<<

Research Collection

Doctoral Thesis

Chiral Tris(alkynyl)methanes building blocks for three-dimensional acetylenic scaffolding

Author(s): Convertino, Vito

Publication Date: 2007

Permanent Link: https://doi.org/10.3929/ethz-a-005548162

Rights / License: In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use.

ETH Library DISS. ETH NO. 17464

Chiral Tris(alkynyl)Methanes:

Building Blocks for Three-Dimensional

Acetylenic Scaffolding

A dissertation submitted to

ETH ZURICH

for the degree of

Doctor of Sciences

Presented by

VITO CONVERTINO

Dott. Chim. Ind. Université di Bologna

born December 29, 1978

citizen of the Republic of Italy

accepted on the recommendation of

Prof. Dr. François Diederich, examiner

Prof. Dr. Hans-Jürg Borschberg, co-examiner

2007

E'hello raccontare i guai passati

Acknowledgments

I would like to thank Professor Dr. François Diederich for giving me the opportunity to

work on such an interesting and challenging project, and also for his guidance as well as

for his encouragements during the course of this thesis. I greatly appreciated the

enthusiasm he put into the scientific discussions, as well as the complete freedom that I

had in the research project.

My gratitude also goes to Professor Dr. Hans-Jürg Borschberg for accepting the co-

examination of this thesis.

I thank Dr. Peter Jarowki for proof-reading this manuscript and Dr. Carlo Thilgen for his

help with the nomenclature and the stereochemistry, as well as for the many interesting

discussions.

I am grateful to all the staff members of the LOC for the valuable services they provided.

In particular, I would like to thank Dr. Walter Amrein, Rolf Häßiger (great photos!),

Louis Bertschi and Oswald Greter for the measuring of the mass spectra, as well as Dr.

W. Bernd Schweizer for solving the X-ray crystal structure of my compounds.

Many thanks go to Irma Näf for her kindness and for her fast and accurate help with all

the administrative problems.

Un grazie speciale va a Paolo Mombelli, che ha condotto con entusiasmo e tenacia

(interista) il suo lavoro di master sotto la mia supervisione.

Many thanks go to all the members of the (past and present) Diederich's group for their

friendship and for having contributed enlarging my knowledge in chemistry. I

particularly thanks to the lab G306: Dr. Peter Manini (bella gatta da pelare m'hai lasciato

in eredità!), Dr. Nicolle Moonen (my first guide in Zürich), Dr. Simone Hörtner (ma quante sigarette avremo fumato insieme sul balcone?), Dr. Tsuyoshi Michinobu ("I don't

care about the mechanismus"), Dr. Sara Eisler (without you and Christian I would not

know Frank Zappa nor Sefior Coconut!), Dr. Tatsuya Yamaguchi (the best Japanese

football player since Kazu Miura), Jens Hornung ("Rauch Haus Song"), Dr. Philippe

Reutenauer ("Sarrabandaaaaa"), Dr. Lorenzo Alonso ("El tigre se fue"). Federica

Marotti ("Aoooo"), Davide Bonifazi, Raffaella Faraoni, Severin Odermatt, Dr. Nikos

Chronakis ("No,no,no! I'll show you how to roll a cigarette"), Dr. Fraser Hof Dr.

Marine Guillot (and Captain Beefheart), Markus Frei, Milan Kivala and Dr. Matthijs ter

Wiel (St. John's fellows), Henry Dube (Malaparte?), Corinne Baumgartner, Anna Hirsch,

Cristophe Fäh ("genua über"), Thomas Gottschalk, Andrea Amantonico (uaglio', è tutto

nelle tue mani adesso), Brian Frank, Leslie Fendt, Agnieszka Kraszewska, Fabio K.,Ams,

Victo and Isi, I thank for the good time we spent together in bars or clubs of Zürich, at

restaurants or at home for delicious dinners, biking, running, at the lake, on the

mountains.. .You all made living in Zürich much better than what I actually think.

Un grazie di cuore ai miei genitori, continuo punto di riferimento, i primi a condividere

con me le soddisfazioni e le delusioni di questi quattro lunghi anni. A loro dedico questo

lavoro. Grazie alla Kupola, e a tutti i suoi adepti nel mondo, e grazie a Mao per le

interminabili partite a scacchi scacciapensieri. Grazie a tutti i numerosissimi avventori

dell'Ostello Convertino, fira cui mérita una speciale menzione Ado e il suo murales

(sigh!). Infine grazie alia mia Carinide per la fondamentale correttura dell'Italiano

présente in questa tesi. Publications and Presentations

Publication:

V. Convertino, P. Manini, W. B. Schweizer, F. Diedench, Org. Biomol. Chem. 2006, 4,

1206-1208, First Asymmetric Synthesis of a Differentially Silyl-Protected Tris(Alkynyl)

Methyl Methyl Ether.

Poster Presentations:

V. Convertino, P. Manini, W. B. Schweizer, F. Diedench, Asymmetric Synthesis of

Methyl Protected Tris(propargylic)alcohol, 11* International Symposium on Novel

Aromatic Compound (ISNA-11), 14 - 18 August 2005, St. John's, Canada.

V. Convertino, P. Manini, W. B. Schweizer, F. Diedench, Asymmetric Synthesis of a

Differentially Silyl-protected Tris(alkynyl)methyl Methyl Ether, Swiss Chemical Society -

Fall Meeting, 13 October 2006, Zürich, Switzerland.

V. Convertino, B. Buschhaus, F. Diederich, Synthesis of an Optically Pure Differentially

Silyl-protected Tris(alkynyl)phenyl Methane, 14* IUPAC Symposium on Organometallic

Chemistry Directed Towards Organic Synthesis (OMCOS 14), 2-6 August 2007, Nara,

Japan.

Table of Contents

Abbreviations I

Summary V

Riassunto VIII

1. Introduction 1

1.1 Polyethynylated Ethenes 3

1.2 Polyethynylated Aliènes 9

1.3 Polyethynylated Butatrienes 14

1.4 Polyethynylated Ethanes and Methanes 17

1.5 Aim of the project 24

2. Asymmetric Synthesis of a Differentially Silyl-Protected

Tris(Alkynyl)Methyl Methyl Ether 25

2.1 Retrosynthetic Plan 25

2.2 Synthesis of the Optically Active Corner Module 26

2.2.1 Chelation-controlled addition 28

2.2.2 Protecting Group Replacement 29

2.2.3 Shapiro Reaction 32

2.2.4 First Success 33

2.2.5 An Unexpected Result 34

2.2.6 Improved Route 35

2.3 Separation of Diastereoisomers: the Way to Optical Purity 36

2.3.1 Resolution of the Ketone 3 7

2.3.2 Cyclic Ketal 39

2.3.3 Successful Strategy 41

2.4 Absolute Configuration 42

2.5 Conclusion 44

3 Synthetic Approach Toward Expanded Cubane and Expanded Tetrahedrane 47

3.1 Platonic Structures 47 Table of Contents

3.2 Expanded Cubane 49

3.2.1 Computational Studies 50

3.2.2 An Alternative Synthetic Strategy 51

3.2.3 Synthesis 53

3.2.4 Structural Assignment of the Diastereoisomers of82 57

3.3 Expanded Tetrahedrane 60

3.3.1 Computational Studies 61

3.3.2 Retrosynthetic Approach 62

3.3.3 Synthetic Route 63

3.4 Conclusion and Outlook 65

4 Synthesis of an Optically Pure Differentially Silyl-Protected

Tris(alkynyl)Phenyl Methane 67

4.1 Retrosynthetic Analysis 67

4.2 Synthesis 69

4.2.1 Asymmetric Epoxidation 71

4.2.2 The Key Intermediate 74

4.2.3 Chiral Resolution 76

4.2.4 Optical Purity 77

4.2.5 Last Steps 79

4.3 Scaffolding 79

4.4 Conclusion and Outlook 82

5 Summary and Outlook 83

6 Experimental Part 89

6.1 General Methods and Instrumentation 89

6.2 Experimental Procedures 91

7 Literature 137

8 Appendlix 157

8.1 Crystal Structure Data of (+)-(i?)-70 157

8.2 Crystal Structure Data of 82b 177

8.3 Crystal Structure Data of 82c 183 Abbreviations

â Angstrom (1 Â= l(T10m) anal. elemental analysis aq. aqueous bs broad signal

BC Before Christ

Bu4NF tetrabutylammonium fluoride

«BuLi w-butyllithium

°C degree centigrade (0 °C = 273.15 K) cal calorie (1 cal = 4.184 J) cal cd. calculated

CAN cerium(IV) ammonium nitrate

CDCI3 J-chloroform

CHF Swiss francs cone. concentrated

CSA camphorsulfonic acid

CT charge transfer

S chemical shift (NMR) d doublet (NMR) d day

DCTB /ra«5-2-[3-(4-tert-butylphenyl)-2-methylprop-2-

enylidene]malononitrile de diastereomeric excess

DEE (£)-1,2-diethynylethene ((E)-hex-3-ene-1,5-diyne)

DHB 2,5-dihydroxybenzoic acid

DIBAL-H diisobutylaluminiumhydride

DMAP jV,jV-dimethylaminopyridine

DMF jV,jV-dimethylformamide Abbreviations

DMP Dess-Martin periodinane dppp l,3-bis(diphenylphosphino)propane dr diastereomeric ratio

EA elemental analysis ee enantiomeric excess er enantiomeric ratio

Et ethyl

Et20 diethyl ether

EtOAc ethyl acetate

FC flash chromatography

Fe ferrocenyl

FID flame ionization detector g gram

GC gas chromatography

GPC gel permeation chromatography h hour

HMPA hexamethylphophoramide

HPLC high performance liquid chromatography

HR high resolution

Hz Hertz (s"1)

ICR ion-cyclotron-resonance i.e. that is

IR infrared (spectroscopy)

J Joule

J coupling constant (NMR) k kilo (103)

I wavelength

L liter

LDA lithium diisopropylamide

LTMP lithium tetramethylpiperidine

H micro (10"6)

II Abbreviations

m milli (10"3) m medium (IR), multiplet (NMR)

M molarity [mol l"1]

M metal

MABR methyl aluminum bis-(4-bromo-2,6-di-tert-butyl-phenoxide)

MALDI-FT fourier transform matrix assisted laser desorption-ionization

MCPBA weto-chloroperbenzoic acid

Me methyl

MeCN acetonitrile

MeOH methanol

MHz megahertz min minute

MO molecular orbital mol mole mp melting point

MS mass spectrometry

NaHDMS sodium hexamethyldisilazide

NBS iV-bromosuccinimide nm nanometer

NMR nuclear magnetic resonance (spectroscopy)

PG protecting group

PMB /»-methoxybenzyl chloride ppm parts per million zPr isopropyl

PTA poly(triacetylene) q quartet (NMR)

Rt retention factor s singlet (NMR) sat. saturated

SiEt3 triethylsilyl

SiMe3 trimethylsilyl

III Abbreviations

Si02 silica gel

Si(/Pr)3 triisopropylsilyl t triplet (NMR)

TDMPP tris(2,6-dimethoxyphenyl)phosphine

TEE tetraethynylethene (3,4-diethynylhex-3-ene-l,5-diyne)

TFA trifluoroacetic acid

TfOH trifluoromethanesulfonic acid.

THF tetrahydrofuran

THP tetrahydopyran

TLC thin layer chromatography

TMEDA iV, iV, iV', Af'-tetramethylethylenediamine

TOF matrix assisted laser desorption-ionization time-of-flight

Tris 2,4,6 triisopropylbenzenesulfonyl

/7-TsOH /»-toluenesulfonic acid

UV ultra-violet

Vis visible vs. versus

IV Summary

Oxidative acetylenic coupling, discovered by Glaser in 1869, and modified protocols such as the Hay variant for the homocoupling and the Cadiot-Chodkiewicz variant for heterocoupling provide powerful methodologies for the construction of exceptional molecular architectures and advanced materials based on acetylenic backbones. Major recent efforts have been directed toward the development of small molecular building blocks allowing acetylenic scaffolding in one, two, and three dimensions. This doctoral thesis describes the synthesis and the scaffolding possibilities of two novel optically pure triethynylmethanes, whose chirality is only derived from different protecting groups on the alkynyl residues.

Chapter 1 highlights some synthetic protocols toward such acetylenic modules that have been introduced mainly from the Diederich group, and gives selected examples of their application in the assembly of expanded structures. Thus, advance materials in one and two dimensions such as the linearly-conjugated poly(triacetylene) (PTA) oligomers and a series of acetylenic expanded macrocycles are presented. The chapter culminates with the description of the modules available for three-dimensional constructions with emphasis on the first preparation of buta-l,3-diyne-l,4-diyl-expanded cubane 49.

The first part of the presented doctoral work is described in Chapter 2, where the asymmetric synthesis of a triethynylmethanol derivative, (+)-(i?)-69, is presented.

Starting from easily available ethyl (-)-(,S)-lactate, the optically pure corner module was achieved in eleven synthetic steps, including preparative HPLC separation. The quaternary carbon center was installed through a diastereoselective addition of a lithium to an optically active alkynylketone under Cram chelation control. Although the diastereoselectivity was quite high {de 90%), access to the enantiomerically pure targeted molecule required a preparative HPLC separation of the diastereoisomers at the stage of intermediate 78. In the final step of the sequence, the generation of the third alkynyl moiety was achieved via formation of enol triflate (-)-(i?)-73, followed by Summary

elimination with LDA. Finally, a definitive proof of the absolute configuration of the corner module came from the X-ray analysis of tosylhydrazone (+)-(i?)-70.

SiEfa

The attempted syntheses of two expanded platonic structures are presented in

Chapter 3. After a short description of the geometric platonic solids, the stereoselective routes toward expanded cubane 49 and expanded tetrahedrane 91 are illustrated, which hinge on the optically pure corner modules (+)-(R)-69 and (-)-(S)-69. As an alternative to the low atom efficiency that affected the first preparation of compound 49, a stereoselective synthesis of the edge building block meso-81 was planned that relied on the heterocoupling of enantiomeric corner modules. Unfortunately, application of a modified Cadiot-Chodkiewicz protocol only afforded homocoupling products, thus making the whole strategy fruitless. On the other hand, the synthesis of expanded tetrahedrane 91 was based to proceed through the stereospecific synthesis of the edge module (-S^-Sl and the quadratic face 82a from the precursor (-)-(S)-69. However, full deprotection of 82a, followed by oxidative intramolecular cyclization did not afford the desired platonic solid.

MeC 3Me X ^ 1 OMe MeCX /— ^OMe ^

~OMe 1 / i—x ' MeO OMe /— — /

MeO OMe 91

49

VI Summary

The last part of this work is reported in Chapter 4, and consists of the preparation of the optically pure triethynylmethanes (+)-94 and (-)-94. Their synthesis was accomplished in thirteen steps (32% overall yield), involving chiral preparative HPLC resolution. A Yamamoto rearrangement, promoted by a bulky organoaluminum reagent, was employed to set the central quaternary carbon atom in the key intermediate (±)-95.

Chiral resolution of the racemate at the stage of homopropargyhc alcohol (±)-105 provided both enantiomers, which were then used for the completion of the synthesis.

Introduction of the last alkynyl unit was accomplished through the Corey-Fuchs protocol. In the last section, applications of the racemic corner module (±)-94 in the field of acetylenic scaffolding are presented. KSiMe3 Si(/Pr)3

(+)-94

VII Riassunto

La reazione di accoppiamento acetilenico ossidativo, scoperta da Glaser nel 1869, e relative modifiche, come la variante Hay per Yhomocoupling e la variante

Cadiot-Chodkiewicz per V heterocoupling, rappresentano metodologie efficaci per la costruzione di eccezionali architetture molecolari e materiali avanzati basati su strutture acetileniche. La maggior parte dei recenti lavori sintetici si è indirizzata verso lo sviluppo di piccoli elementi base (building blocks) molecolari che permettono la realizzazione di impalcature acetileniche in una, due e tre dimensioni. Questa tesi di dottorato descrive la sintesi e le possibilité di costruire tali impalcature di due nuovi trietinilmetani otticamente attivi, la cui chiralità dériva unicamente da differenti gruppi protettori sui residui alchinilici.

II Capitolo 1 evidenzia alcuni protocolli sintetici volti alia realizzazione di siffatti moduli acetilenici, in gran parte introdotti dal gruppo Diederich, e dà esempi scelti della loro applicazione nell'assemblaggio di strutture espanse. Sono dunque presentati materiali avanzati in una e due dimensioni, come gli oligomeri di poli(triacetilene) (PTA) linearmente coniugati e una série di macrocicli acetilenici espansi. II capitolo termina con la descrizione dei moduli disponibili per le costruzioni in tre dimensioni, con particolare attenzione sulla preparazione del primo cubano l,3-diino-l,4-diile-espanso 49.

La prima parte di questo lavoro di dottorato è descritta nel Capitolo 2, dove viene presentata la sintesi asimmetrica di un derivato del trietinilmetanolo. Partendo dal (-)-(S) lattato di etile, disponibile in grandi quantité e poco costoso, il modulo angolare otticamente puro è stato ottenuto in undici passaggi sintetici, che comprendono una separazione HPLC. II carbonio centrale quaternario è stato installato, seguendo il modello Cram di chelazione, attraverso l'addizione diastereoselettiva di un litio acetiluro ad un chetone alchinilico otticamente attivo. Nonostante l'elevata diastereoselettività (de

90%), l'ottenimento della molecola target in forma enantiomericamente pura ha richiesto una separazione cromatografica preparativa (HPLC) dei diastereoisomeri a livello deH'intermedio 78. Nel passaggio finale della sequenza sintetica, la generazione della Riassunto

terza unità acetilenica è stata ottenuta mediante la formazione dell'enol triflato (-)-(R)-

73, seguita da eliminazione con LDA. Infine, una prova definitiva délia configurazione assoluta del modulo angolare è stata ottenuta dall'analisi ai raggi X del tosilidrazone (+)-

(R)-70.

SiEt3

MeO ^\

SiMe3

(+)-(R)-69

Il Capitolo 3 présenta i tentativi di sintesi di due strutture platoniche espanse.

Dopo una breve descrizione dei solidi platonici geometrici, vengono illustrati i protocolli stereoselettivi per la costruzione del cubano espanso 49 e del tetraedrano espanso 91, partendo dai moduli angolari otticamente puri (+)-(R)-69 e (-)-(S)-69. Corne alternativa alla bassa effïcienza atomica che si è riscontrata durante la prima preparazione del composto 49, viene proposta una sintesi stereoselettiva dello "spigolo" meso-81, che si basa suirheterocoupling di moduli angolari enantiomerici. Sfortunatamente, l'applicazione di un protocollo Cadiot-Chodkiewicz modificato ha dato solo prodotti di homocoupling, rendendo inefficace Tintera strategia. La sintesi del tetraedrano espanso

91 era invece basata sulla sintesi stereospecifica dello "spigolo" (-S^-Sl e délia faccia

82a a partire dal modulo angolare (-)-(S)-69. La compléta deprotezione di 82a seguita da ciclizzazione intramolecolare ossidativa non ha pero prodotto il solido platonico desiderato.

IX Riassunto

OMe MeCK^

OMe

MeO OMe

49

L'ultima parte di questo lavoro, esposta nel Capitolo 4, consiste nella preparazione di trietinilmetani otticamente puri (+)-94 and (-)-94. La loro sintesi è stata portata a termine in tredici passaggi (resa complessiva del 32%), che comprendono una risoluzione preparativa HPLC chirale. Un riarrangiamento Yamamoto, promosso da un voluminoso reagente organoalluminio, è stato impiegato per installare l'atomo di carbonio centrale quaternario neH'intermedio chiave (±)-95. La risoluzione chirale del racemato a livello dell'alcol omopropargilico (±)-105 ha fornito entrambi gli enantiomeri, che sono poi stati usati per il completamento della sintesi. L'introduzione deH'ultima unità acetilenica è stata realizzata attraverso la reazione di Corey-Fuchs. La sezione finale illustra le applicazioni del modulo angolare racemico (±)-94 nel campo delle costruzioni acetileniche.

SiMeq

X 1. Introduction

Carbon is the fourth most abundant chemical element in the solar system by mass, after hydrogen, helium, and oxygen. It is found in the earth's crust in the ratio of 180 ppm, most of it in the form of compounds. Many of these natural compounds are essential to the production of synthetic carbon materials and include various coals

(bituminous and anthracite), complexes (petroleum, tar, and asphalt) and the gaseous (methane and others).

The word carbon is derived from the Latin "carbo", which to the Romans meant charcoal (or ember). The carbon terminology can be confusing because carbon is different from other elements in one important respect, which is its diversity. Unlike most elements, carbon has several material forms which are known as allotropes. They are composed entirely of carbon but have different physical structures. These allotropes are graphite, diamond, lonsdaleite, (a form similar to diamond), fullerene, and the structurally related carbon nanotubes. Allotropes differ in molecular or crystalline forms.

To illustrate the extraordinary diversity of carbon consider that only two allotropes of carbon are found on earth as minerals: natural graphite and diamond. Diamond is transparent, electrically insulating, and by far the hardest-known material, while graphite is opaque, electrically conducting, and can be one of the softest.

Carbon, in the form of charcoal, is an element of prehistoric discovery and was familiar to many ancient civilizations. As diamond, it has been known since the early history of mankind. Nevertheless, this fascinating element still continues to charm the scientific community [1-4]. Currently, carbon is the only element which gives its name to two scientific journals, Carbon (English) and Tanso (Japanese).

Owing to the ability of carbon atoms to adopt three different hybridization states

(sp3, sp2, and sp), there are numerous combinations by which atoms of this exceptional element can be bonded to each other and therefore a huge number of all-carbon and carbon-rich compounds can be imagined. A common feature in the efforts directed toward the construction of such composites is the use of the C=C bond as a functional group and linking unit. The alkynyl group is a readily accessible all-carbon building 1. Introduction

block, and terminal functions can be linked to C(sp2) and C(sp) centers by cross-coupling [5-8] and by copper-catalyzed oxidative coupling [9], respectively.

It is interesting to note that a sp-hybridized carbon ätiotrope is absent from the list of known carbon ätiotropes. Recently, Tykwinski and co-workers reported the synthesis of a series of conjugated, triisopropylsilyl end capped polyynes containing 2-10 acetylene units [10]. Polyynes are the oligomeric cousins of carbyne, the hypothetical linear form of carbon consisting entirely of sp-hybridized carbon atoms [11]. Following shortly after, a paper by Gladysz described the preparation of diplatinum adducts of polyynediyls consisting of as many as 14 acetylene units [12]. This work represented a breakthrough into an unanticipated stability regime and moreover there was no indication that any type of feasibility limit had been reached with the highest homologue [13].

The relative rigidity and linearity of the C=C fragment seems to be appropriate for the synthesis of rigid and uniformly shaped structures, and the characteristics of the n- bond may provide compounds with interesting properties [14]. For instance, novel fascinating topologies have been proposed based on the expansion of the two most common carbon ätiotropes by insertion of units. Graphite may be enlarged into novel structures graphyne [15, 16] and graphdiyne (1, Figure 1.1). The latter, in particular, should exhibit attractive properties such as third-order nonlinear optical susceptibility, an enhanced redox activity, and conductivity or superconductivity when doped with alkali metals incorporated into the pores (about 2.5 Â) within its dehydro[18]annulene units [17-19]. Similar expansion of the C(sp3)-C(sp3) bonds of diamond would provide the three-dimensional lattice 2, called superdiamond (Figure

1.1), which is expected to be quite stable because of its lack of extended acetylenic n conjugation [20, 21].

Generally, by inserting an (sp-C)2 unit into each bond of a Lewis structure, one constructs a so-called "carbomer" structure of the former which has approximately a three-fold expanded size, and yet preserves the connectivity, the symmetry, the shape and

7T-electron resonance properties of its antecedent [22, 23]. Additionally, DFT calculations of structural and magnetic properties of the ring carbomers of [n]annulenic species (n = 3-6), show that the aromatic vs. antiaromatic character of [n]annulenic species is qualitatively preserved by the carbomerisation process [24]. Whereas the

2 1. Introduction

(partial) ring carbomer of itself ("carbobenzene", Ci8H6) remains unknown, in

1995 Ueda and co-workers described the first four examples of aryl-substituted derivatives (see Section 1.3) [25]. More recently, Chauvin and co-workers achieved the synthesis of variously substituted carbobenzenes and the structures of some of them could be elucidated by X-ray crystallography [26, 27]. They also accomplished the first preparation of an hexasilylated total carbomer of benzene [28].

Figure 1.1. Proposal of new carbon allotropes: graphdiyne (1) and superdiamond (2).

Continuous efforts have been directed towards the development of small modular building blocks allowing acetylenic scaffolding in one, two, and three dimensions [29-

34]. Since the early 1990s, the Diederich group has been interested in the geometrically defined expansion of molecules by formal insertion of buta-l,3-diyne-l,4-diyl fragments into all C-C single bonds of polyacetylenes, arènes, annulenes, radialenes or dendralenes, thereby generating new one- and two-dimensional carbon-rich chromophores with enhanced optoelectronic properties [35-37].

1.1 Polyethynylated Ethenes

Diethynylethenes (DEEs, 3 and 4) and tetraehynylethenes (TEEs, 3,4-diethynyl-3- ene-l,5-diyne, 5) have found wide application in the field of carbon networks in both one and two dimensions [38] (Figure 1.2).

3 1. Introduction

Figure 1.2. DEEs (3 and 4) and TEEs (5) as carbon rich modules for acetylenic scaffolding.

Derivatized geminal DEEs 3 are efficiently prepared by palladium-catalyzed cross-coupling of terminal with an appropriate vinyl triflate, according to a procedure reported by Stang and Fisk [39].

Derivatives of (E)-4, such as bis-deprotected 6, are readily accessible by a synthetic sequence which includes in its first step dialkynylation of dimethyl dibromofumarate 7 to give 8 (Scheme 1.1) [40]. Subsequent reduction of the ester moieties, protection of the hydroxyl functionalities, and removal of the alkyne silicon- based protecting groups completes the synthetical sequence.

Me3Si—— SnBu3, ' Me3Si [PdCI2(PPh3)]2,THF, OMe 25 °C OMe »- MeO 90% MeO

SiMe3

1) DIBAL-H, CH2CI2, 0°C 2) fBuMe2SiCI, Et3N, DMAP 3) K2C03, MeOH OSiMe9fBu

75% fBuMe9SiO

Scheme 1.1. Synthesis of the (£)-DEE 6. DIBAL-H = diisobutylaluminiumhydride, DMAP = 4- (/V,/V-dimethylamino)pyridine.

A general protocol for the synthesis of substituted TEEs 5 has been developed in our group [41-45]. This method takes advantage of readily available dialkynyl ketones, such as 9a-c, as key intermediates (Scheme 1.2). These ketones are converted according to the dibromoolefination methodology of Corey and Fuchs [46] into the corresponding

4 1 Introduction

dibromo derivatives 10a-c A subsequent Sonogashira cross-coupling [47, 48] with a terminal acetylene gives TEEs lla-c, and complete or partial removal of the silyl protecting groups furnishes the parent TEE Ci0H4 [49] and geminally bis-deprotected derivatives

RJ [Pd(PPh3)4], R3. .Br /R3 0 Br\. ^j. CBr4 , PPh3, Cul, BuNH2, sgf II benzene |j benzene \-s' ^- ^

ca 50% 50-90% R1 ^R2 «y~^ ^^\* 10a -C 11 a-c 9a R1 = R2 = SiMe3 9b R1 = R2 = Si(;Pr)3

9c R1 = R2 = SiMe3, Si(/Pr)3 R3 = Si(alkyl)3, aryl

Scheme 1.2. General protocol for the synthesis of geminally-substituted TEEs.

(£)-substituted TEEs 5 are accessible through a short sequence of very high- yielding steps Dibromoolefination of dialdehyde 12, which is obtained from dibromofumarate in three steps, affords tetrabromide 13 (Scheme 1 3) Elimination of

HBr and metallation using lithium diisopropylamide, followed by reaction with a trialkylsilyl chloride, i.e. Me3SiCl, generates (£)-TEE 14

Br.,Br R1 LDA, Et20, R1 CBr4, Zn, -78°C; then PPh3, CH2CI2 (Alkyl)3SiCI

R2" ~"R1 DI Dl

12 13 14

R1, R2 = Si(alkyl)3

Scheme 1.3. Route to the ©-substituted TEEs. LDA = lithium diisopropylamide.

Starting from suitable DEE monomers, the construction of poly(triacetylene)

(PTA) oligomers is possible (Scheme 1 4) [50-52] For instance, statistical deprotection of PTA dimer 15a afforded a mixture of starting material, chain propagating, and end- capping building blocks Direct oligomerization of the mixture under Hay conditions

[53] yielded dimer 15a, tetramer 15b, hexamer 15c, and octamer 15d, which were

5 1. Introduction

separated based on their different sizes by gel permeation chromatography (GPC). The octamer 15d was then used as a "macro-monomer", and a second cycle of statistical deprotection resulted in very long elongated PTA oligomers. Thus, monodisperse oligomers containing up to 16 (15e) and even 24 (15f) DEE repeat units were isolated and characterized [52]. With an estimated length of 17.8 nm, the 24-mer 15f is the longest known molecular rod featuring a fully conjugated, nonaromatic all-carbon backbone.

1)1 MNaOH(aq), THF, MeOH RO 2) CuCI, TMEDA, RO- SiEfe CH2CI2, air SiEfe EtoSi Et,Si OR -OR

15a n Yield (%) 15a 2 49 15b 4 28 15c 6 14 15d 8 6

1) 1 M NaOH (aq), THF, MeOH 2) CuCI, TMEDA, 1,2-dichlorobenzene, RO- Si Et, air, 80 °C SiEU Et3Si Et3Si -OR

n Yield (%) 15d 8 60 15e 16 20 15f 24 8

Scheme 1.4. Synthesis of long monodisperse PTA oligomers by statistical deprotection- oligomerization cycles. TMEDA = /V,/V,/V',/V'-tetramethylethylenediamine.

TEEs also find application in the field of organometallic chemistry. For example, monodisperse Ptn-bridged TEE oligomers were prepared by oxidative Hay oligomerization [53] of a suitable TEE monomer under end-capping conditions [54].

These molecular rods exhibit nearly complete lack of rc-electron derealization along the

6 1 Introduction

oligomeric backbone, as a consequence of the nature of the Pt-C bond which has mainly

G-character A recent paper by Fossey [55] and co-workers reported the cobalt(I)- mediated [2+2] cycloaddition of a TEE derivative to afford a stable binuclear organometallic cobalt complex This novel compound may serve as a model for constructs which may allow oligomerization

The large library of TEE units that became available over the past decade also permitted the construction of novel families of acetylenic macrocycles such as perethynylated dehydroannulenes [56, 57] expanded radialenes [58-60], and radiaannulenes [61] Arylated TEEs, such as the donor-acceptor substituted derivative

16, are found to exhibit reversible, photochemical transacts and cis^trans isomerization, not perturbed by thermal isomerization pathways (Scheme 1 5)

16 17

1)/7Bu4NF, THF, 0°C 2) CuCI, nBuNH2, Br = Si(/Pr)3, NH2OHHCI, DMF, 20 °C

N(;Pr)2

N(/Pr)2

18

Scheme 1.5. Synthesis of the c/'s-TEE 17 and the elongated TEE derivative 18. DMF = N,N- dimethylformamide.

7 1. Introduction

This property has been exploited, for instance, in the recent preparation of elongated TEE 18, which, in turn, paved the way for the synthesis of novel perethynylated dehydroannulenes [62]. Irradiation of 16 in Et20 [36, 45] with a medium- pressure Hg lamp (125 W) for 2 h at 20 °C provided a mixture of E and Z isomers, which was readily separated by column chromatography to yield 17 (49%) along with starting material 16 (48%). Removal of the Si(/'Pr)3 groups in 17 with «BU4NF, followed by

Cadiot-Chodkiewicz coupling [63] with l-bromo-2-(triisopropylsilyl)ethyne [64], furnished the elongated TEE derivative 18 in good yield (57%) as an air- and light-stable deep-red solid. The Si(/'Pr)3 protecting groups were removed («Bu4NF), and the free bis(buta-l,3-diyne) was subjected to oxidative Hay coupling [53].

Hexadecadehydro[20]annulene 19 and tetracosadehydro[30]annulene 20 (Figure 1.3) were obtained as deep-purple metallic solids, that are readily soluble in chlorinated solvents.

