tenths to as thick as two tillage methods. Photo courtesy Bobby Brock, USDA NRCS (retired). Right: Collected from a no-till field in Georgia’s Southern inches. A surface crust is much more compact, hard and Piedmont, good structure and aggregation are evident in the soil on brittle when dry than the soil immediately beneath it, the right. The same soil formed a structural crust under which may be loose and friable. Crusts can be described by conventional tillage. Note the sunlight reflectance of the crusted their strength, or air-dry rupture resistance. soil. Photo courtesy James E. Dean, USDA NRCS (retired). Soil crusting is also associated with biological and Dynamic - Management activities that deplete soil chemical factors. A biological crust is a living community organic matter and leave soil bare, smooth and exposed to of lichen, cyanobacteria, algae, and moss growing on the the direct impact of water droplets increase soil dispersion, soil surface that bind the soil together.
    [Show full text]
  • Biological Soil Crust Rehabilitation in Theory and Practice: an Underexploited Opportunity Matthew A
    REVIEW Biological Soil Crust Rehabilitation in Theory and Practice: An Underexploited Opportunity Matthew A. Bowker1,2 Abstract techniques; and (3) monitoring. Statistical predictive Biological soil crusts (BSCs) are ubiquitous lichen–bryo- modeling is a useful method for estimating the potential phyte microbial communities, which are critical structural BSC condition of a rehabilitation site. Various rehabilita- and functional components of many ecosystems. How- tion techniques attempt to correct, in decreasing order of ever, BSCs are rarely addressed in the restoration litera- difficulty, active soil erosion (e.g., stabilization techni- ture. The purposes of this review were to examine the ques), resource deficiencies (e.g., moisture and nutrient ecological roles BSCs play in succession models, the augmentation), or BSC propagule scarcity (e.g., inoc- backbone of restoration theory, and to discuss the prac- ulation). Success will probably be contingent on prior tical aspects of rehabilitating BSCs to disturbed eco- evaluation of site conditions and accurate identification systems. Most evidence indicates that BSCs facilitate of constraints to BSC reestablishment. Rehabilitation of succession to later seres, suggesting that assisted recovery BSCs is attainable and may be required in the recovery of of BSCs could speed up succession. Because BSCs are some ecosystems. The strong influence that BSCs exert ecosystem engineers in high abiotic stress systems, loss of on ecosystems is an underexploited opportunity for re- BSCs may be synonymous with crossing degradation storationists to return disturbed ecosystems to a desirable thresholds. However, assisted recovery of BSCs may trajectory. allow a transition from a degraded steady state to a more desired alternative steady state. In practice, BSC rehabili- Key words: aridlands, cryptobiotic soil crusts, cryptogams, tation has three major components: (1) establishment of degradation thresholds, state-and-transition models, goals; (2) selection and implementation of rehabilitation succession.
    [Show full text]
  • The Use of Proximal Soil Sensor Data Fusion and Digital Soil Mapping For
    The use of proximal soil sensor data fusion and digital soil mapping for precision agriculture Wenjun Ji, Viacheslav Adamchuk, Songchao Chen, Asim Biswas, Maxime Leclerc, Raphael Viscarra Rossel To cite this version: Wenjun Ji, Viacheslav Adamchuk, Songchao Chen, Asim Biswas, Maxime Leclerc, et al.. The use of proximal soil sensor data fusion and digital soil mapping for precision agriculture. Pedometrics 2017, Jun 2017, Wageningen, Netherlands. 298 p. hal-01601278 HAL Id: hal-01601278 https://hal.archives-ouvertes.fr/hal-01601278 Submitted on 2 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - ShareAlike| 4.0 International License Abstract Book Pedometrics 2017 Wageningen, 26 June – 1 July 2017 2 Contents Evaluating Use of Ground Penetrating Radar and Geostatistic Methods for Mapping Soil Cemented Horizon .................................... 13 Digital soil mapping in areas of mussunungas: algoritmos comparission .......... 14 Sensing of farm and district-scale soil moisture content using a mobile cosmic ray probe (COSMOS Rover) .................................... 15 Proximal sensing of soil crack networks using three-dimensional electrical resistivity to- mography ......................................... 16 Using digital microscopy for rapid determination of soil texture and prediction of soil organic matter .....................................