The presence of the peripheral rc-electron donor groups (iV,iV-dialkylanilino groups) has three beneficial effect on this kind of macrocycles: 1) the solubility of the compound is enhanced, 2) the electron-deficient all-carbon cores are stabilized against nucleophilic attack and cycloadditions, and 3) intense bathochromically shifted charge- transfer (CT) bands result from strong intramolecular CT interactions between these groups and the electron-accepting all-carbon cores. JV,iV-diisopropylanilino-substituted dehydroannulenes showed a CT band bathochromically shifted by more than 30 nm compared to the jV,jV-dimethylanilino-substituted analogues. This behaviour probably arises from the stronger electron-donating ability of the iV,iV-diisopropylanilino groups

[65]. l~R NMR spectroscopy studies of compound 19 and 20 showed no concentration dependence of the chemical shift of the aromatic protons. This indicates the absence of self-association within the concentration range studied (0.1-5.0 mM). The lack of any kind of self-aggregation was also confirmed by UV/Vis spectroscopy: no deviations from

5 the Lambert-Beer were observed within the concentration range of 2 x 10~6-2 x 10 M.

Electrochemical studies provided indications that the antiaromatic system 19 is more readily reduced than the aromatic counterpart 20.

8 1 Introduction

(/Pr)2N N(,Pr)2

(/Pr)2N N((Pr)2

(Pr)2H N(/Pr)2

(/Pr)2N

(/Pr)2N N(;Pr)2

Figure 1.3. Extended donor-substituted dehydro[20]annulene 19 and dehydro[30]annulene 20.

1.2 Polyethynylated Aliènes

Expansion of the central olefinic bond in DEEs and TEEs leads to the di- and tetraethynylated aliènes 21 and 22, respectively (Figure 1 4)

% R % # =r J R \ /// % 21 22

Figure 1.4. Diethynyl- (21) and tetraethynylallenes (22) as carbon-rich modules for acetylenic scaffolding.

9 1 Introduction

Despite numerous attempts [66, 67], tetraethynylallene 22 still remains elusive, whereas the preparation of 1,3-diethynylallenes (DEAs) 21 has been only recently reported [67-69] The major problems encountered during the previous attempts to synthesize these building blocks were their high tendency for rearrangement and facile

[2+2] cycloadditions Palladium-catalyzed cross-coupling reactions are a very useful tool for the preparations of DEAs from substrates carrying propargylic leaving groups such as halides, epoxides, acetates, and carbonates An appropriate difference in steric bulk of two alkyne substituents in the precursors ensures high regioselectivity in the cross- coupling reactions (Scheme 1 6)

1) (/Pr)3Si—=, [Pd(PPh3)4], Cul, Si(/Pr)3 (/Pr)2NH, CH2CI2 2) fBuMe2SiCI, fBuMe,SiO- imidazole

OSiMe7fBu 52% (/Pr)3Si //, ^OSiMe2fBu

(/Pr)3Si (±)-23a

Si(/Pr)3 (/Pr)3Si—=, [Pd(PPh3)4], Cul, (/Pr)2NH, CH2CI2

(/Pr)3Si

(/Pr)3Si

(±)-23b R = n-C6H13 (94%) (±)-23c R = p-CH2C6H4OMe (57%)

nBuLi, PhCOCI; Si(/Pr)3

then(/Pr)3Si—= , [Pd(PPh3)4, Cul, (/Pr)2NH, THF, A

(/Pr)3Si 38%

(/Pr)3Si (±)_23d

Scheme 1.6. Synthesis of 1,3-dialkynylallenes.

10 1. Introduction

A strong dependence of the rate of dimerization on the degree of steric shielding was observed for the above reported DEAs. Unlike the most sterically encumbered derivative (±)-23a, compounds (±)-23b and (±)-23c were susceptible to thermal dimerization, probably through a stepwise radical mechanism [70, 71]. The phenyl- substituted aliène (±)-23d was even more prone to undergo dimerization.

As a result of the inherent 90° twist of the unit, suitably substituted aliènes are axially chiral. Thus, the incorporation of an aliène skeleton in a compound leads to a three-dimensional structure and imparts chirality to the molecule. However, only few examples of allenophanes (cyclophanes bearing aliène bridges) are found in literature [72-74]. This is probably due to the difficulties associated with their synthesis and the high reactivity of aliène moieties [75].

The relatively stable tert-buty\ substituted DEA (±)-25 is the building block in the preparation of 27, the first allenoacetylenic macrocycle without aromatic rings in the backbone (Scheme 1.7). DEA (±)-25 is obtained in high yield when pentafluorobenzoate is used as the leaving group in Pd-catalyzed cross-coupling reaction of precursor (±)-24

[76]. Tetraallene 26, which was obtained as a mixture of different stereoisomers, was subjected, after cleavage of the triisopropylsilyl groups, to the final ring closure under high dilution conditions (1CT4 M). The Eglinton-Galbraith protocol [77] was most effective, providing a total yield of 80% of the macrocyclic tetraallene 27. The latter exists as seven stereoisomers, two pairs of enantiomers and three achiral diastereoisomers. The ratio of the five diastereoisomers (1:1:4:1:1) corresponds roughly to the statistically controlled ring closure. These isomers were successfully separated with a combination of two different HPLC techniques. The major component of 27 was determined to be the C} isomer by NMR spectroscopy on the basis of the low symmetry.

The formation of racemic Cy-symmetric 27 is expected to be favored over the formation of other isomers. Moreover, an allenophane bearing units was prepared from

(±)-25. All four isomers were also separated, the structures were characterized spectroscopically, and the structure of the D4 isomer was confirmed by X-ray crystal- structure analysis.

11 1 Introduction

HO [Pd(PPh3)4], Cul, (;Pr)2NH, CH2CI2, 50 °C >- 69%

(±)-24 (/Pr)3Si (±)-25

-Si(/Pr)3

(/Pr)3Si

26

1)nBu4NF, ortho-nitrophenol 80% THF, 20 °C 2) CuCI, CuCI2, pyridine

27

Scheme 1.7. Synthesis of the allene-macrocycle 27.

As these results clearly show, a versatile access to enantiomerically pure DEAs is highly attractive, in particular since enantiomerically pure chiral allenophanes should provide insight into the relationship between structure and chiroptical properties

12 1. Introduction

Additionally, semi-empirical calculations predict the formation of helical foldamers with distinct conformational preferences upon oxidative acetylenic coupling of enantiomerically pure DEAs.

In a recent paper [78], Diederich and co-workers reported the synthesis of length- defined oligomers based on DEAs units. By using the end-capping oligomerization, a strategy which was already adopted for the preparation of PTA oligomers, oligomers of defined length composed of n = 4, 6, 8, and 10 repeat units were obtained. The UV/Vis spectra of these oligomers confirm the absence of extended rc-electron conjugation across the oligomeric backbone due to the orthogonality of the allenic 7T-system. The position of the longest wavelength bands are nearly unchanged upon moving from dimeric to decameric oligomer (Figure 1.5).

200000 -

150000- Si(zPr)-,

100000-

el M cm

50000 -

0-

225 250 275 300 325 350 375 400

/l/nm "

Figure 1.5. UV/Vis spectra of different allenoacetylenic oligomers in cyclohexane at 20 °C. All oligomers are present as mixture of stereoisomers.

Since a racemic DEA was used as building block, it was expected that these oligomers were formed as mixtures of stereoisomers. However, both H and C NMR spectroscopy only revealed one unique set of resonances within an oligomeric fraction of defined length. In this specific case, NMR analysis does not differentiate between the distinct diastereoisomers. The poor Stereodifferentiation is also the main obstacle on the way to the optical resolution of DEAs. In the same work [78], the authors presents some encouraging preliminary results obtained by HPLC with analytical samples. Another

13 1. Introduction approach that looks promising is the asymmetric synthesis by Pd-mediated SN2'-type cross-coupling of an alkyne to optically pure bispropargylic pentafluorobenzoate. By this method, optically active aliènes with ee up to 78% were obtained.

1.3 Polyethynylated Butatrienes

Further expansion of the cumulenic fragment in diethynyl- (21) and tetraethynylallene (22) yields diethynyl- and tetraethynylbutatriene 28 and 29, respectively (Figure 1.6).

V-r W R \\ / \ 28 29

Figure 1.6. Diethynyl- (28) and tetraethynylbutatrienes (29) as carbon-rich modules for acetylenic scaffolding.

In 1993, the preparation of the first symmetrical tetraethynylbutatrienes was reported [79]. These new chromophores were thought to be possible precursors to novel two dimensional carbon networks (Scheme 1.8). The tetraethynylbutatrienes 30a and

30b were synthesized by dimerization of the gew-dibromo olefins, upon treatment with

«BuLi and [Q1IPBU3]. In an attempt to synthesize the [4]radialene 31, following a procedure of West and co-workers [80], the tetraalkynylcumulene 30b was reacted with

PPh3. However, instead a selective reduction of the central double bond occurred. This side-reaction is presumably initiated by attack of triphenylphosphine at the central double bond yielding a zwitterion, which is protonated at the vinylic carbanion centers by traces of moisture [81]. The resulting hydroxide ion subsequently reacts with the vinylic phosphonium ion by elimination of triphenylphosphine oxide.

14 1. Introduction

R

R = Si(/Pr)3

Scheme 1.8. Synthesis of the tetraethynylbutatriene 30a/b and possible routes to perethynylated radialenes.

The family of polyethynylated butatrienes has been recently extended to a series

of differentially substituted 1,4-diethynylated and 1,1,4,4-tetraehynynlated butatrienes

[82] (Figure 1.7). The cis-trans isomerization of differentially substituted 1,1,4,4-

tetraethynylbutatrienes via a singlet diradical transition state is remarkably facile with a

rotational barrier, determined by l~R NMR magnetization energy transfer investigations,

of AG* ~ 20 kcal mol-1, similar to the barrier for rotation about a peptide bond [83]. The

barriers for 1,4-diethynylbutatrienes are higher, around 25 kcal mol-1; this allowed, in the

case of the triisopropylsilyl derivative, the isolation of pure isomers. Detailed

computational studies by Houk and co-workers [84] confirmed the stabilizing effect of

alkynyl substituents on the proposed singlet diradical transition state and accurately

reproduced the experimentally determined rotational barriers. UV/Vis spectroscopy and

electrochemical studies demonstrated that the electron-accepting power of the central all-

C-core is greatly increased upon changing from tetraethynylethenes (TEEs) to

tetraethynylbutatrienes. As for TEEs, introduction of peripheral aryl donor group such as iV,iV-dimethylanilino residues leads to compounds featuring intense bathochromically

shifted intramolecular charge-transfer bands. The same work also showed that the

15 1. Introduction

preparation of 1,1,4,4-tetraethynylbutatrienes with two terminal free alkyne group in position 1 and 4 of the cumulenic core is possible. Their relative stability in solution opens the way to the construction of novel linear oligomers and macrocycle with unprecedented all-C-skeletons and unusual opto-electronic properties.

R Si(/Pr)3 R a) M1

\ H

H

R

R = Ph R = Si(/Pr)3 R = 4-NMe2-C6H4 R = 4-NMe2-C6H4 R = 3,5-(fBu)2C6H4 R = Fc R = 4-MeO-C6H4 R = Fc

R = fBu

Figure 1.7. a) Differentially substituted 1,1,4,4-tetraethynylbutatrienes and b) 1,4- diethynylbutatrienes. Fc = ferrocenyl.

In contrast to aliènes, the preparation of two acetylenic butatriene macrocycle had been already achieved in the middle of the nineties by Ueda and co-workers [25, 85]

(Figure 1.8). Since the selective synthesis of (Z)-[3] is complex, both macrocycle backbones were constructed prior to introduction of the butatriene moieties.

Both systems contain (4n + 2) out-of-plane rc-electrons and are represented well by two resonance structures. Carbobenzene derivatives 32 were found to be stable both in crystalline forms and in chloroform solutions at room temperature, to have aromatic character by the existence of a diamagnetic ring current on the basis of the NMR spectral data, and to conform to the /^-symmetry group, that is, the two canonical forms are equivalent. Also 33, which is classified as a Sworski-type dehydroannulene [86], shows characteristic properties of arènes. In their *£! NMR spectra, all the signals are observed at very low field indicating the existence of a diatropic ring current. The numbers of signal in the 13C NMR spectra corresponds to half the number of carbon atoms, which reflects the symmetry of the compounds, C2v. No signals were detected in the typical area for acetylene carbons or cumulenic sp-hybridized carbons. This observation confirms that 33 may be represented by two major resonance structures although they are not equivalent.

16 1 Introduction

32 33

= = R R1 H R = H

R = R1 = Ph R = Ph

R = R = Ph, R1 = 4-fBuC6H4 4-fBuC6H4 R = OSiMe2fBu R = Ph, R1 = tBu

Figure 1.8. Dehydro[18]annulene 32 and dehydrobenzo[14]annulene 33.

1.4 Polyethynylated Ethanes and Methanes

Whereas the planar core of TEEs, composed of sp- and sp2-hybridized C-atoms, restricts their use to the formation of two-dimensional acetylenic scaffolding only, quaternary sp3-hybridized carbon(s) allow the construction of three-dimensional carbon lattice (Figure 1 9)

34 35

Figure 1.9. Acetylenic modules based on sp3-carbon centers

Suitably functionalized derivatives of 1,1,2,2-tetraethynylethanes (3,4- diethynylhexa-l,5-diyne) 34 were thought to be ideal to serve this purpose [87]

Derivatives of 34 were obtained by alkynylation of l,5-diyne-3,4-dione 37 [88], affording the diastereoisomeric diols meso-38 and (±)-38 (Scheme 1 9) [89] Next, meso-38 was converted into orthoester 39 and the SiMe3 protecting groups were subsequently removed

17 1 Introduction

HO OH (/Pr)3Si = ) ( = Si(/Pr)3 / \ Me3Si SiMe3

0 0 (±)-38 (25%) Me3Si- -MgBr, THF, 20 °C

(/Pr)3Si Si(;Pr)3 HO OH

37 Me3Si—^'")—("i^ SiMe3

(/Pr)3Si Si(/Pr)3 HC(OEt)3, CSA (cat.) meso-38 (48%) Url2Cyl2 '89% OEt 0^0 Me3Si- -SiMe3 1) K2C03, MeOH, THF 2) CuCI, TMEDA, (/Pr)3Si Si(;Pr)3 CH2CI2, air 39 67%"

(/Pr)3Si Si(/Pr)3

OEt

(/Pr)3Si Si(/Pr)3

cat. HI, 120°C

Si(/Pr)3 Si(/Pr);

(/Pr)3Si Si(/Pr)3

EtO< >-OEt

(/Pr)3Si Si(/Pr)3 41

Si(;Pr)3 Si(/Pr)3 42

Scheme 1.9. Tetraalkynylethane scaffolding and unexpected formation of permethylenated cycloocta-1,5-diyne 42. TMEDA = A/,A/,A/',A/'-tetramethylethylenediamine, CSA = camphorsulfonic acid.

18 1 Introduction

Orthoester such as 39 undergo acid catalyzed thermolysis under formation of the corresponding TEE derivative Hay coupling [53] of the partially deprotected 39 afforded a diastereomeric mixtures of syn-40 and anti-40, which were separated by column chromatography Both syn-40 and anti-40 seemed to be promising precursors to nonaromatic octadehydro[12]annulene 41, which had previously only been synthesized by oxidative dimerization of the appropriate (Z)-TEE [42, 56] However, elimination of the orthoester functionality led exclusively, probably via a biradical mechanism, to the highly strained permethylenated cycloocta-l,5-diyne 42 which was isolated and characterized (X-ray) as a mixture of diastereoisomers, featuring unexpectedly high kinetic and thermal stability

Derivatives of triethynylmethane 35 were prepared by acetylide addition to precursor carbonyl compounds, namely ketones 9a/b (Scheme 110)

R- -Li, hexane, -20 °C 9a.b *" 81%

43a, b

SOCI2, pyridine, CH2CI2, -78 °C

Me3Si * SiMe3 Cl\/Si(/Pr)3 \/ Me3Sk X SiMe3

CI'

(/Pr)3sr ^Si(/Pr)3

44 R = Si(/Pr)3 (86 %) Me3Si SiMe3

(±)-45 R = SiMe3 (76 %)

Scheme 1.10. Preparation and reactivity of triethynylmethanes 43a/b.

19 1. Introduction

The resulting tertiary alcohols 43a [90] and 43b [66] were believed to serve as building blocks for the synthesis of the elusive tetraethynylallene 22 [91]. The products formed upon treatments of these alcohols with SOCb and pyridine in CH2CI2 at -78 °C were highly dependent on the steric demand of the silyl protecting groups on the acetylene moiety. Thus, Si(/'Pr)3-protected 43b gave the expected aliène 44. In contrast,

SiMe3-protected 43a only yielded cyclobutane derivative (±)-45 since the aliène, as formed, lacked the sterical shield to prevent rapid dimerization.

Differentially silyl-protected triethynylmethane derivative (±)-46 served as building block for the synthesis of the first expanded cubane 49 (Scheme 1.11) [92, 93].

Starting from ketone 9c, this racemic corner module was obtained in 83% yield over two steps. Selective cleavage of the trimethylsilyl group, followed by oxidative coupling

[53], furnished the edge module meso-47 along with its diastereoisomers (±)-47. The desired meso-47 could not be isolated in pure form and the subsequent deprotection, followed by coupling of the resulting stereoisomeric mixture under high dilution conditions, led to the face module 48d together with three other macrocyclic diastereoisomers (48a, 48b and 48c). Although this diastereoisomeric mixture was obtained in a remarkable 72% yield, 48d proved to be a minor diastereoisomer. The four diastereoisomers could be separated by column chromatography, owing to different retention factors, and the desired diastereoisomer 48d was obtained in a yield of 10%.

Deprotection of face module 48d and successive acetylenic oxidative macrocyclization under high dilution conditions provided the target molecule in low yield as a brownish powder that explodes upon scraping. Although the instability severely hampered its purification, expanded cubane 49 was obtained in sufficient purity for complete spectroscopic characterization (JH NMR, 13C NMR and IR spectroscopy). Further evidence for the successful synthesis of 49 was obtained by MALDI-TOF experiments in the negative ion mode, where the peak corresponding to [M - OMe]- was detected. This high-energy compound rearranged into fullerenes under conditions of FT-ICR mass spectrometry. In the negative ion mode, the stepwise loss of up to 6 MeO fragments was observed. At lower mass (m/z = 672) the C56 ion, resulting from loss of all 8 MeO groups, was weakly visible. The authors assigned this weak peak to a fullerene ion resulting from rapid isomerization of the initially formed anionic C56 cluster.

20 1. Introduction

= 1)Et3Si Li Si(/Pr)3 THF, 0°C 1)1 NNaOH, 2) nBuLi, THF, -78 °C, (/Pr)3Si SiEt3 MeOH/THF (1 1) /// '// then Mel, -78— 2) CuCI, TMEDA, M„n SiEt3 MeU' 20 °C CH2CI2, air 9c >- 83% 86%

SiMe3 Et3Si MeO (±)-46 meso- and (±)-47 "Si(/Pr)3

Si(/Pr)3 ('Pr)3Si

.OMe

(/Pr)3S 0Me (/Pr)3Sl

"OMe Sl(,Pr)= MeO MeO' 48a (38%) 48b (18%)

1)K2C03, Si(/Pr)3 Si(/Pr)3 MeOH/THF (1 1) 2) CuCI, TMEDA, CH2CI2, air 0Pr)3Si Si(/Pr)3

(

(/Pr)3S OMe (/Pr)3Si Me9^ Si(/I OMe

MeO

48c (36%) MeO OMe Si(/Pr)3 48d(10%)

1)Bu4NF,wetTHF, 14% -15 °C 2) CuCI, TMEDA, CH2CI2, air

MeQ OMe X ^ I I Me'\/— '_ ^OMe ~l I I I r_| |_ MeO -7 J& 0Me I / I I

/— — /

MeO OMe 49

Scheme 1.11. Synthesis of the expanded cubane 49. TMEDA = N,N,N',N'- tetramethylethylenediamine.

21 1. Introduction

This hypothesis was supported by the subsequent facile C2-fragmentations, that

are highly characteristic for fullerenes [94-97]. Thus, C2-fragmentations of C56

generated intense peaks which were assigned to the fullerene ions C54~ (m/z = 648), C52~

(m/z = 624), and Cso~ (m/z = 600). In the positive ion mode, the loss of all methoxy

groups and subsequent rearrangement to fullerene ions seemed even more favorable.

= Neither the fragment ions [M - n OCH3]+ (n 1-7) nor the Cs6+ ion could be detected.

Rather the spectrum was dominated by the fullerene ions C54+, C52+, and C50+, resulting

from C2-fragmentations. Furthermore, these ions underwent remarkable ion-molecule

coalescence reactions [98-100] giving formation of higher fullerene ions from Cioo+ (m/z

= 1201) to Cio6+ (m/z = 1272) which, upon C2-fragmentation, generate the fullerene ions

and . C94 , C96 , C98

Tetraethynylmethane 36 is the monomeric unit for the construction of

superdiamond 2. Although elusive for many years, triethynylvinylmethane and

tetraethynylmethane were elegantly prepared in 1993 by Feldman and co-workers

(Scheme 1.12) [101-103]. The synthesis of 36 commences with the versatile vinylic

dibromide 10a which was converted into allylic alcohol 50 by selective lithiation

followed by condensation with gaseous formaldehyde. The central quaternary sp3-carbon

center was smartly introduced by the acid-mediated Johnson orthoester variant of the

Claisen rearrangement, leading from 50 to 51. The triethynylated ester 52 was available

by a straightforward elimination/silylation sequence. Conversion of the acetic acid

residue in 52 to the fourth alkyne unit proved to be the most challenging aspect of the

synthesis. Eventual recourse to a modified version of Shibuya's acetylene synthesis

[104] provided the tetraethynylated species 53 in good yield. After desilylation, the

targeted tetraethynylmethane 36 could be isolated in excellent yield as a white, powdery

solid which decomposes rapidly to a brown oil over the course of a few minutes at room

temperature. In contrast, the silyl-protected precursor 53 is much more robust.

Preliminary studies towards crosslinking polymerization with compounds 36 showed an

unexpected oxygen content in the oligomerization products [105]. It was speculated that

incorporation of the alkynes into a partially formed network introduced an added element

of strain which facilitated hydration under mild oxidative condition.

22 1. Introduction

nBuLi, CH20(g), CH3C(OEt)3, Et20, 95 °C EtC02H 10a ^ 91% 93% Me3Si SiMe3

50

1)LDA, Ph2S2,THF Me3Si 2) DIBAL-H, CH2CI2 Me3Si LDA, Me3SiCI, 3) MCPBA, CH2CI2 Tris THF C02Et 4) TrisNHNH2, CH3CN

98% 63%

Me3Si SiMe3 Me3Si SiMe3 52

Me3Si K2C03, CH3OH, LiOH, Et20 0°C * 74% / \ 85% Me3Si SiMe3 36 53

Scheme 1.12. Synthesis of the tetraethynylmethane 36. LDA = lithium diisopropylamide, DIBAL- H = diisobutylaluminumhydride, MCPBA = mefa-chloroperbenzoic acid, Tris = 2,4,6 triisopropylbenzenesulfonyl.

Triethynylvinylmethanes and tetraethynylmethanes were also prepared in one step by Yamaguchi and co-workers [106] through GaCl3-promoted regioselective diethynylation of 1,4-enynes and 1,4-diynes, respectively. The reaction pathway is not clearly understood, yet: while the mechanism of the C-C bond formation can be rationalized as the addition-elimination of organogallium compounds and chloroethyne.

The C-H activation by this main element Lewis acid is quite unusual [107, 108].

Strictly related to tetraethynylmethane 36 are two interesting modules prepared by

Bunz and co-workers, diethynyldipropargylmethane and tetrapropargylmethane [109], although their potential for three-dimensional acetylenic scaffolding remains to be explored.

23 1. Introduction

1.5 Aim of the project

As shown above, polyethynylated methanes are an interesting class of compounds that can be conveniently assembled in the preparation of three-dimensional acetylenic structures. On the other hand, as we have seen with the 1,3-diethynylallenes [78], chirality has only recently appeared on the scene of the carbon-rich molecular scaffolding.

The main goal of this thesis was to prepare optically active trialkynylmethane- based building blocks whose chirality is only derived from different protecting groups on the alkynyl residues. Exploration of their scaffolding possibilities was a primary aspect as well, and correlated strategies and developments will be discussed.

24 2. Asymmetrie Synthesis of a Differentially Silyl-

Protected Tris(Alkynyl)Methyl Methyl Ether

The assembly of expanded cubane 49 (see Section 1.4), passing via the sequential construction of corners, edges, and faces, was accomplished in a yield of only 0.2% [92,

93]. As shown, in this first synthesis the corner module was obtained as a racemic mixture by the non-stereoselective insertion of the ethynyl units through nucleophilic addition of lithium to a carbonyl group. As a result, the main drawback of the preparation was the formation of undesired as well as inseparable stereoisomers at the stage of the various intermediates. By starting from an optically pure corner module, the formation and low-yielding transformations of mixtures of stereoisomers should be largely avoided and the overall yield of 49 improved. Moreover, such chiral building block should allow the field of three-dimensional acetylenic scaffolding to be enriched with novel molecular topologies, including unprecedented expanded platonic structures

(see Chapter 3).

2.1 Retrosynthetic Plan

As illustrated in Scheme 2.1a, it was conceived to stereoselectively generate the stereogenic center of adduct (R)-54 at an early stage of the synthesis, and to introduce the last required ethynyl unit by formal dehydration of enantiopure ketone (R)-55. Ketone

(R)-55 could be obtained by oxidation of the hydroxy function resulting from cleavage of the protecting group of (R,S)-56, which, in turn, could be accessible in a two-step synthesis from oc-oxyketone (S)-57. The stereogenic center in (S)-57 defines diastereotopic faces for the adjacent carbonyl group (1,2-asymmetric induction).

Furthermore, the presence of an oc-oxygen donor atom was expected to assist the diastereoselective addition of a metal trimethylsilylacetylide by leading to chelation of the metal ion, together with the carbonyl oxygen. According to Cram's cyclic model, the 2 Asymmetric Synthesis of a Differentially Silyl-Protected Tns(Alkynyl)Methyl Methyl Ether

nucleophile was expected to attack from the stencally less hindered side, thus leading to the predominant formation of the anti-58 diastereoisomer (Scheme 2 lb) [110-112]

Chiral oc-oxyketone (S)-57 could easily be prepared in two steps from ethyl (^-lactate ((-

)-(

a) Si(/Pr)3 0 Si(/Pr)3 PGO Si(/Pr)3

^ MeO V MeO \ SiMe3

(R)-55

OH ,OEt Ç

0

(-)-(S)-59 (S)-57

b) Nu PGO Si(/Pr)3 \ ?G (/Pr)3Si- ^ M CH3

Nu = -^^SiMe3

Scheme 2.1. a) Retrosynthetic analysis of corner module (R)-54. b) According to Cram's cyclic model, addition of a metal trimethylsilylacetylide should provide anti-58 as major product. PG = protecting group, M = metal.

2.2 Synthesis of the Optically Active Corner Module

26 2. Asymmetrie Synthesis of a Differentially Silyl-Protected Tris(Alkynyl)Methyl Methyl Ether

The synthesis commences with the protection of the hydroxyl group of the enantiomerically pure ethyl lactate (-)-(S)-59 to afford (-)-(,S)-60 (Scheme 2.2). A p- methoxybenzyl (PMB) residue was chosen as a protecting group since benzyl ethers are frequently employed in chelation-controlled nucleophilic additions [113] and since this group can be oxidatively removed without affecting the alkyne moieties. In order to avoid epimerization, the introduction of the PMB group was achieved by employing a non-basic procedure [114] using /»-methoxybenzyl 2,2,2-trichloroacetimidate, readily prepared in one step reaction [115], and catalytic trifluoromethanesulfonic acid (TfOH).

The corresponding Weinreb amide (-)-(S)-61 was prepared in good yield following the protocol reported by Paterson et al. [116]. Generally, the direct addition of organolithium or Grignard reagents to an ester generates the tertiary alcohol resulting from addition of two molecules of the nucleophile to the substrate. This is due to the increased electrophilicity of the ketone product relative to the ester starting material. This common problem is almost completely suppressed by using the Weinreb amide intermediate, owing to the formation of a chelated intermediate which only collapses to the ketone product on aqueous workup [117-119].

PMBOC(NH)CCI3, /PrMgCI, HO TfOH, CH2CI2, PMBO (MeO)MeNH-HCI, PMBO Cyclohexane THF, -30°C OEt 86% 78% o 0 0

B-(S)-59 B-(S)-60 (-)-(S)-61

(/Pr)3Si—e -Li, PMBO Si(/Pr)3 Me^Si- -M, THF, -78° C Et90

96% for conditions and yields, see Table 2.1 SiMe?

(RS)-63and (S,S)-63

Scheme 2.2. Diastereoselective synthesis of the optically active dialkynyl alcohol 63. PMB = p- methoxybenzyl, TfOH = trifluoromethanesulfonic acid.

27 2. Asymmetrie Synthesis of a Differentially Silyl-Protected Tris(Alkynyl)Methyl Methyl Ether

Subsequently, ketone (-)-(S)-62 was readily formed in high yield by reaction with lithium (triisopropylsilyl)acetylide; the use of the corresponding organomagnesium acetylide led to a reduced yield.

2.2.1 Chelation-controlled addition

The subsequent chelation-controlled addition of (trimethylsilyl)acetylide was investigated under a variety of conditions summarized in Table 2.1. The lithium acetylide reacted with good diastereoselectivity (diastereoisomeric excess, de = 82%) but gave a moderate yield (64%) only (entry 1). The Grignard reagent (entry 2) was prepared by transmetallation of the lithium acetylide with MgBr2OEt2 [120]. Addition did not occur at -78 °C, and therefore the temperature was raised slowly to 20 °C. The products were obtained in good yield (76%) but the diastereoselectivity was lower than in the previous case. The pre-chelation of ketone (-)-(S)-62 with TiCl4, followed by the addition of Ce(III) (trimethylsilyl)acetylide, did not improve the yield and, moreover, the diastereoselectivity was lost (entry 3) [121]. Extremely high reactivity was observed and this may account for the lack of diastereoselectivity. In all cases, the major diastereoisomer (R,S)-63, presumed to arise from chelation control was not separable from the minor diastereoisomer (S,S)-63. The diastereoisomeric ratio (dr) was determined by integrating the HO resonances (S= 3.19 (R,S) and 3.15 (S,S)) in the JH

NMR spectrum in CDCI3. Separation of the diastereoisomers by analytical gas chromatography (GC) supported the JH NMR results.

Table 2.1. Diastereoselective addition of acetylide nucleophiles (Me3SiCECM) to ketone (S)-62 providing alcohols (R,S)-63 and (S,S)-63.

dir1*1 (de) dir1*1 (de) M Conditions Total Yield Entry (%) 1H NMRtbl GC[cl

1 Li -78 °C, 1.5 h 64 91 : 9 (82%) 91 : 9 (82%)

2 MgBr -78°C^20°C, 24 h 76 83: 17(66%) 86: 14(72%)

3 CeCI2/TiCI4 -78 °C, 30 min 65 51 : 49 (2%) 50 : 50 (0%)

[a] (R,S)-63 : (S,S)-63. [b] Determined by integrating the HO resonances (S= 3.15 and 3.19 in CDCI3) in the H NMR spectrum, [c] Determined by GC analysis (Column: WCOT Fused Silica, CP-Sil 8CB, 30 m x 0.32 mm; Detector: FID; Isotherm: 210 °C; Carrier gas: Helium).

28 2. Asymmetrie Synthesis of a Differentially Silyl-Protected Tris(Alkynyl)Methyl Methyl Ether

2.2.2 Protecting Group Replacement

Within the context of the synthesis of the expanded cubane 49, the yield (64%) together with the optical purity (de 82%) of (R,S)-63 obtained in entry 1 were not very satisfactory. Therefore, we changed from the larger triisopropylsilyl to the smaller triethylsilyl protecting group. This was preferred to trimethylsilyl because of the lability of the latter when adding the acetylide to a carbonyl group, as in the case of the addition to the ketone formed from the Weinreb amide [120]. Chelati on-controlled addition of lithium (triethylsilyl)acetylide to Weinreb amide (-)-(S)-61, as described above, gave ketone (-)-(S)-64 in high yield (Scheme 2.3).

SiEt,

Et3Si — Li, PMB0 siEt, Me3Si — Li,

~ THF, -78° C se? Et20, -78° C B-(S)-61 89% 0 83%

(R,S)-65 and (S,S)-65

(de 90%)

Scheme 2.3. Synthesis of the optically active bispropargylic alcohols (R,S)-65. PMB = p- methoxybenzyl.

The following addition of lithium (trimethylsilyl)acetylide in Et20 at -78°C finally provided the diastereoisomeric mixture (R,S)-65/(S,S)-65 in a total yield of 83%.

Gratifyingly, the diastereoselectivity had improved to dr 95:5 (de 90%), as determined by integrating the HO resonances (S= 5.13 (R,S) and 5.16 (S,S)) in the ^NMR spectrum in

(CD3)2CO, with (R,S)-65 being the major product as predicted by Cram's cyclic model.

Measurement of the diastereoisomeric ratio before and after chromatography gave identical results, thus confirming that separation of the isomers did not occur during the purification process (Figure 2.1).

It is interesting to note that although numerous examples of bispropargylic alcohols or their derivatives are described in the literature, only a few reports describe optically active compounds. For instance, on the way to the synthesis of Zaragozic Acid

A, Tomooka et al. prepared an optically active, tertiary bispropargylic alcohol via a diastereoselective Wittig rearrangement [122].

29 2. Asymmetrie Synthesis of a Differentially Silyl-Protected Tris(Alkynyl)Methyl Methyl Ether

J____x__ Ji_ JUL. JLJi .J

7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 ppm

b)

I 1

7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 ppm

Figure 2.1. 1H NMR spectra (500 MHz, CD3COCD3) of diastereoisomeric mixture of (R,S)-65 (major) and (S,S)-65 (minor): a) before purification by chromatography and b) after purification by chromatography. A de of 90% was determined in both cases by integrating the OH resonance.

All attempts to separate the diastereoisomeric mixture of (R,S)-65/(S,S)-65 by either column chromatography or HPLC were unsuccessful. The same working conditions utilized in the GC separation of alcohol 63 were also unsuccessful in this case: the decreased molecular weight of alcohol 65 compared to that of alcohol 63 produced a drastically diminished retention time. It should be mentioned that the chelation-

30 2. Asymmetrie Synthesis of a Differentially Silyl-Protected Tris(Alkynyl)Methyl Methyl Ether

controlled addition was the only stage in the synthesis where determination of the dr was possible. In the rest of this Section, we shall consider only the synthetic issues relevant for the preparation of the final compound. Assuming that the dr and, eventually, the er remained constant during the remaining steps, we will refer to the diastereoisomeric {i.e. enantiomeric) mixture with the stereodescriptors of the major diastereoisomer {i.e. enantiomer), only. The problems correlated with the optical purity of the targeted corner module will be discussed in the next section (Section 2.3).

Methylation of {R,S)-65 {de 90%) by deprotonation at -78 °C with «BuLi, followed by addition of an excess of iodomethane, led to the stable methyl ether {R,S)-66

(Scheme 2.4). Subsequently, the PMB protecting group was removed by oxidation using

2.2 equivalents of CAN in MeCN/H20 9:1, providing alcohol {R,S)-67 in 91% yield after purification by column chromatography (SiC^; hexane/CH^Cb 1:2) [123, 124]. Alcohol

{R,S)-67 was readily oxidized to the corresponding ketone {+)-{R)-68 using the mild

Dess^sAartin periodinane (DMP) reagent [125-129].

PMBO ^h HO nBuLi.THF, pAM ^SiEt3 '787O8Cih2e0°ce'; ^rT CH3CN/h"6(9:1) {R'S)'65 " " i^ Me0% 9^ Me0'% de90% SiMe3 SiMe3

(f?,S)-66 (RS)-67

DMP, 96% CH2CI2

0 /SiEt3

MeO '^

SiMe3

(+)-(R)-68

Scheme 2.4. Synthesis of the methylketone (R)-68. CAN = cerium ammonium nitrate, DMP Dess-Martin periodinane.

31 2. Asymmetrie Synthesis of a Differentially Silyl-Protected Tris(Alkynyl)Methyl Methyl Ether

The final step of this sequence required the dehydration of methylketone (+)-(/?)-

68 to trialkynylmethanol (R)-69. Two different synthetic routes were envisioned to achieve this synthetic step.

2.2.3 Shapiro Reaction

The first approach (Scheme 2.5) was based on the transformation of the ketone

(+)-(R)-68 into the corresponding tosylhydrazone (+)-(i?)-70 and subsequent Shapiro reaction [130, 131] in order to provide, after straightforward modifications, the desired corner module.

nBuLi, TMEDA, -78 —20°C; Br SiEt, p-TsNHNH2, SiEt3 then CH2BrCH2Br, EtOH, 20 °C 0°C (+)-(R)-68 3 X *- MeÖ v 95% % SiMe3

nBuLi, TMEDA, ^C-78 — 20 °C; then H20, 0 °C

SiEt,

SiMe3

Scheme 2.5. Towards the synthesis of the corner module (R)-69: application of the Shapiro reaction. p-TsNHNH2 = p-toluenesulfonyl hydrazide, TMEDA = N,N,N',N- tetramethylethylenediamine.

Treatment of the tosylhydrazone of an aldehyde or a ketone with a strong base leads to the formation of an alkenyl anion intermediate, which can be trapped with various electrophiles. Being formally an elimination accompanied by hydrogen shift, the

Shapiro reaction permits preparation of cyclic products with high regioselectivity if intramolecular electrophiles are used [132]. Recently, this reaction has been utilized by

Koskinen et al. in an efficient route to a Taxol A-ring building block in only four steps

32 2. Asymmetrie Synthesis of a Differentially Silyl-Protected Tris(Alkynyl)Methyl Methyl Ether

with 38%) overall yield [133]. Although tosylhydrazone (+)-(i?)-70 was obtained as a white solid in very high yield (95%), subjection to Shapiro conditions and trapping with two different electrophiles failed and complete decomposition of the starting material was observed.

2.2.4 First Success

On the other hand, the second route involved the generation of the ethynyl fragment in two steps, comprising: 1) preparation of an activated enolate and 2) elimination of the leaving group from the latter by a strong, non-nucleophilic base

(Scheme 2.6). A first successful result was obtained by applying a one-pot procedure developed by Negishi et al. [134, 135]. This procedure was already fruitfully used by

Bunz and co-workers for the preparation of diethynyldipropargylmethane and tetrapropargylmethane (see Section 1.4) [109]. Treatment of methylketone (+)-(R)-68 with lithium diisopropylamide (LDA) in THF at -78 °C gave the enolate, which was immediately trapped with diethyl chlorophosphate; subsequent elimination of the phosphate with LDA gave the trialkynylmethyl methyl ether (+)-(R)-69 as a stable oil in

16%), isolated yield after purification by column chromatography (SiC^; hexane/CH^Cb

8:1).

LDA, THF, -78 °C; then CIPO(OEt)2, -78 — 20°C; ^SiEt, then LDA, -78- 20 °C (+)-(R)-68 16%

Scheme 2.6. First successful synthesis of the corner module (+)-(R)-69. LDA = lithium diisopropylamide.

33 2. Asymmetrie Synthesis of a Differentially Silyl-Protected Tris(Alkynyl)Methyl Methyl Ether

2.2.5 An Unexpected Result

The unsatisfactory yield of the Negishi methodology, however, prompted us to develop new synthetic routes to the optically active trialkynylmethane. Enolization of

(+)-(R)-68 with 1 equivalent of LDA in dry THF at -78 °C, followed by trapping with a triflating agent such as /V-(5-chloro-2-pyridyl)triflimide (Comins reagent) [136] only afforded the alcohol 67 in 21% yield (Scheme 2.7a). No traces of the desired enol triflate were detected. To determine if an enolate was actually formed, a trapping with chlorotrimethylsilane was attempted. Indeed, the silyl enol ether (R)-71 was isolated in

12% yield after separation from the alcohol 67 and the corresponding silyl ether 72

(Scheme 2.7b).

a) LDA, THF, -78 °C; SiEto then Comins reagent, -78 °C (+)-(R)-68 Comins reagent ==cln 21% N NTf2

SiEt, Me3SiO SiEt, b)

MeO C\\ \ SiMe3 LDA, THF, -78 °C; then Me3SiCI, (R)-71 (12%) -78 °C (+)-(R)-68

Me3SiO SiEt,

Scheme 2.7. Enolization and trapping using LDA as a base, a) Trapping with a triflating agent, b) Trapping with a silylating agent. LDA = lithium diisopropylamide, Tf = trifluoromethanesulfonic.

34 2. Asymmetrie Synthesis of a Differentially Silyl-Protected Tris(Alkynyl)Methyl Methyl Ether

This unexpected result can be rationalized as LDA has been shown to be not only

a powerful proton abstractor but also a reducing agent [137, 138]. The most plausible

mechanism that accounts for LDA reductions is a nitrogen analogue of the

Meerwein-Ponndorf-Verley [139, 140] reduction. The driving force for such a reaction

is the transfer of negative charge from nitrogen to oxygen, and indeed there is precedent

for reduction in such a pathway in the reaction of benzophenone with lithium iV-

benzylanilide [141]. Thus, amide bases which do not bear hydrogen atoms on the atom

attached to the nitrogen should circumvent the reduction process. Indeed, use of a base

such as sodium hexamethyldisilazide (NaHMDS) overcame the alcohol's formation: in a

preliminary test reaction, the silyl enol ether (R)-71 was obtained in good yield (73%,

based on the crude product).

2.2.6 Improved Route

We then screened the formation of enol triflate (-)-(i?)-73 under several

conditions (Table 2.2).

Table 2.2. Formation of enol triflate (-)-(R)-73 under various conditions.

Base Inflating Agent Reaction Conditions Yield (%)

KHMDS Comins reagent THF, -78 -> -40 °C, 2 h 26

LiHMDS Comins reagent THF, -78 -> -40 °C, 2 h 37

NaHMDS Comins reagent THF, -78 -> -40 °C, 4 h 52

LTMP Comins reagent THF, -78 -> -40 °C, 6 h 23[al

NaHMDS Tf20 THF,-78^-40 °C, 3.5 h 20

_[b] NaHMDS Comins reagent THF, HMPA, -78 -> -40 °C, 4 h

[a] Conversion = 55%. [b] Decomposition. LTMP = lithium tetramethylpiperidine, HMPA = hexamethylphophoramide.

The use of the Comins reagent together with different metal

hexamethyldisilazides (entry 1-3) always afforded the desired product with yields varying

from 26% to 52%, although impurities were still present after purification by column

chromatography, as indicated by the presence of signals in the aromatic region (probably

35 2 Asymmetric Synthesis of a Differentially Silyl-Protected Tns(Alkynyl)Methyl Methyl Ether

due to a derivative of the Contins reagent) of the *H NMR spectrum (300 MHz)

Attempts to form (-)-(R)-73 by employing a base such as lithium tetramethylpiperidine

(LTMP) and trapping with the Contins reagent were also successful but incomplete conversion was observed (entry 4) The use of triflic anhydride (Tf20) as triflating agent led to the isolation of an analytically pure sample of (-)-(i?)-73, but in very low yield

(entry 5) Formation of the enol triflate in the presence of a cation chelating agent, hexamethylphophoramide (HMPA) was unsuccessful (entry 6)

Finally, the generation of the targeted tris(alkynyl)methyl methyl ether (+)-(R)-69 was accomplished, in a satisfactory 82% yield, by treating (-)-(R)-73 with 2 equivalents

LDA in THF (Scheme 2 8)

NaHDMS, THF, -78 °C; then TfO /SiEt3 Comins reagent, LDA, THF, —78 > —40 °P _78-^-40°C Mfirf^ (+)-(K)-68 * " (+)-(K)-69 MeO ooo, 52% '^\ 82%

SiMe3

(-)-(R)-73

Scheme 2.8. Improved synthesis of the optically active tris(alkynyl)methyl methyl ether (+)-(R)- 69. NaHDMS = sodium hexamethyldisilazide, LDA = lithium diisopropylamide.

2.3 Separation of Diastereoisomers: the Way to Optical Purity

As mentioned in Section 2 2, it was not possible to determine by *H NMR spectroscopy the optical purity of methyl ether (R,S)-66 nor that of alcohol (R,S)-67 during the preparation of the corner module (+)-(R)-69 In the transformations subsequent to the chelation-controlled addition, the minor diastereoisomer was no longer observed

However, when sodium (trimethylsilyl)acetylide was reacted with ketone (-)-(S)-

64 (ee 100%) in THF at -78°C, alcohol 65 was obtained as a mixture of diastereoisomers

(R,S)-65 (S,S)-65 = 80 20 (de 60%) Successive 0-methylation afforded compounds

(R,S)-66/(S,S)-66 (de 60%), and careful analysis of the *H NMR spectrum showed a new quartet at around 3 70 ppm (Figure 2 2) This proved that separation of the isomers was

36 2. Asymmetrie Synthesis of a Differentially Silyl-Protected Tris(Alkynyl)Methyl Methyl Ether

not occurring during the manipulations. Rather, the spectra of the isomers (R,S)-66 and

(S,S)-66 are so similar as to be coincident when they are present in a ratio of 95:5.

3 75Ù 3?M 3 650

,11 11 1

7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0

Figure 2.2. 1H NMR spectrum (300 MHz, CDCI3) of diastereoisomeric mixture of (R,S)-66 (major) and (S,S)-66 (minor), deriving from (R,S)- and (S,S)-65 (dr 80 : 20, de 60%).

This result stimulated the search for a method that allowed separation of the diastereoisomers. Disappointingly, all attempts to separate the diastereomeric mixture of

(R,S)-66/(S,S)-66 or (R,S)-61/(S,S)-61 by either column chromatography, GC, or HPLC were unsuccessful.

2.3.1 Resolution of the Ketone

Initially, it was thought to separate the minor isomer by means of a resolution at the stage of the ketone (+)-(R)-68 (ee 90%) through incorporation of a chiral resolving agent. Derivatization with diethyl (+)-(i?,i?)-tartrate was tried first, since this easily available and cheap natural product has been widely used for the resolution of ketones

[142-144]. However, acetal formation was not observed when (+)-(R)-68 (ee 90%) was reacted with diethyl (+)-(i?,i?)-tartrate in refluxing , whereas in refluxing xylene decomposition occurred.

37 2. Asymmetrie Synthesis of a Differentially Silyl-Protected Tris(Alkynyl)Methyl Methyl Ether

We then explored the possibility of resolution with (—)-(1S',1S}-1,4-bis(4- chlorobenzyloxy)butane-2,3-diol ((-)-(S,S)-74). This levo-rotatory, C2-symmetric vicinal-diol was particularly appealing due to the excellent crystallization and separation properties of the derived diastereomeric acetals. Terashima et al. exploited these properties to resolve an intermediate towards the synthesis of optically pure (+)-4- demethoxyadriamycinone and (+)-4-demethoxydaunomycinone, two powerful anthracycline antibiotics [145]. Preparation of (-)-(S,S)-74 started with diethyl (+)-(R,R)- tartrate and involved an acetalization with 2,2-dimethoxypropane, followed by reduction with lithium aluminumhydride in refluxing diethyl ether, /»-chlorobenzylation, and acidic hydrolysis of the 1,3 dioxolane in aqueous methanol (Scheme 2.9a).

CC>2Et 2,2-dimethoxypropane, A H- OH p-TsOH, toluene, A EtC^C-J-O, LiAIH4, Et20, HOH2C-Ï-Q

HO- H Et02C-"-^0 77% (2 steps) HOH2C - 0 C02Et H H diethyl (+)- p-chlorobenzyl (R.R)-tartrate chloride, NaH, 86% THF, 50X

,CI /?

CH20 HCl A H- OH MeOH, 5%,

HO- H 95% CH20 %

CI (-)-(S,S)-74

b) p-TsOH, toluene, A (+)-(R)-68 + (-)-(S,S)-74 * 11% (ee 90%)

Scheme 2.9. a) Synthesis of (-)-74. b) Reaction of (-)-74 with ketone (+)-68 to form ketal 75. p- TsOH = p-toluenesulfonic acid.

38 2. Asymmetrie Synthesis of a Differentially Silyl-Protected Tris(Alkynyl)Methyl Methyl Ether

Reaction of (-)-(S,S)-14 with ketone (+)-(R)-6S (ee 90%) was performed in a

Dean-Stark apparatus to remove the water formed by using /»-toluenesulfonic acid (p-

TsOH) as catalyst and toluene as solvent. Nevertheless, as only 42% of the ketone reacted, the resolution turned out to be fruitless. Acetal 75 was isolated in 11% yield

(Scheme 2.9b).

Another carbonyl derivatizing agent, (-)-(,S)-(l-phenylethyloxamoyl)hydrazine

((-)-(-S)-76), caught our attention [146-149]. Recently, this semioxamazide has been used by Fitjer and co-workers for the resolution of precursors of spiroannelated four- membered rings, (P)- and (M)-tetraspiro[3.0.0.0.3.2.2.2]hexadecanes [149]. Compound

(-)-(S)-76 can be easily prepared starting from (-)-(,S)-l-phenylethylamine after condensation with diethyl oxalate, followed by hydrazine hydrate (Scheme 2.10). When resolution was tried, even though mass-spectrum analysis of the crude reaction mixture gave evidence for the formation of the corresponding hydrazone, the latter could not be obtained as an analytical sample also due to the formation of (£)- and (Z)-isomers which were rapidly interconverting on silica gel.

EtOH - f^S-k K OEt \=/ H^NH2 91% 0 0

(-MSH- diethyl phenylethylamine oxalate 93% NH2NH2, EtOH

o H OhV-NH2 0

(-)-(S)-76

Scheme 2.10. Synthesis of the semioxamazide (-)-(S)-76.

2.3.2 Cyclic Ketal

It was hoped that the diastereomeric mixture of 65 could be separated, once the

PMB group was removed. Hence, deprotection of the mixture of alcohols (R,S)-65 and

39 2. Asymmetrie Synthesis of a Differentially Silyl-Protected Tris(Alkynyl)Methyl Methyl Ether

(S,S)-65 (de 90%)) (Scheme 2.11) by treatment with CAN in aqueous acetonitrile afforded diols (S,R)-77 and (S,S)-77 (de 90%) in 52% yield after purification by column chromatography (Si02; hexane/CH2Cl2 1:2). Unfortunately, although the two diastereoisomers were clearly visible by ^NMR spectroscopy (500 MHz, CDCI3), only one spot could be detected on TLC (Rf = 0.12). However, the vicinal diols (S,R)-77 and

(S,S)-77 (de 90%) were used for the preparation of the cyclic ketals (R,S)-78 and (S,S)-78

(de 90%)) by reaction with 2,2-dimethoxypropane in refluxing toluene.

SiEt3 CAN, 2,2-dimethoxypropane, SiEt, CH3CN/H20(9:1) toluene, A (R,S)-65 and p-TsOH, *- (S,S)-65 52% 77% SiMe3 (de 90%) SiMe?

(S,R)-77 and (R,S)-78 and (S,S)-77 (S,S)-78

(de 90%) (de 90%)

Scheme 2.11. Synthesis of the vicinal diols (S,R)-77 and (S,S)-77 and of the cyclic ketal (R,S)- 78 and (S,S)-78. CAN = cerium ammonium nitrate, p-TsOH = p-toluenesulfonic acid.

00

I

(R,S)-78

Figure 2.3. Analytical HPL chromatogram showing the good separation between (R,S)-78 and (S,S)-78, dr = 95 : 5 (de = 90%). Column: LiChroCART® 250-4, LiChrospher® Si 60, 10 urn; elution mixture: hexane/CH2CI2 3:2; flow rate: 1 mL/min; detection at X = 270 nm.

40 2. Asymmetrie Synthesis of a Differentially Silyl-Protected Tris(Alkynyl)Methyl Methyl Ether

Taking advantage of the rigidity imparted by the newly created five-membered ring, (R,S)-78 and (S,S)-78 (de 90%) could be separated on analytical HPLC

("LiChroCART® 250-4") (Figure 2.3). The first compound to be eluted was (S,S)-1S (tR

= 21.26 min) followed by (R,S)-78 (tR = 27.28 min).

Nevertheless, in order to avoid such tedious strategy, involving three additional synthetic steps and preparative HPLC separation, we tried to achieve the optical purity of the final compound, corner module (+)-(R)-69 by other routes.

2.3.3 Successful Strategy

Attempts to separate the diastereomeric mixture of (R,S)-66/(S,S)-66 likely failed due to the poor Stereodifferentiation between the two trialkylsilyl protecting groups on the acetylene moieties. In order to overcome this main problem, selective deprotection of the trimethylsilylalkyne unit by stirring (R,S)-66/(S,S)-66 (de 90%) for about 1 h in

MeOH/THF (1:1) containing a few drops of 1 N NaOH afforded (R,S)-19 and (S,S)-19

(de 90%) in very good yield (89%) (Scheme 2.12).

1) 1 NNaOH, MeOH/THF (1:1) SiEt, PMBO SiEt, HPLC (R,S)-66and 2) separation (S,S)-66 (de 90%)

(-)-(R,S)-79 (-)-(S,S)-79 (de 100%) (c/e100%)

[a]25D = -54.1 [a]25D = -25.5

NaHMDS, 86% Me3SiCI, THF, -78 °C

(-)-(K,S)-66 (de 100%)

[a]25D = -35.3

Scheme 2.12. Synthesis of the optically pure bisprotected bispropargyl methyl ether (R,S)-66.

41 2. Asymmetrie Synthesis of a Differentially Silyl-Protected Tris(Alkynyl)Methyl Methyl Ether

Gratifyingly, !H NMR (300 MHz, CDC13) and analytical HPLC ("LiChroCART®

250-4") analysis showed that the dr remained unchanged and separation by preparative

HPLC ("Hibar® 250-25") of the diastereomeric mixture was possible at this stage (Figure

2.4). Both diastereoisomers were obtained in pure form and the major isomer (-)-(R,S)-

79 ([or]ß = -54.1) was used for the completion of the synthesis. Indeed, treating the semi-protected bispropargyl methyl ether (-)-(R,S)-79 (de 100%) with NaHMDS and trimethylchlorosilane in THF at -78 °C furnished the differentially protected bispropargyl methyl ether (-)-(R,S)-66 ([a]2^ = -35.3) as a single diastereoisomer.

(R,S)-79

(S,S)-79

Figure 2.4. Preparative HPL chromatogram of (R,S)-79 and (S,S)-79, dr = 95 : 5 (de = 90%). Column: Hibar® 250-25, LiChrospher® Si 60, 5 urn; elution mixture: hexane/ZPrOH 99.85:0.15; flow rate: 10 mL/min; detection at X = 254 nm.

2.4 Absolute Configuration

Although tosylhydrazone (+)-(R)-10 could not be transformed into the desired derivatives via Shapiro reaction, it served for an unambiguous assignment of the

42 2. Asymmetrie Synthesis of a Differentially Silyl-Protected Tris(Alkynyl)Methyl Methyl Ether

configuration of the induced stereogenic center in 65. Upon slow evaporation of a

hexane solution, crystals suitable for X-ray analysis were obtained . The crystal structure

(Figure 2.5) confirms the absolute configuration of the major diastereoisomer of 65 to be

(R,S), in accordance with the Cram chelate model.

Figure 2.5. ORTEP plot of (+)-(R)-70, showing one of the six independent molecules contained in the unit cell. Arbitrary numbering. Atomic displacement parameters obtained at 172 K are drawn at the 50% probability level. Selected bond lenghts [A] and bond angles ["]: C(9)-C(10) 1.562(6), 0(6)-C(9) 1.419(5), C(9)-C(12) 1.474(7), C(9)-C(17) 1.472(6), C(10)-C(11) 1.510(6), C(12)-C(13) 1.197(7), C(17)-C(18) 1.210(6), Si(2)-C(13) 1.857(5), Si(3)-C(18) 1.836(5), N(7)- C(10) 1.262(6), N(7)-N(8) 1.407(5), S(1)-N(8) 1.655(4), C(18)-C(17)-C(9) 175.0(5), C(13)-C(12)- C(9) 177.2(5), C(10)-N(7)-N(8)-S(1) 167.5(3), C(26)-S(1)-N(8)-N(7) -61.8(3), N(8)-N(7)-C(10)- C(9) 178.3(3), N(8)-N(7)-C(10)-C(11) -2.7(7), C(17)-C(9)-C(10)-N(7) 4.4 (5).

The unit cell contains six symmetrically independent molecules (Figure 2.6). The silyl groups are heavily disordered. Three dimers are formed by pairs of N(8)-H 0(5)

H-bonds (N O distance 2.87 to 2.98 Â), with a gauche orientation of the phenyl ring and

CCDC reference number 275886. For detailed information see Appendix.

43 2. Asymmetrie Synthesis of a Differentially Silyl-Protected Tris(Alkynyl)Methyl Methyl Ether

the N-N bond (dihedral angle N(7)-N(8)-S(l)-C(26) = 57° to 67°). All dimers show a pseudo-centre of symmetry when ignoring the different silyl substituents. Each dimer combines two molecules with the C(10)-N(7) bond eclipsed to C(9)-C(17) (dihedral angle = 4° to 10°) or to C(9)-C(12) (dihedral angle = -5° to -2°), respectively.

Figure 2.6. Crystal structure of the six independent molecules of (+)-(R)-70 forming the three pairs of H-bonded dimers. Color codes: C grey, Si light-green, O red, S: yellow, N blue.

2.5 Conclusion

In summary, the first synthesis of an optically pure trispropargylic alcohol derivative, (+)-(i?)-69, has been accomplished by a stereoselective, 11-step synthesis including preparative HPLC separation. The key step of the preparation involved a diastereoselective addition of a lithium acetylide to an optically active alkynylketone under Cram chelation control. The stereogenic center of the corner module ((-)-(S)-64

—» (R,S)-65) was formed with high diastereoselectivity (de 90%). Nevertheless, this key step may be further improved by using the reaction conditions reported by Collum and the Merck research group [150, 151]. Attempts to separate the diastereomeric mixture at

44 2. Asymmetrie Synthesis of a Differentially Silyl-Protected Tris(Alkynyl)Methyl Methyl Ether

the stage of intermediates 65, 66, and 67 by either column chromatography, GC, or

HPLC were unsuccessful. However, synthesis of the intermediate 79 permitted preparative HPLC separation of the isomers. The major isomer (-)-(R,S)-79 was used for the completion of the synthesis, thus allowing the preparation of the enantiomerically pure targeted compound (+)-(R)-69. Introduction of the last alkynyl unit was achieved by preparation of an activated enol triflate and subsequent elimination of the leaving group from the latter by a strong, non-nucleophilic base. X-ray analysis of tosylhydrazone (+)-

(R)-70 confirms the absolute configuration of the major diastereoisomer of 65 to be (R,S), in accordance with the Cram chelate model. The other enantiomer of the corner module

((-)-(S)-69) is readily prepared in the same way, starting from ethyl (+)-(i?)-lactate.

45 46 3. Synthetic Approach Toward Expanded Cubane and

Expanded Tetrahedrane

The synthesis of the optically pure corner module (+)-(R)-69 (see Chapter 2) stimulated the exploration of its scaffolding possibilities. In particular, synthetic efforts were directed toward the construction of two expanded platonic bodies: octamethoxy expanded cubane (49) and octamethoxy expanded tetrahedrane.

3.1 Platonic Structures

In geometry, a polyhedron is a three-dimensional solid which consists of a collection of polygons, called faces, usually joined at their edges. The word derives from the Greek "poly" (many) plus the Indo-European "hedron" (seat). A polyhedron is said to be regular if its faces and vertex figures are regular (not necessarily convex) polygons

[152]. Using this definition, there are a total of nine regular polyhedra, five being the convex platonic solids (Figure 3.1) and four being the concave (stellated) Kepler Poinsot solids [153]. However, the term "regular polyhedra" is sometimes used to refer exclusively to the platonic solids.

The five platonic bodies, sometimes also called "cosmic figures" [154], are the cube, dodecahedron, icosahedron, octahedron, and tetrahedron, as was proved by Euclid in the last proposition of the Elements. By arranging three equilateral triangles to meet at each vertex, another equilateral triangle is formed by their bases. The resulting solid with four faces is the tetrahedron (Table 3.1). If four equilateral triangles are connected at a vertex, a quadratic pyramid results. By putting base to base two identical quadratic pyramids an octahedron is formed. On the other hand, connection of five identical equilateral triangles at each vertex generates the icosahedron, solid composed by twenty triangular faces. Joining more than five triangles at a point, only a planar figure is obtained (the internal angle at the vertex will not be convex). Using the square as the next polygon and following the same procedure as for the triangle, connecting three 3. Synthetic Approach Toward Expanded Cubane and Expanded Tetrahedrane

squares at each vertex a polygon with six identical quadratic faces, the cube, is obtained.

Also with squares, when four or more polygons are put together at a vertex no finite solids are generated. The last polyhedron, the dodecahedron, is formed following the same procedure as before with the next polygon, the pentagon. Higher polygons do not lead to a polyhedron, because the sum of the angles at vertex will be greater or equal to

360°, so the formed figures are infinite solids.

tetrahedron cube octahedron

icosahedron dodecahedron

Figure 3.1. The five platonic bodies.

Table 3.1. Platonic solids.

Solid Vertices Edges Face Type Faces Symmetry

tetrahedron 4 6 triangle 4 Td

cube 6 12 square 6 oh

octahedron 8 12 triangle 8 oh

icosahedron 12 30 triangle 20 lh dodecahedron 20 30 pentagon 20 lh

48 3. Synthetic Approach Toward Expanded Cubane and Expanded Tetrahedrane

The platonic solids were known to the ancient Greeks, and were described by the philosopher Plato (ca. 427-347 BC) in his Timaeus ca. 350 BC. He associated four such regular solids with the four elements and assigned the cube to earth, because it was the most immobile of the four bodies and most retentive of shape. The second less mobile was the icosahedron and it was assigned to water, the intermediate octahedron to air, and the most mobile, tetrahedron, to fire. The last remaining solid, the dodecahedron, was assigned to an immaterial element, not part of the physical world, but indispensable to construct the "ether" and "to embroider the constellations on the whole heaven", used by

God to organize the universe into a beautiful order. Predating Plato, the neolithic people of Scotland developed the five solids a thousand years earlier. The stone models are kept in the Ashmolean Museum in Oxford [155].

Considering the important role that symmetry plays in the chemistry field, it is not surprising that chemists also remain fascinated by the intrinsic perfection and harmony found in the platonic structures. In particular, many examples of inorganic platonic molecules are reported in the literature [156-159], whereas examples from organic chemistry are quite limited. The tetravalence of carbon has been employed to form highly strained platonic hydrocarbons such as CôHô (cubane, whose first synthesis was reported in 1964 [160-162]), prismane [163, 164], C2oH2o (dodecahedrane, [94, 165,

166]), and tetra-fert-butyltetrahedrane [167].

The synthesis of octamethoxy buta-l,3-diyne-l,4-diyl-expanded cubane 49 (see

Section 1.4) [92, 93] demonstrated the feasibility of novel unsaturated version of saturated platonic structures. Expanded polyhedranes have potential as templates for rigid functional structures with optoelectronic and biological applications. In addition, the tending of the diacetylene units to undergo polymerization, although currently a possible detriment to their synthesis, may allow for future three-dimensional polymer networks.

3.2 Expanded Cubane

The great loss of material encountered during the preparation of 49, due to the inevitable formation of many stereoisomers at the various stages of the synthetic route,

49 3. Synthetic Approach Toward Expanded Cubane and Expanded Tetrahedrane

resulted in an exceedingly low synthetic yield (0.2%). Only a poor amount of the targeted product could be obtained, and this prevented the evaluation of its thermodynamic properties. Hence, a new synthetic method was needed, which could provide sufficient material for further investigations such as the experimental determination of the heat of formation.

3.2.1 Computational Studies

The pursuit of expanded polyhedranes is greatly benefited by understanding their stabilities as a function of structure. Such data, which can be obtained experimentally only after hard synthetic efforts, are, in principle, accessible through computation. Houk and co-workers estimated the heat of formation and the strain energy of buta-1,3-diyne-

1,4-diyl-expanded cubane 80 to be 1451.1 kcal mol-1 and 107.8 kcal mol-1, respectively

[168]. Molecular mechanics results revealed that the great majority of strain is contained within the bowed buta-l,3-diyndiyl units while only a small portion of this strain rests about the C(sp3) corners. Since cubane has an experimental strain energy of 166 kcal mol-1 [169], it was concluded that expansion by buta-l,3-diyne-l,4-diyl groups from cubane to expanded cubane 80 (Scheme 3.1) reduces the ring strain of the cage by about

60 kcal mol"1.

X ^ i '

/— — A » LJ H-7 ~^ i / ' i

/— — /

H H 80

Scheme 3.1. From cubane to expanded cubane 80 by formal insertion of twelve buta-1,3-diyne- 1,4-diyl moieties into the C-C bond.

50 3. Synthetic Approach Toward Expanded Cubane and Expanded Tetrahedrane

Furthermore, the volume of the inner cavity for 80 was estimated by calculating the distance between C(sp3) centers minus twice the van der Waals radius of carbon (1.70

Â). By means of simple geometrical considerations, the volume was found to be 33 Â3.