    [Show full text]
  • A Multigene Phylogenetic Synthesis for the Class Lecanoromycetes (Ascomycota): 1307 Fungi Representing 1139 Infrageneric Taxa, 317 Genera and 66 Families
    A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families Miadlikowska, J., Kauff, F., Högnabba, F., Oliver, J. C., Molnár, K., Fraker, E., ... & Stenroos, S. (2014). A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Molecular Phylogenetics and Evolution, 79, 132-168. doi:10.1016/j.ympev.2014.04.003 10.1016/j.ympev.2014.04.003 Elsevier Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Molecular Phylogenetics and Evolution 79 (2014) 132–168 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families ⇑ Jolanta Miadlikowska a, , Frank Kauff b,1, Filip Högnabba c, Jeffrey C. Oliver d,2, Katalin Molnár a,3, Emily Fraker a,4, Ester Gaya a,5, Josef Hafellner e, Valérie Hofstetter a,6, Cécile Gueidan a,7, Mónica A.G. Otálora a,8, Brendan Hodkinson a,9, Martin Kukwa f, Robert Lücking g, Curtis Björk h, Harrie J.M. Sipman i, Ana Rosa Burgaz j, Arne Thell k, Alfredo Passo l, Leena Myllys c, Trevor Goward h, Samantha Fernández-Brime m, Geir Hestmark n, James Lendemer o, H. Thorsten Lumbsch g, Michaela Schmull p, Conrad L. Schoch q, Emmanuël Sérusiaux r, David R. Maddison s, A. Elizabeth Arnold t, François Lutzoni a,10,
    [Show full text]
  • Isolation and Identification of Marine Microalgae from the Atlantic Ocean in the South of Morocco
    American Journal of Innovative Research and Applied Sciences. ISSN 2429-5396 I www.american-jiras.com ORIGINAL ARTICLE ISOLATION AND IDENTIFICATION OF MARINE MICROALGAE FROM THE ATLANTIC OCEAN IN THE SOUTH OF MOROCCO | Mohammed Hassi *1.2 | and | Mohammed Alouani 1.3 | 1. Ibn Zohr University | Department of biology | Agadir | Morocco | 2. Ibn Zohr University | Department of sciences and techniques | Taroudant | Morocco | 3. Ibn Zohr University | Faculty of Applied Science| Ait Melloul | Morocco | | Received June 06, 2020 | | Accepted July 14, 2020 | | Published July 17, 2020 | | ID Article | Hassi-Ref.9-ajira060720 | ABSTRACT Background: Among the large spectrum of marine organisms, microalgae are able to produce a wide diverse compounds through different pathways. These bioactive compounds give them a large number of applications in various fields such as human nutrition, aquaculture, pharmaceutical, cosmetics or biodiesel production. In Morocco, the study of marine microlagae for their bioactive potential has gained strength in recent years. Moreover, Morocco has a great potential for algae culture due to its specific geographical position and to its favorable climatic conditions. Objective: Thus, in the aim to isolate marine microalgae from the Atlantic Ocean (South of Morocco), several samples were collected from different locations (Agadir, Anza, Naïla Lagoon and Laâyoune). Fourteen strains were purified, identified and classified using morphological features. Methods: Microalgae isolation was done by the combination of two techniques: serial dilution and streaking. Purified marine microalgae strains were identified using their morphological features. Results: Diatoms were the most abundant among the isolated species (57%), followed by green algae (36%) then dinoflagellates (7%). Conclusion: The diatoms and green algae such Navicula sp., Chaetoceros sp., Nitzschia sp., Chlorella sp.
    [Show full text]
  • Recording of Changes in British Wildlife. London, HMSO, 31-43
    Chapter (non-refereed) Adams, K. J.; Preston, C. D.. 1992 Evidence for the effects of atmospheric pollution on bryophytes from national and local recording. In: Harding, P. T., (ed.) Biological recording of changes in British wildlife. London, HMSO, 31-43. (ITE Symposium, 26). Copyright © 1992 NERC This version available at http://nora.nerc.ac.uk/4953/ NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the authors and/or other rights owners. Users should read the terms and conditions of use of this material at http://nora.nerc.ac.uk/policies.html#access This document is extracted from the publisher’s version of the volume. If you wish to cite this item please use the reference above or cite the NORA entry Contact CEH NORA team at [email protected] Evidence for the effects of atmospheric pollution on bryophytes from national and local recording K J Adams1 and C D Preston2 Polytechnic of East London, Romford Road, London E15 4LZ 2 Biological Records Centre, Environmental Information Centre, Institute of Terrestrial Ecology, Monks Wood Experimental Station, Abbots Ripton, Huntingdon, Cambs PE17 2L5 INTRODUCTION difference in epiphytes, an ecological group which The effects of atmospheric pollution on the lichen tends to be parficularly susceptible to atmospheric flora of the British Isles are well known. They have pollution, is illustrated in Table 1. This difference not only generated a large body of scientific litera- probably reflects the greater tolerance of lichens to ture, but are familiar to the general public.
    [Show full text]
  • Compartmentalization of Mrnas in the Giant, Unicellular Green Algae
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.18.303206; this version posted September 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Compartmentalization of mRNAs in the giant, 2 unicellular green algae Acetabularia acetabulum 3 4 Authors 5 Ina J. Andresen1, Russell J. S. Orr2, Kamran Shalchian-Tabrizi3, Jon Bråte1* 6 7 Address 8 1: Section for Genetics and Evolutionary Biology, Department of Biosciences, University of 9 Oslo, Kristine Bonnevies Hus, Blindernveien 31, 0316 Oslo, Norway. 10 2: Natural History Museum, University of Oslo, Oslo, Norway 11 3: Centre for Epigenetics, Development and Evolution, Department of Biosciences, University 12 of Oslo, Kristine Bonnevies Hus, Blindernveien 31, 0316 Oslo, Norway. 13 14 *Corresponding author 15 Jon Bråte, [email protected] 16 17 Keywords 18 Acetabularia acetabulum, Dasycladales, UMI, STL, compartmentalization, single-cell, mRNA. 19 20 Abstract 21 Acetabularia acetabulum is a single-celled green alga previously used as a model species for 22 studying the role of the nucleus in cell development and morphogenesis. The highly elongated 23 cell, which stretches several centimeters, harbors a single nucleus located in the basal end. 24 Although A. acetabulum historically has been an important model in cell biology, almost 25 nothing is known about its gene content, or how gene products are distributed in the cell. To 26 study the composition and distribution of mRNAs in A.
    [Show full text]