However, this value is probably underestimated since the space created by the bowing of the buta-l,3-diyndiyl moieties is truncated using this approximation. Expanded cubane

80 (Figure 3.2) should be able to accommodate some small neutral molecules like H2S

(30 Â3), C02 (33 Â3), NH3 (23 Â3), and PH3 (33 Â3). In other work, Bachrach predicted that ethynyl-expanded cubane binds lithium and sodium cations (from gas-phase calculations) with binding affinities up to 60 kcal mol-1 [170]. Another interesting property arises from the size of the orifice leading to the center of the expanded structure in 80. The area of the opening has been calculated to be 11 Â2 and this would allow a linear polyacetylene (area of the cylindrical cross section ~ 9 Â2) to be fed through the center, making possible concatenated rings and rotaxanes. Bachrach and Demoin estimated that the gas-phase deprotonation energy of compound 80 is about 309 kcal mol-1 [171]. This exceptionally low value is comparable to that of 2,4,6-trinitrotoluene

(TNT) and 2,3-dinitrophenol.

e, = i73 e2=i72 e,= i09 176 168 109

Figure 3.2. Listing of bond angles [°] for molecule 80 (H atoms at the vertices), HF/6-31G(d) (top) and B3LYP/6-31G(d) (bottom) [168].

3.2.2 An Alternative Synthetic Strategy

The preparation of the expanded cubane 49 with a central C56 core [92, 93], as described in Section 1.4, proceeded through the formation of corners, edges, and faces as

51 3. Synthetic Approach Toward Expanded Cubane and Expanded Tetrahedrane key building blocks and intermediates (Scheme 3.2). The advantage of this sequential strategy is that one corner module provided the subsequent one (edge) simply by alkyne homocoupling [9, 53]. The edge could then be coupled to provide the face, and ultimately, coupling of the face resulted in the target molecule.

Scheme 3.2. The expanded cubane can be split into its component, face, edge, and corner.

To advance sequentially and in a controlled way from the corner to the edge and face modules, and to avoid indesiderable polymerization, the three acetylene residues in the trialkynylmethane needed to be differentially protected. This was achieved by following the principle of modulated lability [172], consisting in this specific case of the introduction of different trialkylsilyl groups with different kinetic stability towards nucleophilic deprotection agents.

The achievement of the optically pure, differentially silyl-protected corner module

(+)-(R)-69 opened the way to a novel synthetic strategy toward the construction of expanded cubane 49. This new approach hinges on the stereospecific synthesis of the edge module (meso-81) [173]. The suitable face module 82d would still be generate by acetylenic homocoupling, but macrocyclization of only the appropriate deprotected edge module would lead in this case to only two diastereoisomers (82b and 82d), instead of four diastereoisomers (Scheme 3.3). The edge module meso-81 may be obtained by means of the Cadiot-Chodkiewicz protocol [9, 63, 174]. This powerful alkyne heterocoupling is a popular method for assembling natural polyacetylenic compounds and consists of the condensation of terminal alkynes with 1-haloacetylenes in the presence of a copper(I) salt and a suitable amine [175-181]. Prerequisite for the application of this method to our system is the prior isolation of each enantiomer of the corner module (69) and subsequent conversion of one enantiomer into the corresponding 1-haloalkyne adduct

((5)-83).

52 3. Synthetic Approach Toward Expanded Cubane and Expanded Tetrahedrane

SiEt

OMe

MeO'

SiMe

82b SiEt3 Hay coupling SiEt,

SiEt SiEt, Et,Si

SiMe3 meso-81

Cadiot-Chodkiewicz coupling MeO' \7 82d Et3Si SiEt,

Scheme 3.3. New retrosynthetic approach toward the synthesis of face module 82d.

3.2.3 Synthesis

The preparation of enantiopure corner module (-)-(S)-69, as described in Chapter

2, can be readily achieved by starting from ethyl (+)-(i?)-lactate. Nevertheless, in order to avoid such expensive starting material (5 mL = 342.16 CHF, Fluka Chemie AG), the synthesis can be commenced with the cheaper methyl lactate (+)-(R)-84 (5 g = 85.85

CHF, Acros Organics). Protection of the hydroxyl group with /»-methoxybenzyl 2,2,2- trichloroacetimidate furnished (+)-(i?)-85, which, in turn, was converted to Weinreb amide (+)-(R)-6l (Scheme 3.4). This intermediate was used in the following steps to

53 3. Synthetic Approach Toward Expanded Cubane and Expanded Tetrahedrane

afford, via separation on HPLC of the diastereomeric mixture of (+)-(S,R)-19 and (+)-

(R,R)-19, the optically pure (-)-(S)-69.

PMBOC(NH)CCI3, /PrMgCI, HO TfOH, CH2CI2, PMBO (MeO)MeNH-HCI, PMBO Cyclohexane THF, -30°C OMe i N. XT A^OMe 87% 57% 0 O 0

(+)-(K)-84 (+)-(R)-85 (+)-(R)-61

Scheme 3.4. Synthesis of the Weinreb amide (+)-(R)-61, starting from methyl lactate (+)-(R)-84. PMB = p-methoxybenzyl, TfOH = trifluoromethanesulfonic acid.

With both pure enantiomers (+)-(R)-69 and (-)-(S)-69 in hand, we could then

explore their transformation into the corresponding 1-haloalkynes. Therefore, treating

corner module (+)-(R)-69 with iV-bromosuccinimide (NBS) in acetone, in presence of a

catalytic amount of AgNCh, afforded the bromoacetylene (R)-86 in only 21% yield along

with the side product 87, isolated in 11% yield (Scheme 3.5a). This disappointing result

was not completely surprising since it was anticipated that desilylation occurs in presence

of AgNÛ3, affording the silver acetylide intermediate which is readily halogenated by

NBS [182, 183].

a) SiEto SiEt, NBS,AgN03, acetone (+)-(f?)-69

b) SlEt3 rtBuli, THF, SiEt, -78 °C; then l2, -78 °C

84%

Me?Si Me,Si

(-)-(S)-69 (+)-(S)-88

Scheme 3.5. Formation of 1-haloalkynes. a) Synthesis of the 1-bromoalkyne (R)-86. b) Synthesis of the 1-iodoalkyne (+)-(S)-88. NBS = A/-bromosuccinimide.

54 3. Synthetic Approach Toward Expanded Cubane and Expanded Tetrahedrane

Alternatively, compound (-)-(S)-69 could be smoothly converted into the 1- iodoalkyne (+)-(

Now, the stage was set for the Cadiot-Chodkiewicz coupling between corner modules (+)-(R)-69 and (+)-(

Table 3.2. Cadiot-Chodkiewicz coupling between (+)-(R)-69 and (+)-(S)-88.

Entry Reaction Conditions Total Yield (%)

1 NH2OH HCl, nBuNH2, CuCI, DMF, 24 h Ja]

2 Cul, pyrrolidine, 30 min [186] Jb]

3 [Pd(PPh3)CI2], Cul, ;Pr2NH, THF, 25 °C, 1.5 h [187] 81

[a] Starting material recovered, [b] Decomposition. DMF = /V,/V-dimethylformamide.

Reaction under the classical Cadiot-Chodkiewicz conditions (entry 1), which have already successfully been used in the Diederich group for the preparation of elongated TEE 18 (see Section 1.1) [62], did not afford any product, and the starting material was recovered. The copper(I) iodide catalyzed cross-coupling (entry 2), first reported by Alami and Ferri in 1996 [186], was believed to be a promising alternative, because of its simplicity and high efficiency. Mukai and coworkers employed this method for the synthesis of (-)-AL-2, a spiroacetal enol ether that has showed antitumor properties [188]. However, all attempts to synthesized meso-81 through this protocol failed, and only decomposition products could be observed. In contrast, a satisfactory result was apparently obtained when using the mild reaction conditions developed by

Wityak and Chan (entry 3) [187]. Compound 81 was isolated in 81% yield after column chromatography as a yellow oil, which crystallized upon standing. Both *£! and 13C

NMR analysis revealed one unique set of signals, thus supporting the belief that only one stereoisomer out of the possible three was obtained, namely the edge module meso-81.

Successive cleavage of the trimethylsilyl protecting groups with 0.5 N NaOH in

MeOH/THF (1:1) at -15 °C gave 89 in 87% yield (Scheme 3.6). Traces of the fully deprotected product were readily separated by column chromatography. Subjection of 89

55 3. Synthetic Approach Toward Expanded Cubane and Expanded Tetrahedrane

to oxidative coupling under high dilution condition (1 mM) afforded macrocycle 82 in a remarkable 63% overall yield.

SiMe

[Pd(PPh3)CI2], 0.5 N NaOH, (+)-(S)-88 Cul,/Pr2NH, SiEto MeOm~HF(1:1), THF, 25 °C -15 °C + ' 81% 87% (+)-(R)-69 EtoSi

SiMe3 meso- and (±)-81

SiEt,

Et3Si MeO CuCI, TMEDA, CH2CI2, air meso- and (±)-89

Si Et-, Si Et

OMe

OMe

SiEt,

MeO MeO

82a (8%) SiEt. 82b (16%) SiEt,

SiEt SiEt,

SiEt SiEt,

OMe

SiEt3 OMe

MeO

MeO OMe 82c (31%) SiEt3 82d (8%)

Scheme 3.6. Synthesis of edge and face modules of the expanded cubane 49. TMEDA /V,/V,/V',/V'-tetramethylethylenediamine.

56 3. Synthetic Approach Toward Expanded Cubane and Expanded Tetrahedrane

Regrettably, four diastereoisomers of 82 could be isolated, thus revealing that 81 actually consisted of an inseparable mixture of the desired meso-81 along with its diastereoisomers (±)-81. The same considerations apply to compound 89. Separation of the diastereomeric mixture of 82 by column chromatography (SiÛ2; heptane/CH2Cl2 4:1

-> 1:2) provided, in the order of elution, 82a (8%), 82b (16%), 82c (31%), and the desired face module 82d (8%). By comparing these yields with those of macrocycles 48a

(8%), 48b (18%), 48c (36%), and 48d (10%), one may conclude that compound 81b

(meso- and (±)-) is obtained, under the conditions reported in Table 3.2 (entry 3), via a homocoupling reaction pattern.

Even though the formation of the undesired isomers of 82 made the whole strategy ineffective, the preparation of expanded cubane 49 was tried. Consequently, 82d was deprotected with NaOH In in MeOH/THF (1:1) to afford 90 (explosive!) in 87% yield (Scheme 3.7). In one attempt to synthesize 49, compound 90 was subjected to oxidative cyclization in CH2CI2 under high dilution conditions (ImM). Unfortunately, according to mass spectrometric analysis (MALDI-TOF), the formation of the desired final product could not be observed.

1 N NaOH, CuCI, TMEDA, MeOH/THF (1:1), OMe CH2CI2, air -15 °C 82d X - 49 87%

MeO OMe

90

Scheme 3.7. Attempted synthesis of 49. TMEDA = A/,A/,A/',A/'-tetramethylethylenediamine.

3.2.4 Structural Assignment of the Diastereoisomers of 82

The structural assignments for the four macrocycles were unambiguously made based on 13C NMR spectroscopic analysis, X-ray analysis, and further synthetic studies.

The C2h-symmetrical structure of 82b was proven by X-ray analysis and 13C NMR spectroscopy (10 out of 10 resonances observed). Diastereoisomer 82c possesses the lowest symmetry (Cs), which is reflected by a much larger number of resonances in the

57 3. Synthetic Approach Toward Expanded Cubane and Expanded Tetrahedrane

C NMR spectrum (13 out of 26 observed). Its structure was also confirmed by X-ray analysis. Both Z)2d-symmetrical 82a and C4v-symmetrical 82d show the expected eight resonances in their 13C NMR spectra; differentiation between the two diastereoisomers is based, besides the different polarity, on the fact that 82a could be selectively prepared by a different synthetic route (see Section 3.3).

Crystals suitable for X-ray analysis of 82b (Figure 3.3) and 82c (Figure 3.4) were separately obtained by slow evaporation of a heptane solution at 298 K.

Figure 3.3. ORTEP plot of 82b. Arbitrary numbering. Atomic displacement parameters obtained at 223 K are drawn at the 50% probability level. Selected bond lenghts [Â] and bond angles ["]: C(1)-C(2) 1.493(8), C(2)-C(3) 1.198(8), C(3)-C(4) 1.377(8), C(4)-C(5) 1.186(8), C(5)-C(6) 1.490 (9), C(6)-C(7) 1.499(10), C(7)-C(8) 1.185(11), C(8)-C(9) 1.386(10), C(9)-C(10) 1.196(9), C(10)- C(1a) 1.452(9), C(1)-C(2)-C(3) 173.9(6), C(2)-C(3)-C(4) 177.3(7), C(3)-C(4)-C(5) 177.7(7), C(4)- C(5)-C(6) 173.9(5), C(5)-C(6)-C(7) 106.4(5), C(6)-C(7)-C(8) 173.7(7), C(7)-C(8)-C(9) 175.5(8), C(8)-C(9)-C(10) 176.7(7), C(9)-C(10)-C(1a) 174.0(7), C(10a)-C(1)-C(2) 107.0(5).

58 3. Synthetic Approach Toward Expanded Cubane and Expanded Tetrahedrane

Figure 3.4. ORTEP plot of 82c, showing one of the two independent molecules contained in the unit cell. Arbitrary numbering, H atoms are omitted for clarity. Atomic displacement parameters obtained at 223 K are drawn at the 50% probability level. Selected bond lenghts [Â] and bond angles ["]: C(1)-C(2) 1.458(11), C(2)-C(3) 1.278(11), C(3)-C(4) 1.343(11), C(4)-C(5) 1.215(11), C(5)-C(6) 1.496(10), C(6)-C(7) 1.463(11), C(7)-C(8) 1.185(11), C(8)-C(9) 1.357(11), C(9)-C(10) 1.198(10), C(10)-C(11) 1.429(10), C(11)-C(12) 1.460(9), C(12)-C(13) 1.216(9), C(13)-C(14) 1.380(10), C(14)-C(15) 1.178(10), C(15)-C(16) 1.500(9), C(16)-C(17) 1.492(10), C(17)-C(18) 1.179(10), C(18)-C(19) 1.389(10), C(19)-C(20) 1.165(10), C(20)-C(1) 1.506(10), C(1)-C(2)-C(3) 170.1(9), C(2)-C(3)-C(4) 176.5(8), C(3)-C(4)-C(5) 175.8(9), C(4)-C(5)-C(6) 173.7(8), C(5)-C(6)- C(7) 105.6(6), C(6)-C(7)-C(8) 175.9(8), C(7)-C(8)-C(9) 173.5(8), C(8)-C(9)-C(10) 175.7(7), C(9)- C(10)-C(11) 173.7(7), C(10)-C(11)-C(12) 109.6(6), C(11)-C(12)-C(13) 172.8(8), C(12)-C(13)- C(14) 175.7(8), C(13)-C(14)-C(15) 178.4(8), C(14)-C(15)-C(16) 173.5(8), C(15)-C(16)-C(17) 105.0(5), C(16)-C(17)-C(18) 177.0(7), C(17)-C(18)-C(19) 175.4(8), C(18)-C(19)-C(20) 177.8(7), C(19)-C(20)-C(1) 174.1(8), C(20)-C(1)-C(2) 106.9(6).

The unit cell of 82b contains one symmetrically independent molecule. The crystal structure reveals that the cyclic framework is planar with a mean out-of-plane deviation of 0.051 Â and a maximum of 0.1 Â (C(l)). The distances between

59 3. Synthetic Approach Toward Expanded Cubane and Expanded Tetrahedrane

neighboring C(sp3)-atoms are 6.71 Â (C(l)-C(6)) and 6.67 Â (C(6)-C(la)). Strain in the

20-membered ring is mainly expressed by weak bends in the four buta-l,3-diyne-l,4-diyl moieties. The C=C-C(sp3) angles are as low as 173.7°, and the maximal reduction of the

C=C-C(sp) angles from the ideal 180° is approximately 4°. In contrast, the angles at the corner C(sp3)-atoms (C(10a)-C(l)-C(2) = 107.0°; C(5)-C(6)-C(7) = 106.4°) are close to the ideal tetrahedral angle of 109.5°.

For comparison purpose, X-ray analysis of 48b (Scheme 1.11) shows a mean out- of-plane deviation of 0.041 Â and a maximum deviation of 0.09 Â. The distances between neighboring C(sp3)-atoms are 6.64 Â and 6.69 Â. The C=C-C(sp3) angles are as low as 172.4°, and the maximal reduction of the C=C-C(sp) angles from 180° is approximately 4°. The angles at the corner C(sp3)-atoms are 106.8° and 107.3°.

The unit cell of 82c contains two symmetrically independent molecules. The cyclic scaffold shows a larger deviation from planarity than in the previous case, with a maximum out-of-plane deviation of 0.3 Â (C(l)). The distances between neighboring

C(sp3)-atoms are 6.68 Â (C(l)-C(6)), 6.57 Â (C(6)-C(ll)), 6.69 Â (C(ll)-C(16)), and

6.70 Â (C(16)-C(l)). The macrocycle is more strained than in 82b as expressed by the

C=C-C(sp3) angles which are as low as 170.1°, while the highest discrepancy from the ideal 180° in the C=C-C(sp) angles is 6.5°. The angles at the corner C(sp3)-atoms are:

106.9° (C(20)-C(l)-C(2)), 105.6° (C(5)-C(6)-C(7)), 109.6° (C(10)-C(ll)-C(12)), and

105.0° (C(15)-C(16)-C(17)).

3.3 Expanded Tetrahedrane

The synthesis of the optically pure corner module 69 allowed the development of a stereospecific route toward the preparation of an expanded tetrahedrane 91 with a C28 core.

60 3. Synthetic Approach Toward Expanded Cubane and Expanded Tetrahedrane

3.3.1 Computational Studies

The platonic hydrocarbon C4H4 called tetrahedrane has never been synthesized and is considered one of the most strained structures among saturated hydrocarbons. The heat of formation was estimated to be in a range from 127 and 137 kcal mol-1, whereas strain energy was calculated to be between 96 to 150 kcal mol-1 (or 16 to 25 kcal mol-1 per framework C-C bond) [189-195]. The expansion of tetrahedrane by the insertion of buta-l,3-diyne-l,4-diyl moieties between all C(sp3)-C(sp3) would provide another carbon-rich (C28-core), three-dimensional scaffold (92) without affecting the overall Jj- symmetry but changing dramatically its properties (Scheme 3.8).

H

V

92

Scheme 3.8. From tetrahedrane to diacetylene-expanded tetrahedrane 92 by formal insertion of twelve buta-1,3-diyne-1,4-diyl moieties into the C-C bond.

Similarly to cubane, also in this case expansion by diacetylene units reduces the ring strain of the cage. Indeed, Houk and co-workers estimated the heat of formation and the strain energy of buta-1,3-diyne-l,4-diyl-expanded tetrahedrane 92 (Figure 3.5) to be

783.4 kcal mol-1 and 111.8 kcal mol-1, respectively [168]. The volume of the inner cavity of 92 was calculated to be 3 Â3; this value was derived from the equation V =

1/12 V2 a3, where a is the edge length (distance between C(sp3) centers minus twice the van der Waals radius of carbon). Although expanded tetrahedrane has essentially no interior volume and would make a poor host, it shows good cation affinities, as computed by Bachrach and Demoin [171]. Optimal interaction of the cation with the polyhedranes occurs when the cation can effectively interact with as many alkynyl units as possible.

This is achieved by positioning the cation at an appropriate distance to maximize electrostatic attractions while steric interactions are minimized. The optimized C-Li+ and

C-Na+ distances were found 2.33 Â and 2.70 Â respectively. Therefore, the most stable

61 3. Synthetic Approach Toward Expanded Cubane and Expanded Tetrahedrane

complex of the expanded tetrahedrane 92 is formed with the cation in one of the faces and not in the center of that face but shifted toward one corner to achieve the optimized distance and interaction with two of the alkynyl groups. The cation affinity was estimated to be -35.2 kcal mol-1 for the lithium cation, whereas for the bigger sodium cation the affinity is reduced to -22.2 kcal mol-1. A gas-phase deprotonation energy of

313.2 kcal mol-1 for 92 was calculated. This value is slightly bigger that that of expanded cubane 80 because of the better ability of the larger, less strained molecule to adopt a near planar arrangement about the carbanion center.

8, = 163 82=163 63=106 169 159 106

Figure 3.5. Listing of bond angles [°] for molecule 92 (H atoms at the vertices), HF/6-31G(d) (top) and B3LYP/6-31G(d) (bottom) [168].

3.3.2 Retrosynthetic Approach

The synthesis of expanded tetrahedrane 91 was already attempted in a previous doctoral work [93]. The assemblage was based on the coupling in the final step of the triangular base with the corner module, which correspond to the 'peak' of the pyramid.

Despite numerous efforts, this strategy failed because of the impossibility of preparing the macrocyclic base component.

In a different way, taking advantage of the Td symmetry, our approach is based on the double ring closure of deprotected 82a (Scheme 3.9). It was conceived to selectively generate compound 82a by oxidative homocoupling of the partially deprotected edge module (S,S)-81, which, in turn, is prepared from the optically pure corner module (-)-

62 3. Synthetic Approach Toward Expanded Cubane and Expanded Tetrahedrane

(S)-69. Alternatively, key product 82a can be also synthesized from edge module (R,R)-

81, i.e. from (+)-(R)-69. Similar to expanded cubane 49, this strategy consists in the iterative, selective cleavage of different trialkylsilyl protecting groups and subsequent homocoupling under Hay conditions.

SiEt,

OMe

OMe ^^>

MeO MeO OMe

91 82a SiEt

SiMe

Et,Si SiEt, ^=> ^=>

EtsSi IJl Me3Si

Me3Si (S)-69

(S,S)-81

Scheme 3.9. Retrosynthetic route of expanded tetrahedrane 91.

3.3.3 Synthetic Route

The synthetic efforts toward the construction of the expanded tetrahedrane 91 were carried out in collaboration with M. Sc. student Paolo Mombelli. Oxidative homocoupling of (-)-(S)-69 in CH2CI2 under Hay conditions provided the protected edge

(+)-(/S',1S}-81 in high yield (90%) as an orange oil, that crystallized upon standing (Scheme

3.10). Despite numerous attempts, crystals of (+)-(/S',1S}-81 suitable to X-ray analysis could not be obtained. Subsequently, selective cleavage of the trimethylsilyl protecting groups was obtained by adding some drops of a 0.5 M. NaOH at -15° C in MeOH/THF

63 3. Synthetic Approach Toward Expanded Cubane and Expanded Tetrahedrane

(1:1). Product (+)-(R,R)-S9 was obtained in 84% yield, while traces of the unselectively deprotected products were easily removed by column chromatography (SiÛ2; heptane/CH2Cl24:l).

SiMe3

0.5 N NaOH, CuCI, TMEDA, SiEta MeOH/THF(1:1), CH2CI2, air -15 °C B-(S)-69 ' *" 90% 84% EUSi

Me3Si

(+)-(S,S)-81

1 N NaOH, SiEt3 CuCI, TMEDA, MeOH/THF(1:1), CH2CI2, air -15 °C 82a *" 60% 69% EtaSi OMe

(+)-(R,R)-89

' OMe MeO

_ _ "-OMe CuCI, TMEDA, / CH2CI2, air I /\ Y fc

/- - fOUe MeO 1 MeO'' ^OMe 91 93

Scheme 3.10. Synthetic approach toward expanded tetrahedrane 91. TMEDA = N,N,N',N'- tetramethylethylenediamine.

Subjection of (+)-(R,R)-89 to oxidative Hay coupling under high dilution conditions in CH2CI2 afforded the macrocycle 82a in 60% yield after column

64 3. Synthetic Approach Toward Expanded Cubane and Expanded Tetrahedrane

chromatography (SiC^; heptane/CH^Cb 6:1). Compound 82a was further purified by preparative HPLC (Hibar® 250-25, LiChrospher® Si 60, 5 urn; hexane/CH2Cl2 9:1), providing a white solid which turned to brown within few hours. According to elemental analysis, however, the variation in color did not correspond to decomposition.

Deprotection of 82a at -15° C with a few drops of 1 M NaOH in THF/MeOH (1:1) provided the unstable product 93 as a white powder that exploded upon scraping and turned to a brownish color in some hours. Compound 93 was fully characterized with the

JH NMR spectra (CDCI3) depicting two signals corresponding to methoxy (3.50 ppm) and to C=C-H groups (2.75 ppm). The 13C NMR revealed the expected six signals; three for the C(sp) atoms of the alkyne units at 77.5, 75.9 and 77.1 ppm, one for the C(sp)-H carbon atoms (69.1 ppm), one for the quaternary C(sp3) atoms (61.1 ppm), and one for methoxy groups (53.6 ppm). One main peaks, detected by mass spectrometric analysis

(MALDI-HRMS positive ion mode), is assigned to the [M + Na]+ ion at 433.0857.

Because of its high instability, 93 was directly reacted after column chromatography under Hay conditions in CH2CI2 (high dilution). Unfortunately, the double ring closure did not occur. Mass spectrometric analysis of the black mixture showed neither molecular peak nor fragments related to product 91 or to higher oligomeric macrocycles.

3.4 Conclusion and Outlook

In conclusion, the synthesis of structures such as the expanded cubane 49 and tetrahedrane 91 were attempted using the optically pure corner modules (+)-(R)-69 and

(-)-(S)-69.

In order to overcome the waste of material that affected the first preparation of 49, it was envisaged to improve the synthetic route by developing a stereospecific preparation of the edge module meso-81. It was thought that meso-81 could be accessible by means of the Cadiot-Chodkiewicz protocol (heterocoupling reaction). Unfortunately, reaction between (+)-(R)-69b and 1-iodoalkyne (+)-(,S)-88, following a modified

Cadiot-Chodkiewicz procedure, only afforded homocoupling product. This was proved by the formation of four macrocycles, instead of the expected two, when the so obtained

65 3. Synthetic Approach Toward Expanded Cubane and Expanded Tetrahedrane

compound 81 was subjected, after partial deprotection, to homocoupling under high dilute conditions. The four diastereoisomer (82a, 82b, 82c, and the desired face module

82d) could be separated by column chromatography and their yields roughly correspond to those of the macrocycles obtained starting from racemic corner module. Although the diastereomeric mixture of 82 was obtained in a remarkable 63% yield, the desired diastereoisomer 82d was obtained in a yield of only 8%. In one attempt to repeat the synthesis of expanded cubane 49, deprotection of the face module 82d led to intermediate

90 but successive acetylenic oxidative macrocyclization under high dilution conditions could not afford the target molecule. X-ray analysis of diastereoisomers 82b and 82c revealed that in both cases the cyclic framework is planar. The distances between neighboring C(sp3)-atoms are approximately 6.7 Â. Strain in the macrocyclic cores was mainly expressed by weak bends in the four buta-l,3-diyne-l,4-diyl fragments, resulting in a deviation of up to 6.5° in the case of 82c. Further synthetic studies are required for the stereospecific preparation of the edge module meso-81 via classical or modified

Cadiot-Chodkiewicz protocol. This should provide sufficient material for desirable investigations such as the experimental determination of the heat of formation of the highly strained carbon cage 49.

The synthesis of expanded tetrahedrane 91 was planned to proceed through the quadratic base 82a, which, after deprotection, could be intramolecularly cyclized to the desired target molecule. The stereospecific synthesis of macrocycle 82a was achieved starting from the optically pure corner building block (-)-(S)-69 through iterative alkyne oxidative homocoupling under Hay condition and selective cleavage of the trialkylsilyl protecting groups. Unfortunately, the ring closure from highly unstable deprotected face module 93 to tetrahedrane under Hay conditions was unsuccessful. Additional experiments on this last step are required to complete the synthesis of 91. Either reaction under modified Eglinton conditions (CuCl/Cu(OAc)2/pyridine/N2, [77]) or formation of a platinum complex intermediate ([czs-Pt(dppp)Cl2]/(/Pr)2NH [196]) with subsequent oxidatively induced elimination of the metal (I2) are two ulterior suggestions to afford this appealing expanded polyhedrane.

66 4. Synthesis of an Optically Pure Differentially Silyl-

Protected Tris(alkynyl)Phenyl Methane

The low stability of expanded cubane 49 (see Section 1.4) was ascribed to the easy loss of a methoxide substituent, which would lead to a highly unstable nonplanar carbocation, which would then initiate decomposition. The methoxy groups are circumstantial and, in principle, may be replaced by a variety of other groups or functionalities early on in the synthesis. Hence, the preparation of a novel phenyl- substituted corner module should allow, by blocking the assumed decomposition pathway, the construction of a more stable derivative of this expanded polyhedrane.

Furthermore, this key building block should be obtained as an enantiomerically pure compound, thus providing access to the stereoselective synthesis of new fascinating three-dimensional all-carbon cages.

4.1 Retrosynthetic Analysis

The retrosynthetic strategy for the synthesis of the optically active corner molecule 94 is shown in Scheme 4.1a. The sequential introduction of the last two alkyne moieties was planned to proceed through suitable modifications of the ß-siloxy aldehyde

95. This key intermediate, with two independently masked and addressable aldehyde functions, was thought to be generated by a Yamamoto rearrangement [197, 198]. This novel reaction is known to generate quaternary ß-siloxy aldehydes from epoxy silyl ethers. This Lewis acid-catalyzed rearrangement seemed ideally suited for the desired transformation, as it is further known that this reaction proceeds with rigorous chirality transfer arising from antiperiplanar migration of the siloxymethylene function to the epoxide moiety (Scheme4.1b) [199, 200]. The synthetic problem was therefore reduced to the synthesis of chiral epoxide 96, which, in turn, could be accessible from allylic alcohol 97 via asymmetric epoxidation. The allylic alcohol 97 should finally be formed 4. Synthesis of an Optically Pure Differentially Silyl-Protected Tris(alkynyl)Phenyl Methane

by a palladium mediated coupling between ethyl-3-phenylpropiolate 98 and ethynyltriisopropylsilane 99.

a) OSiMe2fBu SiMe3 Yamamoto rearrangement Pru*, Ph. -o ^=> OSiMe,fBu

Si(/Pr)3 Si(/Pr)3 Si(/Pr)3

94 95 96

Asymmetric epoxidation

\7

,0H Pd-mediated C02Et coupling Si(/Pr)3 ph^//

Ph

98 99 Si(/Pr)3

97

b) ,0SiMe9fBu OSiMe2fBu o MABR II R RV R1. OSiMe7fBu ^ ,e ,/ 0 r2 AI'UK R^ R^ 1 OR

R--

Scheme 4.1. a) Retrosynthetic analysis of the optically active corner molecule 94. b) The Yamamoto rearrangement proceeds via antiperiplanar migration of the siloxymethylene function to the epoxide moiety.

68 4 Synthesis of an Optically Pure Differentially Silyl-Protected Tns(alkynyl)Phenyl Methane

4.2 Synthesis

The synthesis commences with the cross-coupling of ethynyltriisopropylsilane 99 to ethyl-3-phenylpropiolate 98 in the presence of 5 mol % Pd(OAc)2 and the electron-rich ligand tris(2,6-dimethoxy phenyl)phosphine (TDMPP) to provide enynoate 100 in 96% yield [201, 202] (Scheme 4 2)

Pd(OAc)2, C02Et C02Et TDMPP, ph /) Si(/Pr)3 benzene, 25 °C

96% Ph Si(/Pr)3 98 99

100

Scheme 4.2. Synthesis of enynoate 100. TDMPP = tris(2,6-dimethoxyphenyl)phosphine.

The reaction is known to exhibit extraordinary eis regioselectivity and only small amounts of trans adduct were formed which could be removed by column chromatography (SiC>2, pentane/EtOAc 24 1) The most plausible mechanism for this reaction is outlined in Scheme 4 3 Activation of the C-H bond of the terminal alkyne 99 affords alkynylpalladium complex 101 Formation of the active catalyst 101 may occur via direct deprotonation of the coordinated 99 to ligated palladium acetate The strong donor properties of the acetylides predict preferential coordination of the acceptor alkyne

98 with a low-lying antibonding orbital in 102 Thus, the ability of electron deficient alkynes to compete successfully with the terminal alkyne even at a 1 1 ratio is nicely accommodated by this species Further, the differential rate of migratory insertion of an electron deficient versus an electron rich alkyne may act synergistically to give the high selectivity observed for the cross-coupling Indeed a migratory insertion in Pd11 complex

102 leads to complex 103 The regiochemistry of the carbametalation of 98 reflects both steric and electronic effects The latter presumably dominate in the cross-coupling, thus placing the palladium as in 103 to provide the most stable C-Pd bond The complex 103 reacts with another molecule of 99 to give a PdIV complex 104 The presence of strong donor ligands on palladium as in 102 and 103 should facilitate formation of the higher

69 4. Synthesis of an Optically Pure Differentially Silyl-Protected Tris(alkynyl)Phenyl Methane

oxidation state complex. It also accounts for the absence of any effect of an external proton source. Finally, a reductive elimination gives the enynoate 100.

AcOPd-OAc

— 99

HOAc

100 (/Pr)3Si- -Pd-OAc

101

(/Pr)3Si

(/Pr)3Si (,Pr)3Si- -Pd-OAc I Ph- COOEt

104 102

Si(/Pr)3

L ^ Ph'"Ny-Pd-OAc COOEt

103

L =

-OCH3 H3CO'

Scheme 4.3. Working hypothesis for the Pd-catalyzed cross-coupling of 98 and 99.

Reduction of 100 with DIBAL-H in THF at -78 °C provided, after chromatographical purification, allylic alcohol 97 in 95 % yield (Scheme 4.4). The subsequent epoxidation of 97 was first carried out in a non-stereoselective way with

70 4. Synthesis of an Optically Pure Differentially Silyl-Protected Tris(alkynyl)Phenyl Methane

MCPBA as oxidant. Usage of a buffered solution was necessary to prevent epoxide opening, since, the parent acid (3-chlorobenzoic acid, piCa = 3.8) is much more acidic than the peracid (piCa = 7.6). The resulting epoxy alcohol (±)-105 proved to be quite unstable and, although JH NMR analysis of the crude product showed that the reaction proceeded quantitavely, purification by column chromatography led to partial decomposition (75% isolated yield). Thus, (±)-105 was used without further purification in the following step.

,OH

DIBAL-H, THF MCPBA, Na2HP04, -78°C PlK^ CH2CI2 0°C 100 95% quant. (75% after FC) II

Si(/Pr)3 Si(/Pr)3

97 (±)-105

Scheme 4.4. Non-stereoselective synthesis of epoxy alcohol (+)-105. DIBAL-H = diisobutylaluminum hydride, MCPBA = m-chloroperbenzoic acid, FC = flash chromatography.

4.2.1 Asymmetric Epoxidation

In collaboration with Dr. Boris Buschhaus, several asymmetric epoxidation methods were also explored at this stage [203]. However, the enantioselective epoxidation of the tri substituted 97 turned out to be rather challenging. The powerful Sharpless catalytic asymmetric epoxidation [204-206] afforded only 10 % of the expected product under various conditions and therefore the enantiomeric excess (ee) was not determined.

A two-step procedure involving first a Sharpless asymmetric dihydroxylation [207-209] followed by conversion of the resulting diol to the epoxide 105 also failed. Although the diol was obtained in good yields (69%), the ring closure was not successful. The

Jacobsen epoxidation [210, 211] also gave poor yields (22%) in addition to a complex mixture of inseparable eis and trans isomers. Finally, Shi epoxidation [212-214] furnished the epoxy alcohol in 85 % yield. The latter method uses a fructose-derived ketone (Epoxone, 106) as catalyst and potassium peroxomonosulfate (Oxone, DuPont) as oxidant (Scheme 4.5a).

71 4. Synthesis of an Optically Pure Differentially Silyl-Protected Tris(alkynyl)Phenyl Methane

0 0 .,,/ ft" HSOs

106

.oS' ° ""/ Baeyer Villiger -OH *-

•III/ SO-2

o 1°fb-so3-

107

b)

Spiro A Planar B

Scheme 4.5. Shi epoxidation. a) Possible reaction pathways of the epoxidation catalyzed by ketone 106. b) Spiro and planar transition states for the active epoxidation agent, dioxirane 108.

The pH is a very important factor for the epoxidation with dioxiranes generated in situ. Generally, higher pH results in more rapid autodecomposition of Oxone, which leads to the decrease of epoxidation efficiency. On the other hand, the Baeyer-Villiger reaction, the probable major decomposition pathways, may be reduced at a higher pH, since higher pH favors the equilibrium toward intermediate 107. This would consequently lead to a more efficient formation of the active epoxidation agent, dioxirane

72 4. Synthesis of an Optically Pure Differentially Silyl-Protected Tris(alkynyl)Phenyl Methane

108. It is believed that the enhanced epoxidation efficiency at higher pH for ketone catalyst 106 is also a result of the increase of Oxone nucleophilicity. Thus, the epoxidation is typically carried out around pH 10.5, which can be conveniently achieved by adding K2CO3. Among the possible reaction transition states for the epoxidation between the olefin and the dioxirane 108, transition states spiro A and planar B are favored, since they minimize steric interactions (Scheme 4.5b). They result in the opposite stereochemistry for the epoxide product. However, from experimental results, it has been shown that the oxygen is delivered in a spiro-fashion to the alkene rather than in a planar mode. Calculations by Bach et al. have also shown that the optimized transition state for oxygen atom transfer from dimethyldioxirane to ethylene is the spiro transition state [215]. The spiro orientation of the transition state could benefit from a stabilizing interaction of an oxygen lone pair with the 7^ orbital of the alkene.

MeO £F3

-T_r ,_,_

-71.1 -71.2 -71.3 -71.4 -71.5 -71.6 -71.7 -71.8 -71 9 -72.0 -72.1 ppm

19r Figure 4.1. F NMR spectrum (282 MHz, CDCI3) of the Moshefs ester derivative 109 showing a dr of 91:9.

The ee of the epoxide 105 deriving from Shi epoxidation was established by derivatization with (-)-(R)-Moshef s acid chloride [216]. 19F NMR spectrum of the ester derivative 109 showed two peaks clearly separated at -71.62 and -71.68 ppm, and

73 4 Synthesis of an Optically Pure Differentially Silyl-Protected Tns(alkynyl)Phenyl Methane

integration of these signals gave an ee of 82% (Figure 4 1) Nevertheless, as this transformation requires a rather high catalyst loading (0 6 mol/mol substrate) and only one enantiomeric form of the catalyst is commercially available, we were prompted to defer the formation of the two enantiomers to a later stage of the synthesis

4.2.2 The Key Intermediate

Racemic epoxy alcohol (±)-105 was then reacted with ^-butylchlorodimethylsilane to afford epoxy silyl ether (±)-96 (Scheme 4 6)

OSiMe,fBu fBuMe2SiCI, 0 imidazole, CH2CI2, MABR, Ph H 0-^25°C CH2CI2 -78 °C (±)-105 »- quant. 72% OSiMe2fBu (95% after FC) Si(/Pr)3 Si(/Pr)3

(±)-96 (±)-95

0 0 Bestmann reagent, ' K2C03, MeOH /\,/^OMe PPh3, CBr4, Bestmann reagent = II 93% OMe CH2CI2, 0 °C N h N"

Ph. /iBuLi, THF, -78 °C OSiMe2fBu 95% OSiMe7fBu

Si(/Pr)3

(±)-110

Scheme 4.6. Synthesis of intermediate (±)-110. MABR = methylaluminum bis-(4-bromo-2,6-di- tert-butyl-phenoxide), FC = flash chromatography.

The latter compound was also sufficiently pure to be used in the following rearrangement without further purification Now the stage was set for the Yamamoto rearrangement The use of a sterically hindered, oxigenophilic organoaluminum reagent is effective for the initial epoxide cleavage, followed by smooth alkyl transfer, in view of

74 4. Synthesis of an Optically Pure Differentially Silyl-Protected Tris(alkynyl)Phenyl Methane the steric repulsion between the bulky phenoxide ligand and the siloxymethylene moiety.

Indeed, treatment of (±)-96 with in situ generated methylaluminum bis-(4-bromo-2,6-di- tert-butyl-phenoxide) (MABR) at -78°C for 45 min afforded ß-siloxy aldehyde (±)-95 in

72% yield from 97. Having successfully generated the quaternary carbon center, synthetic efforts could be now directed toward the introduction of the two differentially silyl-protected acetylene moieties. Application of the Bestmann protocol [217-219] to

(±)-95 afforded the terminal alkyne (±)-110 in a marginal 30% yield. This powerful one- pot homologation allows the direct preparation of alkynes from precursor aldehydes.

Acyl cleavage of dimethyl-l-diazo-2-oxopropylphosphonate {Bestmann reagent) furnishes the anion of dimethyldiazomethylphosphonate. The Horner-Wadsworth-

Emmons-type reaction with the aldehyde provides a vinylidene carbene that spontaneously rearranges to the desired alkyne. On the other hand, the two step

Corey-Fuchs procedure [46] proved to be more successful, furnishing (±)-110 in 88% yield, via dibromo olefin (±)-lll.

At this stage, some manipulations of the protecting groups were necessary.

Preliminary results showed that it was not possible to cleave the ^-butyldimethylsilyl ether in presence of a trialkylsilyl-protected alkyne. However, treatment of (±)-110 for

20 min with a solution of TFA/H20 9:1 resulted in a clean deprotection of the silyl group and afforded (±)-112 (Scheme 4.7). Due to the presence of a free hydroxyl group, all attempts of selectively protecting the alkyne with either trimethylchlorosilane or triethylchlorosilane failed. Therefore, it was decided to apply a two-step, one-pot procedure, which first involved protection of both the alkyne and the hydroxyl group with

«BuLi and trimethylchlorosilane at -78°C and then selective cleavage of the silyl ether with IN HCl at room temperature. By this strategy, bisprotected alkyne (±)-113 could be obtained in 92 % yield from (±)-110.

75 4 Synthesis of an Optically Pure Differentially Silyl-Protected Tns(alkynyl)Phenyl Methane

.SiMeq nBuLi, Me3SiCI, THF, TFA/H20(9:1), Ph -80 "C; then 1N HCl, CH2CI2, 0 °C THF, -78 °C >~ (±)-102 : ,, OH 92%

Si(/Pr)3

(±)-112

Scheme 4.7. Synthesis of bisprotected alkyne (±)-113. TFA = trifluoroacetic acid.

4.2.3 Chiral Resolution

Resolution of the racemate by chiral preparative HPLC was possible at the stage of the primary alcohol (±)-113 The use of a Regis® Whelk-0 column was effective for this task both enantiomers were obtained in pure form and could be used for the completion of the synthesis (Figure 4 2)

22 5 mm

Figure 4.2. Preparative HPL chromatogram of (+)-113 and (—)-113. Column: "Regis (S,S)- Whelk-O 1", Kromasil, 10 urn, 100 Â, 25 cm x 21.1 mm; elution mixture: hexane/ZPrOH 99.6:0.4; flow rate: 6 mL/min; detection at X = 254 nm.

76 4. Synthesis of an Optically Pure Differentially Silyl-Protected Tris(alkynyl)Phenyl Methane

The presence of a polar group is crucial for effective separation of the enantiomers via high-performance liquid chromatography (HPLC) on a chiral stationary phase. Polyethynylmethanes are highly apolar compounds, so little interaction with a polar stationary phase is possible. Additionally, in the present case, stereodifferentiation between the two enantiomers is very small.

4.2.4 Optical Purity

In order to determine the absolute configuration of the enantiomerically pure products, crystals suitable for X-ray analysis were desirable. Thus, reaction of alcohol

(+)-113 with (-)-(l,S)-camphanic chloride in the presence of 4-(N,N- dimethylamino)pyridine (DMAP) afforded ester (+)-114, which, however, is a pale yellow oil (Scheme 4.8). Nevertheless, the esterification provided a direct proof of the optical purity of compound (+)-113, since both JH and 13C NMR spectra of (+)-114 only featured one unique set of resonances (Figure 4.3).

SiMe3

(1S)-(-)-camphanic Ph chloride, DMAP, rn THF (+)-113 >- 73% Si(/Pr)iPrh ^h(

(+)-114

[a]25D = +2.6

Scheme 4.8. Synthesis of the optically pure ester (+)-114. DMAP = 4-(/V,/V- dimethylamino)pyridine.

77 4. Synthesis of an Optically Pure Differentially Silyl-Protected Tris(alkynyl)Phenyl Methane

I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0

b)

_Ju_

7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0

Figure 4.3. a) 1H NMR spectra (300 MHz, CDCI3) of the ester 114 deriving from (±)-113 and (-)- (1S)-camphanic chloride, b) 1H NMR spectra (300 MHz, CDCI3) of the ester (+)-114 deriving from (+)-113 and (-)-(1S)-camphanic chloride.

78 4 Synthesis of an Optically Pure Differentially Silyl-Protected Tns(alkynyl)Phenyl Methane

4.2.5 Last Steps

For the completion of the synthesis, alcohol (+)-113 was quantitatively oxidized with the mild oxidant Dess-Martin periodinane (DMP) [128] to the corresponding aldehyde (+)-115 (Scheme 4 9) Introduction of the last alkyne moiety was achieved by the Corey-Fuchs protocol to furnish, via dibromo olefin (-)-116, the targeted tris(alkynyl)phenyl methane (+)-94 in 61% yield from (+)-113

SiMe3 Br^ ^.Br SiMe3 DMP, CH2CI2 PPh3, CBr4, 0°C Ph^*/^ CH2CI2, 0 °C (+)-113 quant. ° 83% [a]25D = +8.6 (74% after FC) I I

Si(/Pr)3 Si(/Pr)3

(+)-115 H-116

[a] 25D = +8.8 [a]25D = -2.8

SiMe3 nBuLi, THF, -78 °C

73%

Scheme 4.9. Preparation of the optically pure corner module (+)-94. DMP = Dess-Martin periodinane, FC = flash chromatography.

4.3 Scaffolding

A preliminary survey of the scaffolding possibilities of this novel trialkynylmethane derivative was done with the racemic corner module (±)-94 Thus, oxidative homocoupling of the terminally deprotected alkyne unit of (±)-94 under Hay conditions led to the formation of an inseparable mixture of meso- and (±)-117 as a yellow viscous oil (Scheme 4 10) The best results were obtained using dichloromethane as solvent (91% yield) In acetone, the desired product could only be isolated in 80%

79 4. Synthesis of an Optically Pure Differentially Silyl-Protected Tris(alkynyl)Phenyl Methane

yield. Successive cleavage of the trimethylsilyl protecting groups with 1 N NaOH in

MeOH/THF (1:1) gave meso- and (±)-118 in 87% yield.

SiMe

CuCI, TMEDA, Si(/Pr)3 CH2CI2, air (±)-94 ' 91%

(/Pr)3Si

SiMe3

meso- and (±)-117

1 N NaOH, 87% MeOH/THF (1:1)

Si(/Pr)3

(/Pr)3Si

meso- and (±)-118

Scheme 4.10. Synthesis of the edge module meso- and (+)-118. TMEDA = N,N,N',N'- tetramethylethylenediamine.

Subjection of 118 (meso- and (±)- forms) to oxidative coupling under high dilution conditions in CH2C12 was unsuccessful. According to mass spectrometric analysis of the crude material, higher oligomers or macrocycles did not form during the reaction and only decomposition occurred. Conversely, carrying out the Hay coupling in acetone under the same dilution condition (1 mM) led to the isolation of a brown powder.

!H and 13C NMR analysis showed the absence of unprotected alkyne moieties. This indicated the complete consumption of the starting material and excluded the presence of higher acyclic oligomeric compounds. A more surprising finding was obtained by matrix-assisted laser-desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry. As shown in Figure 4.4, reproducible experiments in the positive ion mode showed the formation of various macrocycles, with sizes up to nine edge modules 118.

80 4. Synthesis of an Optically Pure Differentially Silyl-Protected Tris(alkynyl)Phenyl Methane

1833 03

[3M + Na]* Si(/Pr)3 2569 56 M- [4M + Na]*

129558 (;Pr)3Si

(2M + Na)*

3206 20

S5M + Na]*

[6M + Na]*

3843 94

[7M + Na] 4481 21 [8M + Na]* [9M + Na]* 5119 02 1613 75 5759 88 U I-

Figure 4.4. MALDI-TOF mass spectrum in the positive ion mode of the reaction mixture deriving from homocoupling of meso- and (±)-118. Matrix: DCTB (2-[(2E)-3-(4-ferf-butylphenyl)-2- methylprop-2-enylidene]malononitrile).

A clear difference in reactivity between the partially deprotected derivative of 47

(Section 1.4) and 118 becomes evident. Although very similar, under the same reaction conditions (but in different solvents), the former gave as a unique product the face module (four diastereoisomers) whereas the latter afforded a mixture of expanded rings, where the face module is only a minor product.

Separation of the macrocycles by column chromatography was not possible due to overlapping and broad smearing fractions. Analytical GPC (NovoGROM GPC 100, 10 urn, 300 x 8 mm, CHCI3, 1 mL/min) was also ineffective for this purpose. Nevertheless,

HPLC (Hibar® 250-25, LiChrospher® Si 60 (5 urn), Hexane/CH2C12 9:1, 10 mL/min) allowed the separation of the quadratic, the hexagonal, and the octagonal expanded rings.

Higher macrocycles could not be detected. This result was obtained in a first attempt and optimization of the elution conditions should permit the isolation and the full characterization of these unanticipated novel topologies.

81 4. Synthesis of an Optically Pure Differentially Silyl-Protected Tris(alkynyl)Phenyl Methane

4.4 Conclusion and Outlook

In summary, the preparation of the novel optically pure triethynylphenyl methane,

(+)- and (-)-94, has been achieved by a 13-step synthesis involving chiral preparative

HPLC separation. The synthesis of the corner module involved, as key step to generate the quaternary carbon atom, Yamamoto rearrangement of epoxy silyl ether (±)-96 to ß- siloxy aldehyde (±)-95. By using non-racemic 96 this transformation would provide access to optically active key intermediate 95. However, only the Shi epoxidation, which suffers from high catalyst loading and the poor commercial availability of the catalyst, provided 96 with reasonable enantioselectivity {ee 82%). Chiral resolution of the racemate was possible at the stage of bisprotected alkyne (±)-113: both enantiomers were obtained in pure form and were used for the completion of the synthesis. Introduction of the last alkynyl unit was accomplished through the Corey-Fuchs protocol. An unambiguous assignment of the absolute configuration of the corner module (+)-94 is currently undertaken. One attempt to obtain a crystalline derivative for X-ray analysis by means of the ester (+)-114 was unsuccessful. Alternatively, crystals may be obtained by cleavage of the trimethylsilyl moiety in (+)-114 or by conversion of aldehyde (+)-115 to the corresponding tosylhydrazone. Moreover, the absolute configuration could possibly be deduced by comparison of the optically pure compound coming from HPLC separation and the optically active compound from Shi epoxidation, which proceeds through a spiro transition state (Scheme 4.5b).

Scaffolding possibilities of the racemic corner module (±)-94 were also explored.

Interesting results were obtained by subjection of the partially deprotected edge module

118 (meso- and (±)- forms) to Hay coupling. Mass spectrometric analysis (MALDI-TOF) of the crude product showed the formation of various macrocycles of different size, which could be partially separated by HPLC.

82 5. Summary and Outlook

The synthesis of two novel optically pure trialkynylmethane-based derivatives,

(+)-(R)-69 and (+)-94, has been accomplished. Chirality of these building-blocks for three-dimensional acetylenic scaffolding is only derived from different protecting groups on the alkynyl residues.

Optically active tris(alkynyl)methyl methyl ether (+)-(R)-69, carrying a trimethylsilyl and a tnethylsilyl protecting group on the ethynyl moieties, was prepared by a stereoselective, 9-step synthesis starting from easily available ethyl (^-lactate (17% overall yield). The key step of the preparation involved a diastereoselective addition of a lithium acetylide to an optically active alkynylketone under Cram chelation control.

Thus, the stereogenic center of the corner module was formed with diastereoselectivity as high as 90%). The overall yield was mainly affected by the last synthetic step, involving the introduction of the last alkynyl unit through formal dehydration of a methylketone.

This was successfully achieved via formation of the corresponding enol triflate, followed by elimination with LDA. Two additional synthetic steps allowed the access to the enantiomerically pure corner module, by way of preparative HPLC separation at the stage of intermediate 79. The absolute configuration of the central carbon atom was unambiguously assigned by means of X-ray analysis of tosylhydrazone (+)-(i?)-70.

Enantiomer (-)-(S)-69 is prepared in the same way, using as starting material the methyl

(R)-lactate as an alternative for the expensive ethyl (R)-lactate.

On the other hand, racemic tris(alkynyl)phenyl methane (±)-94, carrying a trimethylsilyl and a triisopropylsilyl protecting group on the alkynyl moieties, was prepared by a non-stereoselective 13-step synthesis in a remarkable 37% overall yield.

The quaternary carbon center was generated through a Yamamoto rearrangement, promoted by a bulky organoaluminum reagent. The last two alkynyl units were smoothly introduced by means of the Corey-Fuchs protocol with 88%> and 61%> yield, respectively.

Attempts to stereoselectively prepare the corner modules by asymmetric epoxidation were fruitless. Only the Shi epoxidation, which suffers from high catalyst loading and the 5. Summary and Outlook

poor commercial availability of the catalyst, gave reasonable enantioselectivity (ee 82%).

However, preparative HPLC resolution of the racemate at the stage of primary alcohol

(±)-113 permitted the preparation of both enantiomerically pure corner modules (+)- and

(-)-94. The absolute configuration of this building block still needs to be established.

Crystalline compounds for X-ray analysis may be obtained by cleavage of the trimethylsilyl moiety in camphanic ester derivative (+)-114 or by conversion of aldehyde

(+)-115 to the corresponding tosylhydrazone, in a similar way to the successful approach used for (+)-(R)-69.

In order to gain benefit from the chirality of these novel optically pure corner modules, the application of a Cadiot-Chodkiewicz protocol, that only affords heterocoupling product, is essential. The stereoselective formation of the edge module

(meso) would lead not only to an improved synthesis of the expanded cubane 49, as illustrated in Chapter 3, but also pave the way to atom-efficient routes toward new expanded polyhedranes. The synthesis of the expanded prismane with a central C42 core is one example (Scheme 5.1). A Cadiot-Chodkiewicz reaction between the edge module

(meso) and the appropriate dihaloalkyne derivative of the corner module would provide the triangular face. Two diastereoisomers are expected to be formed during this transformation. Finally, the expanded prismane can be obtained by oxidative macrocyclization of the deprotected base module under Hay condition.

84 5. Summary and Outlook

Ï

R'

R1

R %

\7

SiMe3

69 R = OMe, R1 = SiEt3 94 R = Ph, R1 = Si(/Pr)3

Scheme 5.1. Retrosynthetic analysis of expanded prismanes bearing either methoxy or phenyl substituents at the vertices.

Further molecular topologies are conceivable starting from the chiral corner modules. For instance, extension of the edge module by one acetylenic unit would furnish an expanded cuboid with a central Cô4 core (Scheme 5.2). Cadiot-Chodkiewicz coupling between one enantiomer of the corner module with the appropriate acetylene synthon, followed by deprotection and heterocoupling with the other enantiomer would afford an elongated edge module with the correct meso configuration. Then, similarly to

85 5. Summary and Outlook

the preparation of the expanded cubane, the expanded cuboid may be obtained by an iterative sequence of selective deprotection and oxidative Hay coupling.

R X ^ 1 ' R\ /— A Ï

1 / i ~^ '

/— — — /

R R

\7

Rn R1

//___/ \ R R

meso

SiMeq 69R = OMe, R1 = SiEt3 94 R = Ph, R1 = Si(/Pr)3

Scheme 5.2. Retrosynthetic plan for the synthesis of an expanded cuboid.

The central acetylene unit in the extended edge module may be replaced by a phenyl spacer (Figure 5.3). Sonogashira cross-coupling of one enantiomer of the corner module with 1,4-dibromobenzene, followed by with the other enantiomer would provide a meso edge module, which in turn could be used for the construction of a fascinating cyclophanic face module. Subsequent deprotection and oxidative homocoupling would give the expanded cuboid featuring four phenyl units in the backbone that may show interesting host-guest properties.

86 5. Summary and Outlook

\7

Rn R1

/— r\ - - Vj R R

meso

R1 R1 SiMe3 Me3Si, 69 R = OMe, R1 = SiEt3 + Br -Br + \\ // \ 94 R = Ph, R1 = Si(/Pr)3 R

R

Scheme 5.3. Retrosynthetic analysis of an expanded cuboid featuring four phenyl units in the backbone.

87 88 6. Experimental Part

6.1 General Methods and Instrumentation

Chemicals were purchased from Acros, Aldrich, Fluka, and ABCR and were used as

received. THF was distilled from Na/benzophenone. CH2CI2 was distilled from CaH2.

All reactions except the oxidative couplings were carried under a slight positive pressure

of argon.

Thin layer chromatography (TLC) was conducted on glass sheets precoated with 0.2 mm

Merck silica gel, with 254 nm fluorescent indicator. Compounds were visualized by

treatment with an anisaldehyde solution [EtOH (250 mL), cone. H2SO4 (9.2 mL),

anisaldehyde (6.8 mL) and AcOH (2.8 mL)] or a KMn04 solution [KMn04 (1.5 g),

K2C03 (10 g), 5% NaOH (2.5 mL) and H20 (150 mL)], and subsequent heating.

Flash chromatography (FC) was carried out with Fluka silica gel 60 (particle size 40-63

|im, 230-400 mesh) and distilled technical solvents.

High performance liquid chromatography (FIPLC) was carried out on a Merck-Hitachi

LaChrom system, composed of a L-7100 pump, L-7200 autosampler. L-7400 UV

detector, and D-7000 interface.

Melting points (mp) were measured in open capillaries with a Biichi Melting Point B540

apparatus and are uncorrected.

Optical rotation (OR) measurements were performed on a Perkin-Elmer 241 Polarimeter

using a 1 dm cell at 25 °C, X = 589 nm (Na D-line). Concentrations are given in grams of

solute per 100 mL of solvent. 6. Experimental Part

Infrared spectra (IR) were recorded on a Varian 800 FT-IR spectrometer. The spectra

were measured either as solutions in CHCI3 or as a neat. Selected absorption bands are

reported in wavenumbers (cm1).

Nuclear magnetic resonance spectra (NMR). 300 MHz *H NMR and 75 MHz 13C NMR

spectra were measured on a Varian Gemini 300 spectrometer. 500 MHz *H NMR spectra

were measured on an AMX-500 spectrometer. Chemical shifts are reported in ppm

downfield from tetramethylsilane (SiMe4) using the solvent's residual signal as an

internal reference (CDCI3: Sa = 7.26 ppm, Sc = 77.0 ppm). Coupling constants (J) are

given in Hz. The resonance multiplicity is described as s (singlet), d (doublet), t (triplet),

q (quartet), m (multiplet), bs (broad signal). All spectra were recorded at room

temperature.

Mass spectra were performed by the MS service at Laboratorium für Organische Chemie

of ETH Zürich. EI-MS (m/z (%)): VG Tribid instrument, 70 eV. ESI-MS (m/z (%)):

Finnigan TSQ 7000 instrument, positive mode. HR-MALDI-FT-MS (m/z (%)): Ion Spec

Ultima 4.7 ion cyclotron resonance mass spectrometer, positive or negative ion mode,

matrix: DHB (2,5-dihydroxybenzoic acid) or DCTB (2-[(2E)-3-(4-fert-butylphenyl)-2-

methylprop-2-enylidene]malononitrile). MALDI-TOF-MS measured with reflectron

detection on a Brucker REFLEX spectrometer or with linear detection on an Ionspec

Fourier Transform Mass Spectrometer ULTIMA FT-ICR (337 nm N2-Lasersystem),

positive or negative ion mode, matrix: DCTB.

Elemental analyses (EA) were performed by the Mikrolabor at the Laboratorium für

Organische Chemie, ETH Zürich.

njPAC Nomenclature follows the proposals of the Advanced Chemistry Development

nomenclature software (ACDName). Nomenclature for compounds 82, 90, and 93 is

based on the rules given in Section 6 of reference [220].

90 6 Experimental Part

6.2 Experimental Procedures

Ethyl (2S)-2-[(4-Methoxybenzyl)oxy]propanoate ((-)-(S)-60) [114]

PMBO

o

4 Trifluoromethanesulfonic acid (0 70 |iL, 8 1 -10 mmol) was added to a solution of ethyl

(S)-lactate (3 08 mL, 27 0 mmol) and 4-methoxybenzyl trichloroacetimidate (15 26 g,

54 0 mmol) in cyclohexane (45 mL) and CH2CI2 (45 mL) at 0 °C A white precipitate formed immediately After 10 min, the mixture was warmed to 20° and stirred for 17 h

Hexane (120 mL) was added, and the resulting white precipitate was removed by filtration and washed again with hexane (60 mL) The organic phase was washed with sat aq NaHCCh solution (120 mL) and sat aq NaCl solution (120 mL) and dried

(MgS04) Evaporation and subsequent column chromatography (Si02, hexane/EtOAc

10 1) afforded 5 53 g (23 2 mmol, 86%) of (-)-(S)-60 (ee = 100%) as a colorless oil

Rf (hexane/EtOAc 10 1) 0 24 [a]2^ = -78 7 (c = 1 08, CHC13) IR(CHC13) 3010, 2984,

2960, 2937, 2904, 2837, 2059, 1887, 1739, 1612, 1586, 1513, 1465, 1456, 1443, 1422,

1395, 1374, 1302, 1249, 1142, 1110, 1062, 1034, 845, 825 lîî NMR (300 MHz, CDC13)

1 29 (t, J= 7 1, 3 H, CtfjCH20), 1 41 (d, J = 6 8, 3 H, CH3CHO), 3 80 (s, 3 H, OCH3),

4 02 (q, J= 6 8, 1 H, CH3CHO), 4 21 (dq, J= 7 0, 1 6, 2 H, CU3CH20), 4 3S(d,J=U2,

1 H, CHHAi), 4 62 (d, J= 11 2, 1 H, ŒHAr), 6 87 (m, 2 H, Ar), 7 29 (m, 2 H, Ar) 13C

NMR (75 MHz, CDC13) 14 4, 18 8, 55 3, 60 8, 71 6, 73 7, 113 7, 129 5, 159 2, 173 2

EI-HRMS m/z calcd for Ci3Hi804+ [M]+ 238 1205, found 238 1210 EA for Ci3Hi804

(238 28) calcd C 65 53, H 7 61, found C 65 52, H 7 47

91 6. Experimental Part

Methyl (2tf)-2-[(4-Methoxybenzyl)oxy]propanoate ((+)-(tf)-85) [114]

PMBO

0

To a solution of (+)-(i?)-methyl lactate (1.8 mL, 1.96 g, 18.85 mmol) and

/»-methoxybenzyl 2,2,2-trichloroacetimidate (11.83 g, 41.88 mmol) in a cyclohexane/CH2Cl2 mixture (1:1, 70 mL), TfOH (40 uL, 0.46 mmol) was added at 0 °C and a precipitate formed. The mixture was stirred at 0 °C for another 15 min and then at

20 °C for 17 h. The mixture was poured in hexane (120 mL), the precipitate removed by filtration and washed with hexane (60 mL). The organic phase was washed with sat. aq.

NaHC03 solution (2 x 200 mL), sat. aq. NaCl solution (2 x 200 mL), and dried over

MgS04. Purification by column chromatography (SiÛ2; hexane/AcOEt 10:1) gave 3.70 g

(16.48 mmol, 87%) of (+)-(R)-S5 (ee = 100%) as a yellow oil.

R{ (cyclohexane/AcOEt 10 :1) 0.17. [a]2^ = +67.7 (c = 1.00, CHC13). IR (neat): 2980,

2950, 2905, 2870, 2830, 1750, 1615, 1585, 1515, 1450, 1395, 1370, 1300, 1250, 1205,

1175, 1145, 1110, 1065, 1035,975, 825. ^NMR (300 MHz, CDC13) : 1.42 (d, 3 H, J =

6.9 Hz, G^CHO), 3.75 (s, 3 H, AvOCH3), 3.80 (s, 3 H, C02CH3), 4.05 (q, 1 H, J= 6.9

Hz, CH3CHO), 4.39 (d, 1 H, J = 11.2 Hz, CHHAi), 4.61 (d, 1 H, J = 11.2 Hz, CHHAi),

6.89 (m, 2 H, Ar), 7.29 (m, 2 H, Ar). 13C NMR (75 MHZ, CDC13): 18.7, 51.8, 55.2, 71.6,

73.6, 113.8, 129.6, 159.4, 173.8.

92 6 Experimental Part

(2»V)-iV-Methoxy-2-[(4-methoxybenzyl)oxy]-iV-methylpropanamide((-)-(»V)-61)

PMBO |

0

A 2 M solution of /PrMgCl in Et20 (10 9 mL, 218 mmol) was added dropwise over 40 min to a vigorously stirred suspension of (MeO)MeNHHCl (1 07 g, 10 9 mmol) and

(-)-(S)-60 (1 04 g, 4 37 mmol) (ee = 100%) in THF (13 mL) at -30 °C The mixture was stirred for 1 h, and during that time, the temperature increased to -5 °C A sat aq NH4CI solution (4 mL) was then added dropwise to the mixture The solution was poured into a mixture of Et20/NH4C1 (40 mL, 1 4), and the phases were separated The aqueous phase was extracted with Et20 (50 mL) and CH2C12 (40 mL) Evaporation of the combined organic fractions and subsequent column chromatography (SiC>2, hexane/EtOAc 2 1 to

1 1) afforded 864 mg (3 41 mmol, 78%) of (-)-(S)-6l (ee = 100%) as a colorless oil

Rf (hexane/EtOAc 11)0 36 [ag = -78 3 (c = 1 00, CHC13) IR(CHC13) 3478, 3003,

2961, 2938, 2909, 2869, 2837, 2641, 2596, 2549, 2462, 2061, 2006, 1888, 1663, 1612,

1585, 1512, 1464, 1442, 1420, 1391, 1368, 1321, 1302, 1172, 1154, 1105, 1058, 1035,

994, 937, 913, 894, 860, 845, 825 lîî NMR (300 MHz, CDC13) 1 36 (d, J = 6 5, 3 H,

CH3), 3 20 (s, 3 H, NCH3), 3 58 (s, 3 H, NOCH3), 3 79 (s, 3 H, OCH3), 4 38 (q, J= 6 5, 1

H, Œ/(CH3)OCH2Ar), 4 34 (d, J= 11 2, 1 H, CHZ/Ar), 4 59 (d, J= 11 2, 1 H, CHRAv),

6 85 (m, 2 H, Ar), 7 28 (m, 2 H, Ar) 13C NMR (75 MHz, CDC13) 18 1, 32 4, 55 2, 61 3,

70 8, 71 1, 113 7, 129 5, 129 8, 159 1, 173 5 MS (ESI) m/z = 529 1 [2M + Na]+, 292 1

[M + K]+, 276 2 [M + Na]+, 254 1 [M + H]+ EA for C13H19NO4 (253 30) calcd C

61 64, H 7 56, N 5 53, found C 61 86, H 7 40, N 5 31

93 6. Experimental Part

(2JR)-J/V-Methoxy-2-[(4-methoxybenzyl)oxy]-iV-methylpropanamide((+)-(JR)-61)

PMBO |

o

A solution of z'PrMgCl in THF (2 M, 94.8 mL, 189.61 mmol) was added dropwise during

40 min to a suspension of (+)-(R)-85 (8.50 g, 37.92 mmol) (ee = 100%) and

(MeO)MeNH-HCl (9.25 g, 94.80 mmol) in THF (110 mL) at -30° C. The reaction mixture was stirred for 1 h and during that time the temperature was increased to -5° C.

The reaction was quenched with sat. aq. NH4C1 solution (35 mL), the reaction mixture was poured into Et20/NH4C1 mixture (1:4, 370 mL), and the aqueous phase was extracted with Et2Û (2 x 200 mL) and CH2CI2 (2 x 200 mL). The combined organic phases were dried over MgS04 and concentrated in vacuo. Purification by column chromatography

(Si02; hexane/AcOEt 1:1) gave 5.43 g (21.44 mmol, 57%) of (+)-(R)-6l (ee = 100%) as a yellow oil.

[org = +87.0 (c = 0.98, CHC13).

(4^)-4-[(4-Methoxybenzyl)oxy]-l-(triisopropylsilyl)-l-pentyn-3-one ((-)-(S)-62)

PMBO .Si(/Pr)3

O

«Buli (0.45 mL of 1.6 M solution in hexane, 0.72 mmol) was added dropwise to a solution of ethynyltriisopropylsilane (162 |iL, 0.72 mmol) in THF (1.1 mL) at 0 °C.

After stirring for 15 min, the mixture was cooled to -78 °C and a solution of Weinreb amide (-)-(S)-61 (122 mg, 0.48 mmol) (ee = 100%) in THF (12 mL) was added dropwise over 75 min. After stirring for 30 min at -78 °C, the mixture was placed in an ice bath and sat. aq. NH4C1 solution (0.6 mL) was added. The mixture was partitioned between

Et2Û and aqueous NH4C1 solution (20 mL, 1:1). The phases were separated, and the

94 6 Experimental Part

aqueous layer was extracted with Et20 (20 mL, 2 x) Evaporation of the combined organic fractions and subsequent column chromatography (Si02, hexane/CH2Cl2 1 1) provided ketone (-)-(S)-62 (173 mg, 0 46 mmol, 96%) (ee = 100%) as a colorless oil

R{ (hexane/CH2Cl2 1 1) 0 28 [ag = -58 26 (c = 1 09, CHC13) IR(CHC13) 3008, 2944,

2894, 2867, 2839, 2761, 2728, 2719, 2620, 2596, 2549, 2145, 2061, 2007, 1886, 1676,

1612, 1586, 1513, 1464, 1442, 1422, 1389, 1384, 1369, 1319, 1303, 1180, 1174, 1083,

1035, 1019, 997, 976, 935, 919, 906, 882, 846 lîî NMR (300 MHz, CDC13) 1 11 (s, 21

H, Si(/Pr)3), 1 43 (d, J = 6 9, 3 H, CH3), 3 80 (s, 3 H, OCH3), 4 03 (q, J = 6 9, 1 H,

Œ/(CH3)OCH2Ar), 4 39 (d, J= 11 2, 1 H, CHZ/Ar), 4 66 (d, J= 11 2, 1 H, CHRAv), 6 87

(m, 2 H, Ar), 7 29 (m, 2 H, Ar) 13C NMR (75 MHz, CDC13) 11 1, 17 9, 18 6, 55 3, 71 7,

80 5, 99 3, 102 3, 113 7, 129 4, 129 5, 159 2, 189 1 MALDI-HRMS m/z calcd for

C22H34Na03Si+ [M + Na]+ 397 2175, found 397 2173 EA for C22H3403Si (374 59) calcd C 70 54, H 9 15, found C 70 52, H 8 99

(3Ä)-3-{(l»V)-l-[(4-Methoxybenzyl)oxy]ethyl}-l-(triisopropylsilyl)-5-(trimethylsilyl)- l,4-pentadiyn-3-ol ((R,S)-63)

(3JV)-3-{(l»V)-l-[(4-Methoxybenzyl)oxy]ethyl}-l-(triisopropylsilyl)-5-(trimethylsilyl)- l,4-pentadiyn-3-ol ((S^-63)

PMBO Si(/Pr); PMBO Si(/Pr);

Me3Si

(S,S)-63

Method A (entry 1, Table 2 1)

«Buli (0 28 mL of 1 6 M solution in hexane, 0 45 mmol) was added dropwise to a solution of ethynyltrimethylsilane (64 |iL, 0 45 mmol) in Et20 (0 4 mL) at 0 °C, and the

95 6. Experimental Part

mixture was stirred for 15 min. Then, the mixture was cooled to -78 °C and a solution of

ketone (-)-(S)-62 (112 mg, 0.30 mmol) (ee = 100%) in Et20 (0.8 mL) was added

dropwise and stirred for 1.5 h. After that, the mixture was placed in an ice bath and

quenched by dropwise addition of sat. aq. NH4C1 solution (0.5 mL), then extracted with

Et20 (2 x). Evaporation and column chromatography (Si02; hexane/EtOAc 96:4)

provided the desired alcohol 63 (colorless oil, 91 mg, 0.19 mmol, 64%) as a mixture of

diastereoisomers (dr = 91:9, de = 82%).

The diastereomeric ratio of the mixture was determined by integrating the HO resonance

in the *H NMR spectrum and by GC analysis (Column: WCOT Fused Silica, CP-Sil 8CB,

30 m x 0.32 mm; Detector: FID; Isotherm: 210 °C; Carrier gas: Helium).

R{ (hexane/CH2Cl2 1:2) 0.38. IR(CHC13): 3534, 3006, 2960, 2944, 2892, 2866, 2840,

2759, 2726, 2716, 2614, 2549, 2174, 2058, 2007, 1947, 1885, 1673, 1612, 1586, 1514,

1463, 1442, 1421, 1409, 1382, 1375, 1367, 1352, 1328, 1302, 1173, 1077, 1034, 1019,

996, 972, 919, 882, 862, 845. !H NMR (300 MHz, CDC13): 0.17 (s, 9 H, Si(CH3)3), 1.08

(s, 21 H, Si(zPr)3), 1.38 (d, J = 6.2, 3 H, Œ^CHOCH2Ar), 3.15 (s, 0.1 H, OH), 3.19 (s,

0.9 H, OH), 3.72 (q, J = 6.2, 1 H, CH3CM)CH2Ar), 3.81 (s, 3 H, OCH3), 4.59 (d, J =

11.2, 1 H, ŒHAr), 4.67 (d, J= 11.2, 1 H, CHZ/Ar), 6.87 (m, 2 H, Ar), 7.29 (m, 2 H, Ar).

13C NMR (75 MHz, CDC13, resonances of major diastereoisomer only): -0.21, 11.31,

15.35, 18.65, 55.30, 67.41, 71.52, 80.41, 86.40, 88.74, 103.80, 104.57, 113.66, 129.19,

130.11, 159.06. MALDI-HRMS: m/z calcd. for C27H44NNa03Si2+ [M + Na]+: 495.2727,

found 495.2734; m/z calcd. for C27H44K03Si2+ [M + K]+: 511.2466, found 511.2461. EA

for C27H4403Si2 (472.81): calcd. C 68.59, H 9.38; found C 68.39, H 9.31.

96 6 Experimental Part

(4JV)-4-[(4-Methoxybenzyl)oxy]-l-(triethylsilyl)-l-pentyn-3-one((-)-(»V)-64)

PMBO /SiEt3

0

«Buli (7 12 mL of 1 6 M solution in hexane, 114 mmol) was added dropwise to a solution of ethynyltriethylsilane (2 04 mL, 11 4 mmol) in THF (18 mL) at 0 °C After stirring for 30 min, the mixture was cooled to -78 °C and a solution of Weinreb amide

(-)-(S)-61 (1 92 mg, 7 6 mmol) (ee = 100%) in THF (12 mL) was added dropwise over

10 min After 30 min, the mixture was allowed to warm to 0 °C and stirred for a further

30 min Then, the mixture was quenched with sat aq NH4C1 solution (4 mL) and extracted with Et20 (2 x) Evaporation and column chromatography (Si02, hexane/CH2Cl2 1 1) provided ketone (-)-(S)-64 (2 25 g, 6 7 mmol, 89%) (ee = 100%) as a colorless oil

Rf (hexane/EtOAc 98 2) 0 17 [a]2^ = -60 1 (c = 1 00, CHC13) IR(CHC13) 3008, 2958,

2936, 2913, 2876, 2838, 2736, 2146, 2058, 1886, 1675, 1612, 1586, 1513, 1465, 1457,

1442, 1415, 1393, 1370, 1318, 1303, 1180, 1173, 1083, 1035, 1018, 1006, 977, 847 lîî

NMR (300 MHz, CDC13) 0 69 (q, J = 7 6, 6 H, Si(Œ/2CH3)3), 1 02 (t, J = 7 6, 9 H,

Si(CH2Œ^)3), 1 42 (d, J = 6 9, 3 H, CH3), 3 80 (s, 3 H, OCH3), 4 03 (q, J = 6 9, 1 H,

Œ/(CH3)OCH2Ar), 4 39 (d, J= 11 2, 1 H, CUHAv), 4 65 (d, J= 11 2, 1 H, CHRAv), 6 87

(m, 2 H, Ar), 7 29 (m, 2 H, Ar) 13C NMR (75 MHz, CDC13) 3 9, 7 4, 17 9, 55 3, 71 7,

80 4, 100 0, 101 4, 113 7, 129 5 (one peak overlaps), 159 2, 189 2 MALDI-HRMS m/z calcd for Ci9H28Na03Si+ [M + Na]+ 355 1705, found 355 1703 EA for Ci9H2803Si

(332 51) calcd C 68 63, H 8 49, found C 68 66, H 8 43

(+)-(R)-64 (ee = 100%) was synthesized in the same way starting from (+)-(R)-6l (ee =

100%) [org = +61 1 (c = 0 96, CHC13)

97 6 Experimental Part

(3^)-3-{(lJV)-l-[(4-Methoxybenzyl)oxy]ethyl}-l-(triethylsilyl)-5-(trimethylsilyl)-l,4- pentadiyn-3-ol ((Ä^V)-65)

(3JV)-3-{(l»V)-l-[(4-Methoxybenzyl)oxy]ethyl}-l-(triethylsilyl)-5-(trimethylsilyl)-l,4- pentadiyn-3-ol ((S,S)-65)

PMBO SiEt, PMBO SiEto

Me^Si

(S,S)-65

«Buli (8 25 mL of 1 6 M solution in hexane, 13 2 mmol) was added dropwise over 40 min to a solution of (trimethylsilyl)acetylene (1 85 mL, 13 2 mmol) in Et20 (9 mL) at 0 °C, and the mixture was stirred for 15 min The mixture was cooled to -78 °C, and a solution of ketone (-)-(S)-64 (2 20 g, 6 6 mmol) (ee = 100%) in Et20 (18 mL) was added dropwise After stirring for 1 5 h, the mixture was placed in an ice bath, quenched by the dropwise addition of sat aq NH4C1 solution (0 5 mL), extracted with Et20 (2 x), dried

(MgS04) and concentrated in vacuo *H NMR (500 MHz, (CD3)2CO) analysis of the residue showed that two diastereoisomers were formed in the ratio 95 5 (de = 90%), as obtained by integrating the HO signals (S= 5 16 (S,S) and 5 13 (R,S)) Purification of the residue by column chromatography (Si02, hexane/EtOAc 96 4) provided the desired alcohol (R,S)-65 with a small amount of diastereoisomer (S,S)-65 (colorless oil, 2 36 g,

5 5 mmol, 83%), (dr = 95 5, de = 90%)

Rf (hexane/EtOAc 4 1) 0 52 [ag = +1 4 (c = 0 96, CHC13) IR(CHC13) 3534, 3007,

2957, 2936, 2912, 2875, 2837, 2734, 2687, 2641, 2598, 2547, 2173, 2057, 2005, 1949,

1885, 1612, 1586, 1513, 1464, 1457, 1442, 1414, 1375, 1352, 1328, 1302, 1180, 1173,

1164, 1123, 1110, 1079, 1034, 1018, 972, 860, 842 !H NMR (500 MHz, CDC13) 0 18

(s, 9 H, Si(CH3)3), 0 62 (q, J = 7 5, 6 H, Si(Œ/2CH3)3), 1 00 (t, J = 7 5, 6 H,

Si(CH2Œfc)3), 1 36 (d, J = 6 2, 3 H, Œ^CHOCH2Ar), 3 13 (s, 0 1 H, OH), 3 15 (s, 0 9

H, OH), 3 72 (q, J= 6 2, 1 H, CH3CM)CH2Ar), 3 81 (s, 3 H, OCH3), 4 61 (d, J= 11 2, 1

98 6 Experimental Part

H, ŒHAr), 4 67 (d, J = 11 2, 1 H, CHtfAr), 6 88 (m, 2 H, Ar), 7 29 (m, 2 H, Ar) 13C

NMR (75 MHz, CDC13, resonances of major diastereoisomer only) -0 18, 4 40,7 56,

15 32, 55 33, 67 38, 72 00, 80 30, 87 48, 88 78, 103 81, 103 86, 113 72, 129 29, 130 09,

159 12 MALDI-HRMS m/z calcd for C24H38Na03Si2+ [M + Na]+ 453 2257, found

453 2257, EA for C24H3803Si2 (430 73) calcd C 66 92, H 8 89, found C 66 78, H 8 76

The diastereomeric mixture (S,R)-65/(R,R)-65 (dr = 95 5, de = 90%) was synthesized in the same way starting from (+)-(R)-64 (ee = 100%) [org = -2 4 (c = 1 07, CHC13)

Triethyl[(3Ä)-3-Methoxy-3-{(l»V)-l-[(4-methoxybenzyl)oxy]ethyl}-5-(trimethylsilyl)- l,4-pentadiyn-l-yl]silane((/î,^)-66)

Triethyl[(3JV)-3-Methoxy-3-{(lJV)-l-[(4-methoxybenzyl)oxy]ethyl}-5-(trimethylsilyl)- l,4-pentadiyn-l-yl]silane((»SVS)-66)

PMBO S\EU PMBO SiEto

Me3Si

(S,S)-66

«BuLi (3 4 mL of a 1 6 M solution in hexane, 5 49 mmol) was added dropwise to a solution of (R,S)-6S/(S,S)-6S (2 06 g, 4 99 mmol) (dr = 95 5, de = 90%) in THF (20 mL) cooled to -78 °C After 20 min, iodomethane (2 5 mL, 40 mmol) was added The temperature was slowly raised to -20 °C and was then allowed to warm to 20 °C over 16 h The mixture was poured into sat aq NH4C1 solution (50 mL) and extracted with Et2Û

(2 x) Evaporation and column chromatography (Si02, hexane/EtOAc 30 1) provided

(R,S)-66 and (S,S)-66 (pale yellow oil, 2 02 g, 4 54 mmol, 91%) as a diastereoisomeric mixture (dr = 95 5, de = 90%).

99 6 Experimental Part

Rt (hexane/EtOAc 30 1) 0 21 [a]^ = -35 8 (c = 0 96, CHC13) IR(CHC13) 3006, 2956,

2936, 2911, 2874, 2837, 2827, 2167, 1611, 1585, 1513, 1464, 1456, 1441, 1415, 1372,

1303, 1250, 1173, 1143, 1081, 1035, 1019, 976, 952 lîî NMR (300 MHz, CDC13) 0 19

(s, 9 H, Si(CH3)3), 0 63 (q, J = 7 8, 6 H, Si(Œ/2CH3)3), 1 00 (t, J = 7 8, 9 H,

Si(CH2Œfc)3), 1 29 (d, J= 6 2, 3 H, ŒfcCHOCH2Ar), 3 51 (s, 3 H, OCH3), 3,71 (q, J =

6 2, 1 H, CH3CM)CH2Ar), 3 80 (s, 3 H, CH3OAr), 4 64 (d, J= 11 8, 1 H, CHHAi), 4 79

(d, J = 11 8, 1 H, ŒHAr), 6 85 (m, 2 H, Ar), 7 32 (m, 2 H, Ar) 13C NMR (75 MHz,

CDC13, resonances of major diastereoisomer only) -0 2, 4 4, 7 5, 15 9, 52 9, 55 2, 72 5,

74 8, 79 6, 88 5, 90 7, 101 5, 102 6, 113 4, 129 11, 130 8, 158 8 MALDI-HRMS m/z calcd for C25H4oNa03Si2+ [M + Na]+ 467 2414, found 467 2403, m/z calcd for

C25H4oK03Si2+ [M + K]+ 483 2153, found 483 2143 EA for C25H4o03Si2 (444 76) calcd C 67 51, H 9 07, found C 67 37, H 9 09

The diastereomeric mixture (S,R)-66/(R,R)-66 (dr = 95 5, de = 90%) was synthesized in the same way starting from (S,R)-65/(R,R)-65 (dr = 95 5, de = 90%) [org = +35 7 (c =

0 93, CHC13)

(l^S^-S-Methoxy-S-^riethylsilyO-S-I^rimethylsilyOethynyll^-pentyn-l-ol ((-)-

(^)-67)

OH SiEt3

MeO '^\

SiMe3

A solution of (-)-(R,S)-66 (400 mg, 0 90 mmol) (de = 100%) and CAN (1 1 g, 2 0 mmol) in MeCN/H20 9 1 (5 mL) was stirred for 2 h The mixture was poured into CH2C12 (4 mL) and washed with sat aq NaHC03 The aqueous phase was further extracted with

CH2C12 (2 mL, 2 x) Evaporation of the combined organic fractions and subsequent

100 6 Experimental Part

column chromatography (Si02, hexane/CH2Cl2 1 2) afforded 266 mg (0 82 mmol, 91%) of (-)-(S,R)-61 (de = 100%) as a yellow oil

R{ (hexane/CH2Cl2 1 2) 0 38 [a]2^ =-11 5 (c = 1 14, CHC13) IR(CHC13) 3572, 2988,

2957, 2936, 2911, 2875, 2828, 2734, 2170, 1463, 1414, 1398, 1379, 1361, 1339, 1270,

1251, 1151, 1120, 1077, 1017, 983, 956, 897, 861, 845 'HNMR (300 MHz, CDC13)

0 18 (s, 9 H, Si(CH3)3), 0 63 (q, J = 7 8, 6 H, Si(C#2CH3)3), 1 00 (t, J = 7 8, 9 H,

Si(CH2Œ^)3), 1 36 (d, J = 6 2, 3 H, Œ^CHOH), 2 53 (d, J=3 4,\ H, OH), 3 51 (s, 3 H,

OCH3), 3 81-3 91 (m, 1 H, CH3CM)H) 13C NMR (75 MHz, CDC13) -0 2, 4 4, 7 5,

17 4, 53 3, 73 4, 75 5, 89 6, 91 4, 100 8, 100 9 MS (EI) m/z (%) = 324 (<10) [M]+, 279

(57) [M - C2H50]+ EA for Ci7H3202Si2 (324 61) calcd C 62 90, H 9 94, found C

63 11, H 9 85

(+)-(R,S)-67 (de = 100%) was synthesized in the same way starting from (+)-(S,R)-66 (de

= 100%) [a£5 = +11 1 (c = 0 95, CHC13)

(S^-S-Methoxy-S-^riethylsilyO-S-I^rimethylsilyOethynyll^-pentyn-l-one ((+)-(/?)-

68)

O /SiEt3

MeO ^\

SiMe3

DMP (2 2 mL of a 15 wt% solution in CH2C12, 1 02 mmol) was added to a solution of

(-)-(S,R)-67 (220 mg, 0 68 mmol) (de = 100%) in CH2C12 (7 mL) at 0 °C After 10 min, the mixture was allowed to warm to 20 °C and stirred for 22 h Then, MeOH (0 3 mL) was added Evaporation of the combined organic fractions and column chromatography

(Si02, hexane/CH2Cl2 1 1) afforded 211 mg (0 65 mmol, 96%) of (+)-(R)-6S (ee = 100%) as a colorless oil

101 6 Experimental Part

Rt (hexane/CH2Cl2 1 1) 0 47 [org = +2 3 (c = 1 02, CHC13) IR(CHC13) 2958, 2935,

2911, 2875, 2829, 2734, 2165, 1740, 1601, 1463, 1458, 1437, 1414, 1379, 1355, 1263,

1252, 1176, 1128, 1092, 1053, 1018, 1003, 975, 949, 916, 859, 847 lîî NMR (300 MHz,

CDCI3) 0 19 (s, 9 H, Si(CH3)3), 0 63 (q, J= 7 8, 6 H, Si(Œ/2CH3)3), 1 00 (t, J= 7 8, 9 H,

Si(CH2Œfc)3), 2 41 (s, 3 H, CH3), 3 52 (s, 3 H, 0CH3) 13C NMR (75 MHz, CDC13)

-0 4, 4 2, 7 5, 24 1, 53 3, 75 9, 91 3, 93 3, 98 2, 99 4, 196 6 EI-HRMS m/z calcd for

Ci7H3o02Si2+ [M]+ 322 1784, found 322 1785, m/z calcd for Ci5H27OSi2+ [M -

C2H30]+ 279 1600, found 279 1628 EA for CiyHsoC^ (322 59) calcd C 63 30, H

9 37, found C 63 46, H 9 20

(-)-(S)-68 (ee = 100%) was synthesized in the same way starting from (+)-(R,S)-67 (de =

100%) [org = -2 3 (c = 0 98, CHC13)

iV-{(2Ä)-2-Methoxy-l-methyl-4-(triethylsilyl)-2-[(trimethylsilyl)ethynyl]-3-butyn-l- ylidene}-4-methylbenzenesulfonohydrazide ((+)-(/?)-70)

SiEto

SiMec

To a solution of the ketone (+)-(R)-68 (100 mg, 0 31 mmol) (ee = 100%) in EtOH (0 1 mL), /»-toluenesulfonyl hydrazide (64 mg, 0 34 mmol) was added The resulting suspension was stirred and heated up to 40 °C until all solid had dissolved (about 5 min)

Then, the solution was allowed to reach 20 °C and stirred vigorously for 18 h

Evaporation and column chromatography (Si02, hexane/EtOAc 6 1) provided (+)-(R)-70

(145 mg, 0 30 mmol, 95%) (ee = 100%) as a white solid

102 6 Experimental Part

Rt (hexane/EtOAc 6 1) 0 22 mp 94 °C [a]2^ = +12 0 (c = 0 99, CHC13) IR(neat)

3198, 2956, 2874, 2358, 2340, 1957, 1463, 1398, 1346, 1250, 1166, 1137, 1078, 1048,

724 lîî NMR 0 20 9 H 934, 907, 858, 843, 809, 761, (300 MHz, CDC13) (s, , Si(CH3)3),

0 62 (q, J = 7 9, 6 H, Si(Œ/2CH3)3), 0 99 (t, J = 7 9, 9 H, Si(CH2Œfc)3), 1 88 (s, 3 H,

CH3CN), 2 41 (5, 3 H, CH3Ar), 3 28 (s, 3 H, OCH3), 7 26 (m, 2 H, Ar), 7 89 (m, 2 H, Ar),

8 03 (bs, 1 H, NH) 13C NMR (75 MHz, CDC13) -0 2, 4 3, 7 5, 11 6, 21 7, 52 3, 73 7,

90 4, 92 5, 99 1, 100 4, 128 0, 129 2, 135 2, 143 8, 1517 MS (ESI) m/z = 513 2

[M + Na]+ EA for C24H38N203SSi2 (490 81) calcd C 58 73, H 7 80, N 5 71, found C

58 88, H 7 74, N 5 79

TriethylKS^-S-Methoxy-S-I^rimethylsilyOethynyll^-^trimethylsilyOoxy]^- penten-l-yn-l-yl}silane ((/?)-71)

Me3SiO /SiEt3

MeO '^\

SiMe3

To a stirred solution of NaHMDS (1 0 M in THF, 0 43 mL, 0 43 mmol) (ee = 90%) cooled to -78 °C, a solution of ketone (+)-(R)-6S (125 mg, 0 39 mmol) in THF (0 7 mL) was added dropwise After stirring for 30min at -78 °C, chlorotrimethylsilane (59 uL,

0 46 mmol) was added and the solution stirred for 2 h Reaction mixture is evaporated in vacuo, providing crude (R)-71 (112 mg, 0 28 mmol, 73%) (ee = 90%) as a colorless oil

Rt (hexane/CH2Cl2 5 1) 0 66 IR(neat) 3273, 3049, 2958, 2325, 1781, 1598, 1510, 1459,

1366, 1249, 1166, 1060, 845, 775, 727 lîî NMR (300 MHz, CDC13) ) 0 18 (s, 9 H,

Si(CH3)3), 0 26 (s, 9 H, Osi(CH3)3), 0 63 (q, J= 7 8, 6 H, Si(Œ/2CH3)3), 1 01 (t, J= 7 8,

9 H, Si(CH2Œ^)3), 3 45 (s, 3 H, OCH3), 4 32 (d, J= 2 1, 1 H, =CHH), 5 00 (d, J= 2 1, 1

H, =CHR) 13C NMR (75 MHz, CDC13) -0 2, 0 2, 4 4, 7 5, 29 8, 52 5, 88 4, 90 0, 92 7,

1014, 102 3, 154 3 EI-HRMS m/z calcd for C20H38O2Si3+ [M]+ 394 2180, found

103 6 Experimental Part

394 2179, m/z calcd for Ci9H3502Si3+ [M - CH3]+ 379 1945, found 379 1905, m/z calcd for Ci5H27OSi2+ [M - C5HnOsi]+ 279 1600, found 279 1553

(2JR)-2-Methoxy-l-methylene-4-(triethylsilyl)-2-[(trimethylsilyl)ethynyl]-3-butyn-l- yl trifluoromethanesulfonate ((-)-(/?)-73)

OTf .SiEt3

MeO ^\

SiMe3

Method C (entry 3, Table 2 2)

A solution of ketone (+)-(R)-6S (124 mg, 0 38 mmol) (ee = 100%) in THF (0 7 mL) was cooled to -78 °C, treated with NaHMDS (1 0 M in THF, 0 96 mL, 0 96 mmol) and stirred for 1 h A solution of 2-[jV,jV-bis(trifluoromethylsulfonyl)amino]-5-chloropyridine [136]

(377 mg, 0 96 mmol) in THF (0 7 mL) was then added The mixture was warmed gradually to -40 °C over a period of 3 h, diluted with Et20 (10 mL), washed with H20 and sat aq NaCl solution (10 mL each), dried over MgSÛ4, filtered and concentrated in vacuo Flash chromatography (Si02, hexane/CH2Cl2 10 1) afforded 90 mg (0 20 mmol,

52%) of (-)-(K)-73 (ee = 100%) as a colorless oil

R{ (hexane/CH2Cl2 10 1) 0 24 [org = -1 3 (c = 1 04, CHC13) IR(neat) 2958, 2878,

2156, 1427, 1252, 1212, 1144, 971, 937, 845, 728 lîî NMR (300 MHz, CDC13) 0 20 (s,

9 H, Si(CH3)3), 0 64 (q, J= 7 8, 6 H, Si(Œ/2CH3)3), 1 00 (t, J= 7 8, 9 H, Si(CH2Œfc)3),

3 48 3 5 36 J = 4 1 H 5 83 J = 4 1 H (s, H, OCH3), (d, 0, , =CH#), (d, 0, , =CHH)

13C NMR (75 MHz, CDC13) -0 5, 4 2, 7 4, 52 9, 70 0, 91 3, 93 1, 97 6, 98 8, 106 5,

116 2, 150 9 19F NMR (282 MHz, CDC13) -74 65 EI-HRMS m/z calcd for

Ci6H24F304SSi2+ [M - C2H5]+ 425 0886, found 425 0882

104 6. Experimental Part

(+)-(S)-73 (ee = 100%) was synthesized in the same way starting from (-)-(

100%). [org = +1.5 (c = 0.96, CHC13).

Triethyl[(3/?)-3-ethynyl-3-methoxy-5-(trimethylsilyl)-l,4-pentadiyn-l-yl]silane ((+)-

(R)-69)

SiEto

To a stirred solution of zPr2NH (48 uL, 0.37 mmol) in THF (0.4 mL) cooled to -78 °C,

«BuLi (215 |iL of a 1.6 M solution in hexane, 0.34 mmol) was added. The mixture was

stirred for 30 min at -78 °C and then for 30 min at 20 °C. The mixture was again cooled

to -78°C, and a solution of (-)-(i?)-73 (78 mg, 0.17 mmol) (ee = 100%) in THF (0.6 mL)

was added dropwise. After stirring for 40 min, the mixture was allowed to warm up to -

40 °C over 30 min and stirred for further 90 min; then it was diluted with Et20 (10 mL),

washed with H20 (10 mL each), dried over MgS04, filtered and concentrated in vacuo.

Purification by column chromatography (Si02; hexane/CH2Cl2 9:1) afforded 42 mg (0.14

mmol, 82 %) of the desired product (+)-(R)-69 (ee = 100%) as colorless oil.

R{ (hexane/CH2Cl2 9:1) 0.13. [org = +2.4 (c = 0.76, CHC13). IR(CHC13): 3302, 2961,

2939, 2917, 2866, 2844, 2735, 2183, 2125, 1733, 1457, 1406, 1370, 1123, 1086, 1050,

1006, 948. lîî NMR (300 MHz; CDC13): 0.20 (s, 9 H, Si(CH3)3), 0.64 (q, J= 7.8, 6 H,

Si(Œ/2CH3)3), 1.01 (t,J= 7.8, 9 H, Si(CH2Œ^)3), 2.63 (s, 1 H, C=CH), 3.49 (s, 3 H,

OCH3). 13C NMR (75 MHz; CDC13): -0.4, 4.3, 7.4, 52.5, 60.8, 72.0, 79.2, 87.5, 89.2,

99.2, 100.4. EI-HRMS: m/z calcd. for Ci6H25OSi2+ [M - CH3]+: 289.1444, found

289.1455; m/z calcd. for Ci5H27OSi2+ [M - C=CH]+: 279.1600, found 279.1629; m/z

calcd. for Ci6H25Si2+ [M - OCH3]+: 273.1495, found 273.1537. EA for Ci7H28OSi2

(304.57): calcd. C 67.04, H 9.27; found: C 67.21, H 9.28.

105 6 Experimental Part

(-)-(S)-69 (ee = 100%) was prepared in the same way starting from (+)-(S)-73 (ee

100%) [org = -3 4 (c = 0 89, CHC13)

[(3^)-3-[(4JV,5JV)-4,5-Bis{[(4-chlorobenzyl)oxy]methyl}-2-methyl-l,3-dioxolan-2-yl]-3- methoxy-5-(triethylsilyl)-l,4-pentadiyn-l-yl](trimethyl)silane (75)

A mixture of the ketone (+)-68 (216 mg, 0 67 mmol) (ee = 90%), (-)-(S,S)-l,4-Bis(4- chlorobenzyloxy)butane-2,3-diol [145] (572 mg, 1 54 mmol) and /»-toluenesulfonic acid monohydrate (8mg, 0 043 mmol) in toluene (9 mL) was heated at reflux for 48 h in a

Dean-Stark apparatus to remove the water formed After concentration of the solvent in vacuo, the crude material was purified by flash chromatography (Si02, hexane/CH2Cl2

1 1) to afford 50 mg (74 |imol, 11%) of 75 as pale yellow oil The starting material (+)-

68 was recovered (126 mg, conversion 42%)

R{ (hexane/CH2Cl2 1 1) 0 13 IR(neat) 2953, 2873, 2165, 1599, 1491, 1462, 1408, 1370,

1249, 1210, 1092, 1047, 1015, 960, 860, 841 lîî NMR (300 MHz, CDC13) 0 13 (s, 9 H,

Si(CH3)3), 0 64 (q, J= 7 8, 6 H, Si(Œ/2CH3)3), 1 00 (t, J= 7 8, 9 H, Si(CH2Œfc)3), 1 56

(s, 3 H, CH3), 3 50 (s, 3 H, OCH3), 3 58-3 69 (m, 3H), 3 74-3 82 (m, 1 H), 4 18-4 32 (m,

2 H), 4 53 (d, J = 4 4, 2 H), 4 58 (s, 2 H), 7 20-7 33 (m, 8 H, Ar) 13C NMR (75 MHz,

CDC13) -0 4, 4 3, 7 4, 21 6, 53 1, 69 8, 70 3, 72 3, 72 7, 76 9, 78 3, 80 3, 88 8, 90 6,

101 4, 102 4, 112 6, 128 5, 128 7, 129 0, 133 3, 136 7 MALDI-HRMS m/z calcd for

C35H48Cl2K05Si2+ [M + K]+ 713 2054, found 713 2087, m/z calcd for

C35H48Cl205Si2Na+ [M + Na]+ 697 2315, found 697 2298

106 6 Experimental Part

(2JV,3Ä)-5-(Triethylsilyl)-3-[(trimethylsilyl)ethynyl]-4-pentyne-2,3-diol((^)-77)

(2»V,3JV)-5-(Triethylsilyl)-3-[(trimethylsilyl)ethynyl]-4-pentyne-2,3-diol((JV^)-77)

SiEto SiEto

SiMe, Me3Si

(S,R)-77 (S,S)-77

A solution of (R,S)-65/(S,S)-65 (266 mg, 0 62 mmol) (dr = 95 5, de = 90%) and CAN

(846 mg, 0 93 mmol) in MeCN/H20 9 1 (3 mL) was stirred for 2 h The mixture was washed with sat aq NaHC03, and the aqueous phase was extracted with CH2CI2 (2 x)

Evaporation and column chromatography (SiC>2, hexane/CH2Cl2 1 2) afforded

(-)-77 (colorless oil, 100 mg, 0 32 mmol, 52%) as a mixture of diastereoisomers (S,R)-77 and (S,S)-11 (dr = 95 5, de = 90%)

The diastereomeric ratio of the mixture was determined by integrating the HO resonance of the secondary alcohol

R{ (hexane/CH2Cl2 1 2) 0 12 [org = -10 4 (c = 1 00, CHC13) IR(neat) 3390, 2956,

2876, 2360, 2341, 1458, 1250, 1146, 1061, 1015, 977, 900, 841, 791, 760, 723, 668 lîî

NMR (500 MHz, CDC13) 0 18 (s, 9 H, Si(CH3)3), 0 63 (q, J= 7 9, 6 H, Si(Œ/2CH3)3),

1 00 (t, J= 7 9, 9 H, Si(CH2Œ^)3), 1 38 (d, J= 6 3, 3 H, Œ^CHOH), 2 21 (d, J= 5 8,

0 9 H, CH3CHO#), 2 25 (d, J= 5 5, 0 1 H, CH3CHO#), 2 89 (5, 1 H, OH), 4 15 (dq, J =

6 3, 5 8, 1 H, CH3CM)H) 13C NMR (75 MHz, CDC13, resonances of major diastereoisomer only) -0 4, 4 2, 7 4, 17 4, 63 4, 74 0, 88 3, 90 0, 102 2, 103 1 EI-

HRMS m/z calcd for Ci6H28OSi2+ [M - H20]+ 292 1674, found 292 1670, m/z calcd for Ci6H27Si2 [M - H302]+ 276 1730, found 276 1727 EA for Ci6H3o02Si2 (310 58) calcd C 61 88, H 9 74, found C 61 85, H 9 77

107 6 Experimental Part

Triethyl({(4Ä,5»V)-2,2,5-trimethyl-4-[(trimethylsilyl)ethynyl]-l,3-dioxolan-4- yl}ethynyl)silane ((R>S)-18)

Triethyl({(4S,5S)-2,2,5-trimethyl-4-[(trimethylsilyl)ethynyl]-l,3-dioxolan-4- yl}ethynyl)silane ((S,S)-78)

SiEto SiEt,

SiMe, SiMec

(f?,S)-78 (S,S)-78

A solution containing (S,R)-11/(S,S)-11 (163 mg, 0 52 mmol) (dr = 95 5, de = 90%), 2,2- dimethoxypropane (77 uL, 63 mmol), /»-toluenesulfonic acid monohydrate (2 mg) and dry toluene (5 mL) was heated to reflux for 2 h, while the toluene-methanol azeotrope (bp

64 °C) was slowly removed at the head of a vigreux column Evaporation and subsequent column chromatography (Si02, hexane/CH2Cl2 2 1) afforded (+)-78

(colorless oil, 140 mg, 0 40 mmol, 77%) as a mixture of diastereoisomers (R,S)-78 and

(S,S)-78 (dr = 95 5, de = 90%)

The diastereomeric ratio was determined by analytical HPLC (LiChroCART® 250-4,

LiChrospher® Si 60, 10 urn, Hexane/CH2C12 3 2, 1 mL/min, I = 270 nm) (S,S)-18 tR =

21 26 min, (R,S)-78 tR = 27 28 min

R{ (hexane/CH2Cl2 2 1) 0 34 [org = +0 8 (c = 0 99, CHC13) IR(neat) 2988, 2957,

2877, 2360, 2174, 1458, 1380, 1371, 1250, 1183, 1163, 1103, 1014, 990, 843, 779, 760,

726 !H NMR (500 MHz, CDC13) 0 17 (s, 9 H, Si(CH3)3), 0 62 (q, J = 7 9, 6 H,

Si(Œ/2CH3)3), 1 00 (t, J = 1 9, 9 H, Si(CH2Œ^)3), 1 43 (s, 3 H, C(CH3)Œ^), 1 44 (d, J =

6 1, 3 H, CH3CHO), 1 52 (s, 3 H, C(ŒT3)CH3), 4 15 (q, J = 6 1, 1 H, CH3CM)) 13C

NMR (75 MHz, CDCI3, resonances of major diastereoisomer only) -0 4, 4 2, 7 4, 14 9,

26 6, 27 6, 72 6, 80 2, 88 9, 89 8, 101 0, 102 4, 110 3 MS (ESI) m/z = 373 1 [M + Na]+,

389 2 [M + K]+ EA for Ci9H3402Si2 (350 64) calcd C 65 08, H 9 77, found C 65 17, H

9 96

108 6 Experimental Part

Triethyl[(3/î)-3-methoxy-3-{(l^)-l-[(4-methoxybenzyl)oxy]ethyl}-l,4-pentadiyn-l- yl]silane ((-)-(fl,S)-79)

Triethyl[(3^)-3-methoxy-3-{(l^)-l-[(4-methoxybenzyl)oxy]ethyl}-l,4-pentadiyn-l- yl]silane ((-)-(S,S)-79)

PMBO ^SiEU PMBO ^SiEt

A solution of (R,S)-66/(S,S)-66 (1 50 g, 3 37 mmol) (dr = 95 5, de = 90%) in MeOH/THF

1 1 (500 mL), 1 N aq NaOH solution (15 drops) was added, followed by a further addition of 8 drops 30 min later After stirring for 1 h, the reaction mixture was quenched with sat aq NH4C1 solution, extracted with Et2Û, dried (MgS04), and the solvents were evaporated in vacuo Purification of the residue by column chromatography (SiC>2, hexane/EtOAc 15 1) provided (-)-79 (colorless oil, 1 19 g, 3 20 mmol, 95%) as a mixture of diastereoisomers (-)-(R,S)-19 and (-)-(S,S)-19 (dr = 95 5, de = 90%)

R{ (hexane/EtOAc 15 1) 0 21 [org = -51 7 (c = 1 14, CHC13)

The diastereomeric ratio of the mixture was determined by integrating the C=CH resonance in the JH NMR spectrum and by analytical HPLC analysis (LiChroCART®

250-4, LiChrospher® Si 60, 10 urn, Hexane/zPrOH 99 88 0 12, 1 mL/min, X = 254 nm)

Isolation of isomers on the preparative scale was successful with Hibar® 250-25,

LiChrospher® Si 60, 5 urn (hexane/zPrOH 99 85 0 15, 10 mL/min, I = 254 nm) The first eluted compound was (-)-(R,S)-79, followed by (-)-(S,S)-79

(-)-(R,S)-19 (de = 100%) tR = 42 67 min [org = -54 1 (c = 0 87, CHC13) IR(neat)

3283, 2955, 2875, 1613, 1514, 1463, 1372, 1302, 1247, 1117, 1079, 1037, 973, 821, 728,

631 !H NMR (300 MHz, CDC13) 0 64 (q, J= 7 8, 6 H, Si(C#2CH3)3), 1 01 (t, J = 7 8, 9

H, Si(CH2G^)3), 1 29 (d, J = 6 3, 3 H, C/Y^CHOCH2Ar), 2 54 (s, 1 H, C=CH), 3 52 (s, 3

109 6. Experimental Part

H, OCH3), 3.72 (q,J=6.3, 1 H, CH3CM)CH2Ar), 3.80 (s, 3 H, CH3OAr), 4.65 (d, J =

11.8, 1 H, CHHAi), 4.77 (d, J= 11.8, 1 H, ŒHAr), 6.85 (m, 2 H, Ar), 7.32 (m, 2 H, Ar).

13C NMR (75 MHZ, CDC13): 4.4, 7.6, 15.8, 53.0, 55.3, 72.7, 73.9, 74.3, 79.3, 80.0, 88.6,

102.4, 113.5, 129.3, 130.6, 158.9. EI-HRMS: m/z calcd. for C22H3203Si+ [M]+: 372.2121, found 372.2120; m/z calcd. for Ci2Hi90si+ [M - Ci0Hi3O2]+: 207.1205, found 207.1203; m/z calcd. for C8H90+ [M - Ci4H2302Si]+: 121.0653, found 121.0634. EA for

C22H3203Si (372.58): calcd. C 70.92, H 8.66; found C 71.16, H 8.81.

(-)-(S,S)-19 (de = 100%): tR = 49.63 min. [arg = -25.5 (c = 1.02, CHC13). IR(neat):

3306, 1737, 1613, 1513, 1462, 1374, 1302, 1246, 1082, 910, 822, 732, 631. 'HNMR

(300 MHz, CDCI3): 0.63 (q, J = 7.9, 6 H, Si(C#2CH3) 3), 1.00 (t, J = 7.9, 9 H,

Si(CH2C#^), 1.33 (d, J= 6.3, 3 H, Œ^CHOCH2Ar), 2.55 (s, 1 H, OCH), 3.54 (s, 3 H,

OCH3), 3.73 (q,J= 6.3, 1 H, CH3CM)CH2Ar), 3.80 (s, 3 H, CH3OAr), 4.65 (d, J= 12, 1

H, CHHAi), 4.79 (d, J = 12, 1 H, CHHAi), 6.86 (m, 2 H, Ar), 7.31 (m, 2 H, Ar). 13C

NMR (75 MHZ, CDC13): 4.4, 7.6, 16.5, 53.1, 55.3, 72.8, 74.0, 75.1, 79.6, 79.9, 89.0,

102.3, 113.5, 129.3, 130.7, 158.8. EI-HRMS: m/z calcd. for Ci2Hi9OSi+ [M -

CioHi302]+: 207.1205, found 207.1207; m/z calcd. for C8H90+ [M - Ci4H2302Si]+:

121.0653, found 121.0650.

(+)-79 (dr = 95:5, de = 90%) was prepared in the same way starting from (S,R)-66/(R,R)-

66 (dr = 95:5, de = 90%). [a]2^ = +48.5 (c = 1.06, CHC13). Separation by preparative

HPLC, under the same conditions described above, provided (+)-(S,R)-79 (de = 100%)

(Hd = +52.1 (c =1.16, CHCI3)) and (+)-(R,K)-79 (de = 100%) ([org = +25.0 (c = 0.99,

CHCI3)).

110 6 Experimental Part

Triethyl[(3/î)-3-methoxy-3-{(l»V)-l-[(4-methoxybenzyl)oxy]ethyl}-5-(trimethylsilyl)- l,4-pentadiyn-l-yl]silane((-)-(tf,S)-66)

PMBO ^SiEt

NaHMDS (1 5 mL of a 1 M solution in THF, 1 53 mmol) was added dropwise to a solution of (-)-(R,S)-79 (438 mg, 1 18 mmol) (de = 100%) in THF (16 mL) cooled to

-78 °C After 30 min, chlorotrimethylsilane (208 uL, 1 65 mmol) was added After stirring for 2 h, the mixture was poured into sat aq NH4C1 solution (2 mL) and extracted with Et2Û (2 x) Evaporation and column chromatography (SiC>2, hexane/EtOAc 30 1) provided (-)-(R,S)-66 (478 mg, 1 07 mmol, 91%) (de = 100%) as a pale yellow oil

R{ (hexane/EtOAc 30 1) 0 21 [org = -35 3 (c = 1 11, CHC13) See above for spectroscopical data

(+)-(S,R)-66 (de = 100%) was prepared in the same way starting from (+)-(S,R)-79 (de =

100%) [org = +32 1 (c = 1 05, CHC13)

111 6 Experimental Part

{(3/?)-5-Bromo-3-methoxy-3-[(triethylsilyl)ethynyl]-l,4-pentadiyn-l- yl}(trimethyl)silane ((R)-S6)

[5-Bromo-3-(bromoethynyl)-3-methoxy-l,4-pentadiyn-l-yl](triethyl)silane (87)

-SiEt3 Biv ^SiEto

87

To a solution of (+)-(R)-69 (342 mg, 1 12 mmol) (ee = 100%) in dry acetone (4 8 mL),

NBS (303 mg, 1 70 mmol) and then AgN03 (19 mg, Oil mmol) were added The reaction mixture was stirred for 4 h, then cooled to 0 °C, and cold H20 (3 mL) was added The mixture was extracted with Et2Û (2 x) The combined organic phases were washed with sat aq NaCl solution, dried (MgS04), and concentrated in vacuo

Purification of the crude product by column chromatography (SiC>2, hexane/CH2Cl2 9 1) afforded (R)-S6 (90 mg, 0 24 mmol, 21%) (ee = 100%) and 87 (50 mg, 0 12 mmol, 11%) as colorless oils

(R)-S6 R{ (hexane/CH2Cl2 9 1) 0 29 IR(neat) 2956, 2876, 2216, 1460, 1415, 1251,

809 ^NMR 0 20 9 H 1204, 1131, 1095, 1059, 1017,964,844, (300 MHz, CDC13) (s, ,

Si(CH3)3), 0 64 (q, J= 7 9, 6 H, Si(C#2CH3)3), 1 00 (t, J = 7 9, 9 H, Si(CH2Œfc)3), 3 47

(s, 3 H, OCH3) 13C NMR (75 MHz, CDC13) -0 4, 4 2, 7 4, 46 4, 52 6, 61 6, 75 5, 87 6,

89 3, 98 9, 100 1 EI-HRMS m/z calcd for Ci7H2yOsi2+

[M-Br]+ 303 1600, found 303 1593

87 Rf (hexane/CH2Cl2 9 1) 0 35 IR(neat) 2956, 2875, 2825, 2214, 1459, 1414, 1205,

1134, 1099, 1057, 1016, 965, 819, 726, 673, 632 'HNMR (300 MHz, CDC13) 0 64 (q,

J= 7 8, 6 H, Si(Œ/2CH3)3), 1 00 (t, J = 7 8, 9 H, Si(CH2ŒT3)3), 3 46 (s, 3 H, OCH3) 13C

NMR (75 MHz, CDC13) 4 2, 7 4, 46 9, 52 8, 62 1, 75 1, 88 0, 99 2

112 6 Experimental Part

EI-HRMS m/z calcd for Ci3Hi5Br2OSi [M - CH3] 372 9254, found 372 9244, m/z

calcd for Ci4Hi8BrOSi+ [M - Br]+ 309 0310, found 309 0279

Triethyl {(3»S)-5-iodo-3-methoxy-3-[(trimethylsilyl)ethynyl]-1,4-pentadiyn- 1-yl} silane

((+)-(S)-88)

SiEt3

Me3Si

«BuLi (420 |iL of a 1 6 M solution in hexane, 0 67 mmol) was added dropwise to a

solution of (-)-(S)-69 (186 mg, 0 61 mmol) (ee = 100%) in THF (2 mL), cooled to -78

°C After for 30 min 0 67 was added After 2 the reaction stirring , I2 (170 mg, mmol) h,

mixture was diluted with Et20 (10 mL), washed with H20 and sat aq Na2S2C>3 solution

(10 mL each) The combined organic fractions were were dried over MgS04 and

concentrated in vacuo Purification by column chromatography (Si02, hexane/CH2Cl2

9 1) gave 220 mg (0 51 mmol, 84%) of (+)-(S)-SS (ee = 100%) as a white solid

R{ (hexane/CH2Cl2 9 1) 0 13 mp 39 2 °C [org = +1 6 (c = 1 00, CHC13) IR(neat)

2956, 2876, 2185, 1459, 1414, 1251, 1203, 1128, 1091, 1057, 1017, 958, 842, 797, 726,

618 !H NMR (300 MHz, CDC13) 0 20 (s, 9 H, Si(CH3)3), 0 65 (q, J = 7 9, 6 H,

Si(Œ/2CH3)3), 1 00 (t, J = 7 9, 9 H, Si(CH2Œ^)3), 3 47 (s, 3 H, OCH3) 13C NMR (75

MHz, CDCI3) -0 4, 4 2, 4 6, 7 5, 52 6, 62 1, 87 6, 89 1, 89 3, 99 2, 100 4 EI-HRMS

m/z calcd for Ci6H24IOSi2+ [M - CH3]+ 415 0405, found 415 0406, m/z calcd for

Ci7H27OSi2+ [M-I]+ 303 1600, found 303 1571

113 6. Experimental Part

(3R,SR)- and (3£,8^-{3,8-Dimethoxy-3,8-bis[(trimethylsilyl)ethynyl]-l,4,6,9- decatetrayne-l,10-diyl}bis(triethylsilane) ((RJl)-81 and (S^-Sl)

(/Î^V)-{3,8-Dimethoxy-3,8-bis[(trimethylsilyl)ethynyl]-l,4,6,9-decatetrayne-l,10- diyl}bis(triethylsilane)((tf,S)-81)

To a solution of (+)-(S)-SS (370 mg, 0.86 mmol) (ee = 100%), (+)-(R)-69 (314 mg, 1.03 mmol) (ee = 100%), [(PPh3)PdCl2] (18 mg, 0.02 mmol), and Cul (5 mg, 0.02 mmol) in

THF (6.2 mL) under an argon atmosphere, /'Pr2NH (203 |iL, 1.55 mmol) was added.

After 1.5 h, the black solution was diluted with Et2Û, extracted with 1 N HCl, water and a sat. aq. NaCl solution. The organic fraction was separated, dried over MgS04 and evaporated in vacuo. Flash chromatography (Si02; hexane/CH2Cl2 5:1) afforded a mixture of diastereoisomers (R,R)-81/(S,S)-81 and (R,S)-81 (423 mg, 0.70 mmol, 81%) as a yellow oil, which crystallized upon standing.

Rf (hexane/CH2Cl2 9:1) 0.12. mp 67.3 °C. IR(CHC13): 2957, 2876, 2166, 1459, 1414,

1250, 1202, 1124, 1056, 1018, 952, 842, 760, 724, 619. 'HNMR (300 MHz; CDC13):

0.21 (s, 18 H, Si(CH3)3), 0.65 (q, J = 7.9, 12 H, Si(Œ/2CH3)3), 1.00 (t, J = 7.9, 18 H,

Si(CH2Œ^)3), 3.48 (s, 6 H, OCH3). 13C NMR (75 MHz; CDC13): -0.6, 4.0, 7.2, 52.6,

61.1, 67.4, 75.4, 88.3, 90.0, 98.2, 99.4. EI-HRMS: m/z calcd. for C34H5402Si2+ [M]+:

606.3196, found 606.3198. EA for Q^CÄ (607.13): calcd. C 67.26, H 8.96; found:

C 67.40, H 9.09.

114 6. Experimental Part

(3S,8S)- and (3tf,8tf)-[3,8-Diethynyl-3,8-dimethoxy-l,4,6,9-decatetrayne-l,10- diyl]bis(triethylsilane) ((S^-89 and (R,R)-89)

(RiS)- [3,8-Diethynyl-3,8-dimethoxy-1,4,6,9-decatetrayne-1,10-diyl] bis(tr iethylsilane)

((R,S)-89)

To a solution of a mixture of (R,R)-8l/(S,S)-8l/(R,S)-8l (370 mg, 0.61 mmol) in

MeOH/THF 1:1 (277 mL), cooled to -15 °C, 0.5 N NaOH (28 drops) was added. After stirring for 2 h, the mixture was quenched with sat. aq. NH4CI solution, extracted with

CH2C12, dried (Na2S04), and evaporated in vacuo. Column chromatography (Si02; hexane/CH2Cl2 4:1) afforded a mixture of diastereoisomers (S,S)-89/(R,R)-89 and (R,S)-

89 (246 mg, 0.53 mmol, 87%) as a yellow oil.

Rf (hexane/CH2Cl2 4:1) 0.19. IR(CHC13): 3295, 2956, 2876, 2827, 2164, 2126, 1459,

1414, 1237, 1201, 1119, 1051, 1016, 951, 727, 670. lîî NMR (300 MHz; CDC13): 0.65

(q, J = 7.9, 12 H, Si(Œ/2CH3)3), 1.00 (t, J = 7.9, 18 H, Si(CH2Œ^)3), 2.68 (s, 2 H,

OCH), 3.50 (s, 6 H, OCH3). 13C NMR (75 MHz; CDC13): 4.2, 7.5, 52.9, 60.8, 67.5,

72.9, 75.4, 78.1, 88.8, 98.6. EI-HRMS: m/z calcd. for C28H3802Si2+ [M]+: 462.2410, found 462.2401; m/z calcd. for C26H3302Si2+ [M - C2H5]+: 433.2019, found 433.2039.

EA for C28H3802Si2 (462.78): calcd. C 72.67, H 8.28; found: C 72.68, H 8.31. 6. Experimental Part

(lr,6r,llr,16r)-[(l,6,ll,16-Tetramethoxy-2,4,7,9,12,14,17,19-cycloicosaoctayne-

1,6,11,16-tetrayl)tetra-2,1-ethynediyl]tetrakis(triethylsilane) (82a)

(l^,6Ä,llJV,16JV)-[(l,6,ll,16-Tetramethoxy-2,4,7,9,12,14,17,19-cycloicosaoctayne-

1,6,11,16-tetrayl)tetra-2,1-ethynediyl]tetrakis(triethylsilane) (82b)

(lJV,6r,ll^,16s)-[(l,6,ll,16-Tetramethoxy-2,4,7,9,12,14,17,19-cycloicosaoctayne-

1,6,11,16-tetrayl)tetra-2,1-ethynediyl]tetrakis(triethylsilane) (82c)

(ls,6s,lls,16s)-[(l,6,ll,16-Tetramethoxy-2,4,7,9,12,14,17,19-cycloicosaoctayne-

1,6,11,16-tetrayl)tetra-2,1-ethynediyl]tetrakis(triethylsilane) (82d)

SiEt3 II SiEt3 I / # SiEt3 #

— ~g-"a ZnM» — — Zny<=

OMe SiEt3 SlEtj

82a 82b 82c 82d

To a solution of a mixture of diastereoisomers (R,R)-89/(S,S)-89 and

(R,S)-89 (250 mg, 0.54 mmol) in CH2C12 (508 mL) open to air, Hay catalyst [45 mL, prepared by stirring CuCl (1.50 g, 15.12 mmol) and TMEDA (4.56 mL, 30.24 mmol) in

CH2CI2 (45 mL) for 50 min] was added. After stirring for 18 h, the mixture was washed with water and the organic phase separated, dried (MgSC^), and evaporated in vacuo.

Column chromatography (SiÛ2; hexane/ CH2CI2 4:1 to 1:2) afforded four products: 82a,

82b, 82c, 82d. An overall yield of 63% was obtained.

82a: 20 mg (22 umol, 8%). R{ (hexane/CH2Cl2 4:1) 0.3. mp 140° C (dec). Analytical

HPLC (LiChroCART® 250-4, LiChrospher® Si 60, 10 urn, Hexane/CH2C12 9:1, 1 mL/min, I = 270 nm): tR = 6.12 min. Preparative HPLC (Hibar® 250-25, LiChrospher®

Si 60, 5 urn; hexane/CH2Cl2 9:1, 10 mL/min, I = 270 nm): tR = 16.96 min. IR (neat):

2955, 2918, 2826, 2360, 2158, 1737, 1548, 1461, 1412, 1289, 1196, 1064, 956, 857, 726.

!H NMR (300 MHz, CDC13): 0.65 (q, 24 H, J= 7.8, Si(C#2CH3)3), 1.00 (t, 36 H, J= 7.8,

Si(CH2C#^), 3.48 (s, 12 H, OCH3). 13C NMR (75 MHZ, CDC13): 4.1, 7.5, 53.3, 61.5,

116 6. Experimental Part

68.8, 77.6, 90.2, 97.0. MALDI-HRMS: m/z calcd. CssHoCfeSi/ [M- 0CH3] : 889.4318, found 889.4321. EA for Csel^C^ (921.51): C 72.99, H 7.88; found: C 73.09, H 7.71.

82b: 40 mg (43 umol, 16%). Rf (hexane/CH2Cl2 4:1) 0.21. mp 200° C (dec). IR(neat):

2956, 2932, 2875, 2154, 1458, 1413, 1236, 1199, 1119, 1060, 1018, 973, 804, 725. lîî

NMR (300 MHz, CDC13): 0.65 (q, 24 H, J= 7.8, Si(C#2CH3)3), 1.00 (t, 36 H, J= 7.8,

Si(CH2C#^), 3.48 (s, 12 H, OCH^). 13C NMR (75 MHZ, CDC13): 4.1, 7.5, 53.4, 61.5,

68.8, 68.9, 77.5, 77.6, 90.1, 97.1. MALDI-HRMS: m/z calcd. C55H6903Si4+ [M -

OCH3]+: 889.4318, found 889.4315.

82c: 76 mg (82 urnol, 31%). Rf (hexane/CH2Cl2 4:1) 0.15. mp 165° C (dec). IR(neat):

2956, 2876, 2155, 1458, 1414, 1235, 1199, 1061, 1004, 977, 908, 726.

!H NMR (300 MHz, CDC13): 0.65 (q, 24 H, J= 7.9, Si(C#2CH3)3), 1.00 (t, 36 H, J= 7.9,

Si(CH2C#^), 3.48 (s, 12 H, OCH3). 13C NMR (75 MHZ, CDC13): 4.0, 7.3, 52.3, 61.5,

68.7, 68.8, 77.5, 77.6, 90.0, 90.1, 97.0, 97.1, 97.3. MALDI-HRMS: m/z calcd.

C55H6903Si4+ [M-OCH3]+: 889.4318, found 889.4328.

82d: 20 mg (22 urnol, 8%). Rf (hexane/CH2Cl2 4:1) 0.15. mp 152° C (dec). Analytical

HPLC (LiChroCART® 250-4, LiChrospher® Si 60, 10 urn, Hexane/CH2C12 7:3, 1 mL/min, X = 270 nm): tR = 24.00 min. IR(neat): 2957, 2920, 2895, 2824, 2363, 2156,

1735, 1544, 1467, 1415, 1292, 1196, 1061, 956, 854, 728, 715. 'HNMR (300 MHz,

CDC13): 0.65 (q, 24 H, J= 7.9, Si(C#2CH3)3), 1.00 (t, 36 H, J= 7.9, Si(CH2C#^), 3.48

(s, 12 H, OCH3). 13C NMR (75 MHZ, CDC13): 4.1, 7.4, 53.3, 61.5, 68.8, 77.5, 90.0, 97.2.

MALDI-HRMS: m/z calcd. C55H6903Si4+ [M - OCH3]+: 889.4318, found 889.4312.

117 6. Experimental Part

(5s,10s,15s,20s)-5,10,15,20-Tetraethynyl-5,10,15,20-tetramethoxy-l,3,6,8,ll,13,16,18- cycloicosaoctayne (90)

OMe

MeO OMe

NaOH (1 N, 2 drops) was added to a cooled solution (-15 °C) of 82d (20 mg, 22 umol) in

MeOH/THF 1:1 (10 mL). The mixture was stirred for 30 min, then sat. aq. NH4CI solution was added and the mixture was extracted with CH2CI2. The combined organic layers were washed with sat. aq. NaCl solution, dried (MgSC^), and the solvents evaporated in vacuo. Column chromatography (SiÛ2; hexane/EtOAc 2:1) afforded 90 (9 mg, 19 |imol, 87%) as a brown explosive powder, which decomposed over days.

R{ (hexane/EtOAc 2:1) 0.40. IR (CHC13): 3303, 3022, 3015, 2963, 2935, 2901, 2887,

2829, 2399, 2158, 2126, 1601, 1460, 1448, 1311, 1227, 1218, 1211, 1205, 1103, 1085,

1052, 1010, 973, 927, 793-717, 673, 670, 665, 547, 539, 532. lîî NMR (300 MHz,

CDCI3): 2.74 (s, 4 H, C=CH); 3.49 (s, 12 H, OCH3). 13C NMR (75 MHz, CDC13): 53.6,

61.1, 69.0, 74.5, 76.0, 77.4. MALDI-HRMS: m/z calcd. for C32Hi6Na04+ [M + Na]+:

487.0946, found 487.0945; m/z calcd. for C3iHi303+ [M - OCH3]+: 433.0865, found 433.

118 6 Experimental Part

{(S^S^-S^-Dimethoxy-S^-bisKtrimethylsilyOethynyll-l^^^-decatetrayne-l^O- diyl}bis(triethylsilane)((+)-(£,S)-81)

Me3Si

To a solution of (-)-(S)-69 (87 mg, 0 30 mmol) (ee = 100%) in CH2C12 (28 mL) open to air, Hay catalyst [0 9 mL, prepared by stirring a solution of CuCl (58 mg, 0 59 mmol) and

TMEDA (0 18 mL, 137 mg, 1 18 mmol) in CH2C12 (0 9 mL)] was added After stirring for 18 h, the solution was washed with water, dried over MgS04, and concentrated in vacuo Purification by column chromatography (Si02, heptane/CH2Cl2 4 1) gave 82 mg

(0 14 mmol, 90%) of (+)-(S,S)-Sl (ee = 100%) as a pale yellow oil, which crystallized upon standing

R{ (heptane/CH2Cl2 4 1) 0 19 mp 69-71° C [org = +4 4 (c = 0 95, CHC13) IR(neat)

2956, 2905, 2880, 2824, 2360, 2339, 2169, 1737, 1663, 1590, 1460, 1416, 1383, 1249,

1203, 1087, 1055, 1012, 955, 844, 758, 722 !H NMR (300 MHz, CDC13) 0 21 (s, 18 H,

Si(CH3)3), 0 65 (q, J = 7 9, 12 H, Si(Œ/2CH3)3), 1 00 (t, J = 7 9, 18 H, Si(CH2C#,)3),

3 48 (s, 6 H, OCH3) 13C NMR (75 MHz, CDC13) -0 6, 4 0, 7 2, 52 6, 61 1, 67 4, 75 4

EI-HRMS m/z calcd for C34H5402Si4+ [M]+ 606 3196, found 606 3193 EA for

C34H5402Si4 (607 13) calcd C 67 26, H 8 96, found C 67 01, H 8 67

119 6 Experimental Part

[(3tf,&R)-3,8-Diethynyl-3,8-dimethoxy-l ,4,6,9-decatetrayne-1,10- diyl] bis(triethylsilane) ((+)-(RJl)-89)

NaOH (0 5 N, 3 drops) was added to a stirred solution of (+)-(S,S)-81 (56 mg, 94 |imol)

(ee = 100%) in MeOH/THF 1 1 (41 mL) at -15° C After stirring for 2 h, the reaction was quenched with aq sat NH4C1 solution, extracted with CH2CI2 (50 mL x 3), washed with water (50 mL), dried over MgS04, and concentrated in vacuo Purification by column chromatography (SiC>2, heptane/CH2Cl2 4 1) gave 38 mg (82 |imol, 87%) of

(+)-(R,R)-S9 (ee = 100%) as a yellow oil

R{ (heptane/CH2Cl2 4 1) 0 19 [org = +5 1 (c = 0 77, CHC13) IR(neat) 3297, 2956,

2914, 2879, 2827, 2161, 2126, 1460, 1415, 1381, 1234, 1201, 1116, 1056, 1010, 977,

952, 911, 728, 667 !H NMR (300 MHz, CDC13) 0 65 (q, 12 H, J = 7 9, Si(CH2G^)3),

1 01 (t, 18 H, J = 7 9, Si(CH2C^)3), 2 68 (s, 2 H, C=CH), 3 50 (s, 6 H, OCH3)

13C NMR (75 MHZ, CDC13) 4 2, 7 5, 52 9, 60 8, 67 4, 72 9, 75 4, 78 1, 88 8, 98 7

EI-HRMS m/z calcd for C28H3802Si2+ [M]+ 462 2405, found 462 2403 EA for

C28H3802Si2 calcd C 72 67, H 8 28, found C 72 58, H 8 22

120 6. Experimental Part

(lr,6r,llr,16r)-[(l,6,ll,16-Tetramethoxy-2,4,7,9,12,14,17,19-cycloicosaoctayne-

1,6,11,16-tetrayl)tetra-2,1-ethynediyl]tetrakis(triethylsilane) (82a)

SiEt,

OMe

MeO

Si Et,

To a solution of (+)-(R,R)-S9 (32 mg, 69 |imol) (ee = 100%) in CH2C12 (56 mL) open to air, Hay catalyst [4.9 mL, prepared by stirring a solution of CuCl (191 mg, 1.93 mmol) and TMEDA (0.58 mL, 449 mg, 3.86 mmol) in CH2C12 (4.9 mL)] was added. After stirring for 18 h, the solution was filtrated through a silica plug and then concentrated in vacuo. Purification by column chromatography (SiÛ2; heptane/CH2Cl2 6:1) gave 19 mg

(21 |imol, 60%>) of 82a as a brown solid.

See above for spectroscopical data.

(5r,10r,15r,20r)-5,10,15,20-Tetraethynyl-5,10,15,20-tetramethoxy-l,3,6,8,ll,13,16,18- cycloicosaoctayne (93)

OMe

MeO

121 6. Experimental Part

NaOH (1 N, 7 drops) was added to a cooled solution (-15 °C) of 82a (69 mg, 75 |imol) in

MeOH/THF 1:1 (33 mL). After stirring for 30 min, the reaction was quenched with aq. sat. NH4C1 solution, extracted with CH2CI2 (3 x 50), washed with water (50 mL), dried over MgS04, and concentrated in vacuo. Purification by column chromatography (Si02; heptane/CH2Cl2 2:1 to 1:2) gave 24 mg (52 umol, 69%) of 93 as a white, explosive powder, which decomposed over days.

Rf (heptane/CH2Cl2 1:2) 0.48. IR (neat): 3254, 2931, 2127, 1455, 1044, 805, 673. lîî NMR (300 MHz, CDC13): 2.75 (s, 4 H, OCH), 3.50 (s, 12 H, OCH3). 13C NMR (75

MHZ, CDCI3): 53.6, 61.1, 69.1, 74.5, 75.9, 77.1. MALDI-HRMS: m/z calcd. for

C3iHi303+ [M - OCH3]+: 433.0865, found 433.0857.

Ethyl (2£)-3-Phenyl-5-(triisopropylsilyl)-2-penten-4-ynoate (100)

C02Et phyJ

Si(/Pr)3

A 1:1 mixture of palladium acetate (561 mg, 2.5 mmol) and TDMPP (1.106 g, 2.5 mmol) in dry benzene (150 mL) was stirred at 20 °C for 15 min after which ethyl-3-phenylpropiolate (8.71 g, 8.3 mL, 50.0 mmol) was added. After an additional 5 min, ethynyltriisopropylsilane (11.2 mL, 50.0 mmol) was added. After stirring for 24 h, the reaction mixture was concentrated in vacuo and the residual black oil was purified by

FC (Si02; pentane/EtOAc 24:1) to yield 100 as a yellow oil (17.11 g, 48.0 mmol, 96%).

Rf (pentane/EtOAc 24:1) 0.47. IR(neat): 2943, 2865, 1723, 1597, 1463, 1368, 1227,

1158, 1085, 881, 771, 666. 'HNMR (CDC13, 300 MHz): 1.07-1.10 (m, 21 H, Si(zPr)3),

1.15 (t, J = 7.1, 3 H, CH3CR2O), 4.09 (q, J = 7.1, 2 H, CH3Œ/2O), 6.35 (s, 1 H,

=C(tf)COOEt), 7.33-7.36 (m, 3 H, Ar), 7.45-7.49 (m, 2 H, Ar). 13C NMR (CDC13, 75

MHz): 11.2, 13.9, 18.6, 60.4, 97.9, 107.2, 125.1, 127.7, 128.6, 128.9, 136.1, 137.9, 165.4.

122 6. Experimental Part

MALDI-HRMS: m/z calcd. for C22H32Na02Si [M + Na] : 379.2064, found 379.2058.

EA for C22H3202Si (356.57): calcd. C 74.10, H 9.05; found C 74.03, H 9.01.

(2ii)-3-Phenyl-5-(triisopropylsilyl)-2-penten-4-yn-l-ol (97)

OH phyJ

Si(/Pr)3

Enynoate 100 (14.56 g, 40.8 mmol) was dissolved in dry THF (120 mL) and cooled to

-78 °C. A solution of 20% DIBAL-H in toluene (69 mL, 83.6 mmol) was added slowly,

and the reaction mixture was stirred for 3 h at -78 °C. The solution was allowed to warm

to -50 °C and was slowly hydrolyzed with a sat. aq. NH4C1 solution (50 mL). After

warming to 20 °C, a saturated solution of sodium potassium tartrate (100 mL) and EtOAc

(150 mL) were added and the solution was stirred for 12 h. The organic phase was

separated and washed with water (100 mL) and a sat. aq. NaCl solution (2 x 100 mL),

dried over MgS04 and evaporated in vacuo. FC (Si02; CH2C12) afforded 97 (12.19 g,

38.8 mmol, 95%) as a light yellow oil.

R{ (CH2C12) 0.38. IR(neat): 3320, 2942, 2864, 2141, 1462, 1383, 1242, 1070, 1010, 882,

769, 670. ^NMR (CDC13, 300 MHz): 1.09-1.10 (m, 21 H, Si(zPr)3), 1.46 (t, J= 5.7, 1

H, OH), 4.33 (dd, J= 6.8, 5.7, 2 H, =C(H)Œ/2OH), 6.37 (t,J= 6.8, 1H, =C(#)CH2OH),

7.28-7.39 (m, 5H, Ar). 13C NMR (CDC13, 75 MHz): 11.4, 18.8, 60.0, 90.4, 107.7, 126.1,

127.9, 128.0, 128.5, 136.3, 137.3. MS (MALDI): m/z (%) = 337 (90) [M + Na]+. EA for

C20H3oOSi (314.54): calcd. C 76.37, H 9.61; found C 76.15, H 9.50.

123 6. Experimental Part

(±)- {3-Phenyl-3- [(triisopropylsilyl)ethynyl] -2-oxiranyl} methanol ((±)-105)

OH

Si(/Pr)3

Allylic alcohol 97 (5.99 g, 19.05 mmol) was dissolved in CH2C12 (99 mL) at 0 °C and

Na2HP04 (4.06 g, 28.57 mmol) and MCPBA (77%, 6.40 g, 28.57 mmol) were added.

After stirring for 2 h at 0 °C, sat. aq. K2CO3 solution (40 mL) was added and the mixture was stirred for an additional 15 min. The organic phase was separated and washed with sat. aq. NaHCCh solution (2 x 100 mL) and sat. aq. NaCl solution (2 x 100 mL), dried over MgS04 and evaporated in vacuo. The light yellow residual oil was used in the following step without further purification. Pure racemic product (±)-105 (4.72 g, 14.29 mmol, 75 %) can be obtained by FC (Si02; hexane/EtOAc 5:1, 1% NEt3).

Rf (hexane/EtOAc 5:1) 0.3. lîî NMR (CDC13, 300 MHz): 1.04-1.10 (m, 21 H, Si(/Pr)3),

1.58 (br s, 1H, OH), 3.39 (dd, J= 12.4, 6.3, 1H, CH//OH), 3.47 (dd, J = 12.4, 5.0, 1H,

ŒHOH), 3.69 (dd,J = 6.3, 5.0, 1 H, C(0)#CH2OH), 7.26-7.38 (m, 3 H, Ar), 7.46-7.49

(m, 2 H, Ar). 13C NMR (CDC13, 75 MHz): 11.3, 18.7, 56.1, 60.5, 66.4, 85.9, 105.9,

= 126.8, 128.4, 128.8, 135.1. MS (El): m/z (%) 330 (99) [M]+, 314 (90) [M - 0]+, 300

(100). EA for C20H3oSi02 (330.54): calcd. C 72.67, H 9.15; found C 72.59, H 9.07.

124 6. Experimental Part

(±)-ter^Butyl(dimethyl)({3-phenyl-3-[(triisopropylsilyl)ethynyl]-2- oxiranyl}methoxy)silane ((±)-96)

.OSiMe2fBu

Si(/Pr)3

A solution of epoxy alcohol (±)-105 (6.30 g, 19.05 mmol) in dry CH2C12 (206 mL) was cooled to 0 °C, and imidazole (1.95 g, 28.58 mmol) and fert-butyldimethylchlorosilane

(4.31 g, 28.58 mmol) were added. After stirring for 24 h, sat. aq. NaHC03 solution (150 mL) was added and the mixture was stirred for 15 min. The organic phase was separated and washed with sat. aq. NaHC03 solution (2 x 200 mL) and sat. aq. NaCl solution (2 x

200 mL), dried over MgS04, and evaporated in vacuo. The light yellow residual oil was used in the following step without further purification. Pure racemic product (±)-96 (8.05 g, 18.10 mmol, 95 %) can be obtained by FC (Si02; hexane/EtOAc 100:1, 1% NEt3).

Rf (hexane/EtOAc 100:1) 0.4. IR(neat): 3461, 2943, 2866, 2361, 2168, 1462, 1383, 1250,

1141, 1060, 841, 760, 674. lîî NMR (CDC13, 300 MHz): -0.10 (s, 3 H, SiCH3),

-0.08 (s, 3 H, SiCH3), 0.82 (s, 9 H, SifBu), 1.07 (s, 21 H, Si(zPr)3), 3.35 (dd, J= 11.8, 5.4,

1 H, CHffOSi), 3.50 (dd, J = 11.8, 5.4, 1 H, ŒHOSi), 3.61 (dd, J = 5.4, 5.4, 1 H,

C(0)#CH2OSi), 7.28-7.38 (m, 3 H, Ar), 7.44-7.50 (m, 2 H, Ar). 13C NMR (CDC13, 75

MHz): -5.5, 11.1, 18.2, 18.5, 25.7, 55.7, 60.8, 66.8, 85.3, 106.1, 126.8, 128.0, 128.1,

135.0. MALDI-HRMS: m/z calcd. for C26H4502Si2+ [M + H]+: 445.2953, found:

445.2944. EA for C26H4402Si2 (444.80): calcd. C 70.21, H 9.97; found C 70.35, H 9.93.

125 6. Experimental Part

(±)-2-({[tert-Butyl(dimethyl)silyl]oxy}methyl)-2-phenyl-4-(triisopropylsilyl)-3- butynal ((±)-95)

O

I I OSiMe2fBu

Si(/Pr)3

For the preparation of the catalyst 4-bromo-2,6-di-tert-butylphenol (21.73 g, 76.20 mmol) was dissolved in dry CH2C12 (190 mL) and 2 M trimethylaluminium in heptane (19.05 mL, 38.10 mmol) was slowly added at room temperature. After stirring for 1 h, no more methane gas evolved. Now, the solution was cooled to -78 °C and epoxy silyl ether

(±)-96 (8.47 g, 19.05 mmol) was slowly added in dry CH2C12 (63 mL). After stirring for

45 min at -78 °C, the reaction mixture was slowly quenched with IN HCl (200 mL). The organic phase was separated and washed with sat. aq. NaCl solution (2 x 200 mL), dried over MgS04, and evaporated in vacuo. FC (Si02; hexane/CH2Cl2 9:1) yielded

(±)-95 (6.12 g, 13.77 mmol, 72%) as a light yellow oil.

Rf (hexane/CH2Cl2 9:1) 0.3. IR(neat): 2942, 2864, 2168, 1731, 1463, 1385, 1254, 1116,

1015, 837, 777, 676, 630. lîî NMR (CDC13, 300 MHz): -0.07 (s, 3 H, SiCH3), -0.03 (s,

3 H, SiCH3), 0.81 (s, 9 H, SifBu), 1.12-1.14 (m, 21 H, Si(zPr)3), 3.99 (d, J= 9.5, 1H,

CH/YOSi), 4.14 (d,J= 9.5, 1H, ŒHOSi), 7.28-7.41 (m, 3 H, Ar), 7.49-7.55 (m, 2 H,

Ar), 9.56 (s, 1 H, CHO). 13C NMR (CDC13, 75 MHz): -5.8, -5.7, 11.2, 18.2, 18.6, 25.7,

60.6, 67.4, 90.9, 103.3, 128.0, 128.2, 128.5, 134.3, 194.4. MALDI-HRMS: m/z calcd. for

C26H44Na02Si2+ [M + Na]+: 467.2772, found 467.2779. EA for C26H4402Si2 (444.80): calcd. C 70.21, H 9.97; found C 70.35, H 9.95.

126 6. Experimental Part

(±)-ter?-Butyl({4,4-dibromo-2-phenyl-2-[(triisopropylsilyl)ethynyl]-3-buten-l- yl}oxy)dimethylsilane ((±)-lll)

Bi\Rr T

I I OSiMe2fBu

Si(/Pr)3

To a solution of carbon tetrabromide (1.04 g, 3.15 mmol) in dry CH2CI2 (15 mL) at 0 °C was added triphenylphosphine (1.65 g, 6.30 mmol). After stirring for 15 min at 0 °C a solution of aldehyde (±)-95 (700 mg, 1.57 mmol) in dry CH2C12 (15 mL) was added and the reaction mixture was stirred for 3 h. Pure product (±)-lll (light yellow oil, 880 mg,

1.46 mmol, 93 %) was obtained by directly pouring the reaction mixture onto a silica gel column. (Si02; hexane/CH2Cl2 80:1).

Rf (hexane/CH2Cl2 80:1) 0.5. IR(neat): 3030, 2940, 2862, 2362, 2166, 1598, 1463, 1385,

1254, 1110, 997, 838, 777, 677, 631. lîî NMR (CDC13, 300 MHz): -0.14 (s, 3 H,

SiCH3), -0.11 (s, 3 H, SiCH3), 0.83 (s, 9 H, SifBu), 1.12 (s, 21 H, Si(zPr)3), 3.60 (d,J =

9.2, 1H, CHffOSi), 3.79 (d,J= 9.2, 1H, ŒHOSi), 7.13 (s, 1 H, =CH), 7.21-7.35 (m, 3

H, Ar), 7,49-7.54 (m, 2 H, Ar). 13C NMR (CDC13, 75 MHz): -5.6, 11.4, 18.3, 18.8, 25.8,

51.5, 72.6, 85.6, 93.4, 105.5, 126.8, 127.7, 127.8, 138.4. 139.4. MS (El): m/z (%) = 557

(10), 541 (20) [M- C4H9]+, 543 (30), 501 (40), 439 (35), 57 (100). EI-HRMS: m/z calcd. for C23H35Br2OSi2: 541.0580, found 541.0589. EA for C27H440Br2Si2 (600.62): calcd. C

53.99, H 7.38; found C 53.87, H 7.07.

127 6. Experimental Part

(±)-ter^Butyl{[2-ethynyl-2-phenyl-4-(triisopropylsilyl)-3-butyn-l- yl]oxy}dimethylsilane ((±)-110)

I I OSiMe2fBu

Si(/Pr)3

Compound (±)-lll (880 mg, 1.46 mmol) was dissolved in dry THF (15 mL) and, after cooling the solution to -78 °C, 1.6 M «BuLi in hexane (1.82 mL, 2.92 mmol) was added and the mixture was stirred for 2 h at -78 °C. Now, the reaction mixture was allowed to warm to -40 °C and was then quenched with 1 N HCl (5 mL). After adding Et20 (30 mL) the organic phase was separated, washed with a sat. aq. NaCl solution (2 x 70 mL), dried over MgS04, and evaporated in vacuo. FC (Si02; hexane/CH2Cl2 80:1; visualization with a KMn04 solution) afforded (±)-110 (617 mg, 1.40 mmol, 95%) as a light yellow oil.

Rf (hexane/CH2Cl2 80:1) 0.25. IR(neat): 3313, 2941, 2863, 2325, 2170, 1600, 1463,

1254, 1121, 997, 838, 778, 634. lîî NMR (CDC13, 300 MHz): -013 (s, 3 H, SiCH3),

-0.12 (s, 3 H, SiCH3), 0.81 (s, 9 H, SifBu), 1.09-1.13 (m, 21 H, Si(zPr)3), 2.43 (s, 1 H,

C=CH), 3.80 (d,J= 9.5, 1H, CHffOSi), 3.83 (d,J= 9.5, 1H, ŒHOSi), 7.23-7.37 (m, 3

H, Ar), 7.68-7.74 (m, 2 H, Ar). 13C NMR (CDC13, 75 MHz): -5.5, 11.4, 18.3, 18.8, 25.8,

44.1, 71.4, 73.1, 83.4, 84.5, 106.1, 127.2, 127.3, 127.7, 138.9. MS (El): m/z (%) = 439

(5), 425 (5), 543 (30), 397 (30), 383 (40) [M - C4H9]+, 73 (100). EI-HRMS: m/z calcd. for C23H35OSi2+ [M - C4H9]+: 383.2221, found 383.2221. EA for C27H44OSi2 (440.81): calcd. C 73.57, H 10.06; found C 73.54, H 9.98.

128 6. Experimental Part

(±)-2-Ethynyl-2-phenyl-4-(triisopropylsilyl)-3-butyn-l-ol((±)-112)

II °H

Si(/Pr)3

To a solution of (±)-110 (476 mg, 1.08 mmol) in CH2C12 (4 mL) at 0 °C was added a mixture of TFA/H2O 9:1 (4.5 mL). After stirring for 45 min, sat. aq. NaHCCh solution

(10 mL) was added and the mixture was stirred for 10 min. Now the organic phase was separated, diluted with CH2CI2 (20 mL), washed with sat. aq. NaHCCh solution (30 mL) and sat. aq. NaCl solution (2 x 70 mL), dried over MgS04, and evaporated in vacuo. The residual colorless oil was used in the following step without further purification.

lîî NMR (CDCI3, 300 MHz): 1.10-1.12 (m, 21 H, Si(zPr)3), 2.05 (br s, 1 H, OH), 2.53 (s,

1 H, C=CH), 3.79 (s, 2 H, ŒfcOH), 7.28-7.42 (m, 3 H, Ar), 7.68-7.74 (m, 2 H, Ar).

13C NMR (CDCI3, 75 MHz): 11.3, 18.8, 44.7, 72.4, 73.0, 82.5, 86.3, 104.9, 126.8, 127.8,

128.4, 137.8.

(±)-2-Phenyl-4-(triisopropylsilyl)-2-[(trimethylsilyl)ethynyl]-3-butyn-l-ol((±)-113)

SiMe3

Ph^/X

Il °H

Si(/Pr)3

Compound (±)-112 (353 mg, 1.08 mmol) was dissolved in dry THF (20 mL) and, after cooling the solution to -78 °C, 1.6 M «BuLi in hexane (1.49 mL, 2.38 mmol) was added and the mixture was stirred for 15 min. Now, chlorotrimethylsilane (3.43 mL, 2.70 mmol) was added and the mixture was stirred for 2 h at -78 °C. After warming the

129 6. Experimental Part

reaction mixture to room temperature, 1 N HCl (7 mL) was slowly added and the solution

was stirred for 20 min. After adding Et2Û (50 mL), the solution was slowly poured in sat.

aq. NaHC03 solution (40 mL) and stirred for 10 min. The organic phase was separated,

washed with sat. aq. NaHCC>3 solution (40 mL) and sat. aq. NaCl solution (2 x 90 mL),

dried over MgS04, and evaporated in vacuo. FC (SiÛ2; hexane/CH2Cl2 1:1; visualization

with a KMnC-4 solution) afforded (±)-113 (396 mg, 0.99 mmol, 92%) as a colorless oil.

Rf (hexane/CH2Cl2 1:1) 0.3. Separation of the enantiomers was conducted on a

preparative "Regis® (S,S)-Whelk-0 1" (eluent: hexane/zPrOH 99.6:0.4; 6 mL/min)

column (Kromasil, 10 |im, 100Â, 25 cm x 21.1 mm). The first eluted compound was (+)-

113, followed by (-)-l 13.

(+)-113 (ee = 100%): tR = 22.5 min. [org = +8.6 (c = 1.00, hexane).

(-)-113 (ee = 100%): tR = 26A min. [a]2^ = -8.8 (c = 1.03, hexane).

IR(neat): 3461, 2943, 2865, 2168, 1462, 1383, 1249, 1141, 1060, 841, 760, 674. lîî

NMR (CDC13, 300 MHz): 0.21 (s, 9 H, Si(CH3)3), 1.11 (s, 21 H, Si(zPr)3), 2.08 (t, J= 7.5,

1H, OH), 3.75 (d, J= 7.5, 2H, ŒfcOH), 7.26-7.41 (m, 3 H, Ar), 7.66-7.72 (m, 2 H, Ar).

13C NMR (CDCI3, 75 MHz): -0.1, 11.2, 18.6, 45.5, 73.0, 85.8, 89.0, 103.8, 105.7, 126.9,

= 127.7, 128.3, 138.4. MS (El): m/z (%) 368 (40) [M - CH2OH]+, 325 (20), 543 (50),

283 (30), 157 (30), 73 (100). EI-HRMS: m/z calcd. for C23H35Si2+ [M - CH2OH]+:

367.2272, found 367.2271. EA for C24H38OSi2 (398.73): calcd. C 72.29, H 9.61; found C

72.46, H 9.38.

130 6. Experimental Part

2-phenyl-5-(triisopropylsilyl)-2-[(trimethylsilyl)ethynyl]pent-3-yn-l-yl (lS,4R)-4,7,7- trimethyl-3-oxo-2-oxabicyclo[2.2.1]heptane-l-carboxylate ((+)-114)

SiMe3

O II °"X Si(/Pr)3 i^}=0

To a well stirred mixture of (+)-113 (100 mg, 0.25 mmol) (ee = 100%) and DMAP (35 mg, 0.31 mmol) in dry THF (2.2. mL) at 25 °C, (lS)-(-)-camphanic chloride (68 mg,

0.31 mmol) was added in one portion. After 3 h, Et2Û (10 mL) was added and the suspension was washed with H20; the organic phase was dried (MgS04), and concentrated in vacuo. Column chromatography (SiÛ2; heptane/EtOAc 10:1) afforded

(+)-114 (106 mg, 0.18 mmol, 73%) (de = 100%) as a pale yellow oil.

R{ (heptane/EtOAc 10:1) 0.2. [a]2^ = +2.6 (c = 0.31, CHC13). IR(neat): 2944, 2865,

2173, 1795, 1758, 1462, 1380, 1309, 1256, 1168, 1103, 1064, 930, 845, 762, 665, 631.

!H NMR (CDCI3, 300 MHz): 0.19 (s, 9 H, Si(CH3)3), 0.88 (s, 3 H, C(CH3)Ctfj), 0.97 (s,

3 H, C(Œfc)CH3), 1.09 (s, 3 H, CH3), 1.10 (s, 21 H, Si(zPr)3), 1.54-1.72 (m, 1H), 1.82-

1.98 (m, 2H), 2.24-2.36 (m, 2H), 4.42 (d,J= 10.2, 1 H, CHM)), 4.46 (d,J= 10.2, 1 H,

ŒHO), 7.27-7.41 (m, 2H, Ar), 7.69-7.75 (m, 2 H, Ar). 13C NMR (CDC13, 75 MHz): -

0.1, 9.8, 11.4, 16.7, 17.0, 18.7, 29.0, 30.7, 42.1, 54.0, 54.8, 72.4, 85.8, 89.1, 91.0, 102.8,

104.6, 127.0, 128.0, 128.3, 137.5, 166.3, 177.6. EI-HRMS: m/z calcd. for C3iH4304Si2+

[M - C3H7]+: calcd. 535.2695, found 535.2698. EA for C34H5o04Si2 (578.93): calcd. C

70.54, H 8.70; found C 70.53 H 8.99.

131 6. Experimental Part

(+)-2-Phenyl-4-(triisopropylsilyl)-2-[(trimethylsilyl)ethynyl]-3-butynal((+)-115)

SiMe3

Il °

Si(/Pr)3

Alcohol (+)-113 (323 mg, 0.81 mmol) (ee = 100%) was dissolved in dry CH2C12 (15 mL) and, after cooling the solution to 0 °C, DMP (15 wt% in CH2C12, 512 mg, 2.51 mL, 1.21 mmol) was added and the mixture was stirred for 12h. Now, Et20 (20 mL) was added and the mixture was stirred for 20 min. After addition of 1 N NaOH (10 mL), the solution was stirred for an additional 20 min. The organic phase was separated, washed with sat. aq. NaHC03 solution (30 mL) and sat. aq. NaCl solution (2x30 mL), dried over

MgS04, and evaporated in vacuo. The residual light yellow oil (+)-115 (320 mg, 0.81 mmol, quant.) was used without purification. Pure product (+)-115 (238 mg, 0.60 mmol,

74%) (ee = 100%) can be obtained by FC (Si02; hexane/CH2Cl2 40:1).

R{ (hexane/CH2Cl2 40:1) 0.3. [org = +8.8 (c = 0.40, hexane). IR(neat): 2943, 2865,

2171, 1744, 1462, 1365, 1250, 1153, 1024, 842, 757, 675. JH NMR (CDC13, 300 MHz):

0.23 (s, 9 H, Si(CH3)3), 1.12 (s, 21 H, Si(zPr)3), 7.32-7.45 (m, 3 H, Ar), 7.61-7.66 (m, 2 H,

Ar), 9.21 (s, 1 H, CHO). 13C NMR (CDC13, 75 MHz): -0.1, 11.3, 18.7, 54.3, 90.1, 93.0,

98.7, 100.4, 127.6, 128.5, 128.8, 133.6, 186.8. MS (El): m/z (%) = 396 (20) [M]+, 367

(20), 325 (25), 283 (20), 157 (30), 73 (100). EI-HRMS: m/z calcd. for C24H360Si2+ [M]+:

396.2300, found 396.2305. EA for C24H36OSi2 (396.71): calcd. C 72.66, H 9.15; found C

72.00, H 9.13.

(-)-115 (ee = 100%)) was synthesized in the same way starting from (-)-113 (ee = 100%>).

[afë = -8.7 (c = 0.40, hexane).

132 6. Experimental Part

(-)-{5,5-Dibromo-3-phenyl-3-[(triisopropylsilyl)ethynyl]-4-penten-l-yn-l- yl}(trimethyl)silane ((-)-116)

Si(/Pr)3

To a solution of carbon tetrabromide (535 mg, 1.61 mmol) in dry CH2CI2 (20 mL) at 0

°C, triphenylphosphine (846 mg, 3.23 mmol) was added. After stirring for 15 min. at 0

°C, a solution of aldehyde (+)-115 (320 mg, 0.81 mmol) (ee = 100%) in dry CH2C12 (10 mL) was added and the reaction mixture was stirred for 3 h. Pure product (-)-116 (light yellow oil, 370 mg, 0.67 mmol, 83%) (ee = 100%) was obtained by directly pouring the reaction mixture onto a silica gel column (SiÛ2; hexane/CH2Cl2 80:1).

Rf (hexane/CH2Cl2 80:1) 0.5. [a]2^ = -2.8 (c = 0.40, hexane). IR(neat): 4053, 3893,

3022, 2943, 2662, 2169, 1951, 1879, 1919, 1683, 1493, 1451, 1301, 1250, 1155, 1071,

961, 842, 760, 687. lîî NMR (CDC13, 300 MHz): 0.19 (s, 9 H. Si(CH3)3), 1.10 (s, 21 H,

Si(zPr)3), 6.85 (s, 1 H, =CH), 7.26-7.41 (m, 3 H, Ar), 7.68-7.74 (m, 2 H, Ar). 13C NMR

(CDCI3, 75 MHz): -0.1, 11.5, 18.7, 43.6, 85.5, 88.3, 93.2, 102.8, 104.2, 126.8, 127.5,

= 128.3, 139.0, 140.6. MS (El): m/z (%) 507 (10) [M - C3H7]+, 471 (30) [M - Br]+, 403

(90), 157 (40), 157 (30), 73 (100). EI-HRMS: m/z calcd. for C22H29Br2Si2+ [M - C3H7]+:

507.0175; found 507.0171. EA for C25H36Br2Si2 (552.53): calcd. C 54.34, H 6.57; found

C 54.14, H 6.85.

(+)-116 (ee = 100%)) was synthesized in the same way starting from (-)-115 (ee = 100%>).

[cifâ = +2.9 (c = 1.04, hexane).

133 6. Experimental Part

(+)-[3-Ethynyl-3-phenyl-5-(triisopropylsilyl)-l,4-pentadiyn-l-yl](trimethyl)silane

((+)-94)

SiMec

Si(/Pr)3

Dibromo olefin (-)-116 (370 mg, 0.67 mmol) (ee = 100%) was dissolved in dry THF (15 mL) and, after cooling the solution to -78 °C, 1.6 M «BuLi in hexane (0.84 mL, 1.34 mmol) was added and the mixture was stirred for 3 h at -78 °C. The reaction mixture was allowed to warm to -60 °C and was then quenched with sat. aq. NH4C1 solution (15 mL). After adding Et20 (25 mL), the organic phase was separated, washed with sat. aq.

NaCl solution (1 x 20 mL), dried over MgS04 and evaporated in vacuo. FC (Si02; hexane/CH2Cl2 40:1; visualization with a KMn04 solution) afforded (+)-94 (192 mg,

0.49 mmol, 73%) (ee = 100%) as a colorless oil.

Rf (hexane/CH2Cl2 40:1) 0.22. [org = +2.5 (c = 0.31, hexane). IR(neat): 3291, 2944,

2866, 2361, 2166, 1462, 1250, 1067, 996, 944, 842, 762, 657. lîî NMR (CDC13, 300

MHz): 0.19 (s, 9 H, Si(CH3)3), 1.09 (s, 21 H, Si(/Pr)3), 2.51 (s, 1 H, C=CH), 7.25-7.41

(m, 3 H, Ar), 7.80-7.83 (m, 2 H, Ar). 13C NMR (CDC13, 75 MHz): -0.3, 11.3, 18.6, 34.4,

70.3, 82.2, 84.1, 87.0, 102.4, 104.4, 126.3, 128.0, 128.5, 139.7. MS (El): m/z (%) = 393

(10) [M]+, 349 (95) [M - C3H7]+, 325 (25), 307 (40), 139 (40), 73 (100). EI-HRMS: m/z calcd. for C22H29Si2+ [M - C3H7]+: 349.1803, found 349.1801. EA for C25H36Si2

(392.72): calcd. C 76.46, H 9.24; found C 76.19, H 9.05.

(-)-94 (ee = 100%) was synthesized in the same way starting from (+)-116 (ee = 100%).

[«g = -2.4 (c = 1.09, hexane).

134 6. Experimental Part

(3R,8R)- and (3S,8S)- {3,8-Diphenyl-l 0-(triisopropylsilyl)-3,8- bis[(trimethylsilyl)ethynyl]-l,4,6,9-decatetrayn-l-yl}(triisopropyl)silane ((RJi)-117 and(Ä^S)-117)

(RyS)- {3,8-Diphenyl-l 0-(triisopropylsilyl)-3,8-bis [(trimethylsilyl)ethynyl] -1,4,6,9- decatetrayn-l-yl}(triisopropyl)silane ((/?^V)-117)

SiMe3

Ph /' .Si(/Pr)3

(/'Pr)3Si Ph^^ SiMe3

To a solution of (±)-94 (775 mg, 1.97 mmol) in CH2CI2 (180 mL) open to air, Hay catalyst [6 mL, prepared by stirring CuCl (391 mg, 3.95 mmol) and TMEDA (1.19 mL,

7.89 mmol) in CH2CI2 (6 mL) for 5 min] was added. After stirring for 18 h, the mixture was washed with water, and the organic layer was concentrated in vacuo. Column chromatography (SiÛ2; heptane/CH2Cl2 40:1) afforded a mixture of diastereoisomers

(R,R)-lll/(S,S)-m and (R,S)-W (700 mg, 0.89 mmol, 91%) as a yellow viscous oil.

Rf (hexane/CH2Cl2 40:1) 0.22. IR(neat): 2944, 2865, 2169, 1598, 1462, 1250, 1067, 996,

942, 842, 761, 675. 'HNMR (CDC13, 300 MHz): 0.22 (s, 18 H, Si(CH3)3), 1.12 (s, 42 H,

Si(/Pr)3), 7.30-7.44 (m, 6 H, Ar), 7.77-7.84 (m, 4 H, Ar). 13C NMR (CDC13, 75 MHz):

-0.2, 11.4, 18.7, 35.1, 66.5, 77.2, 84.9, 87.7, 101.2, 103.3, 126.3, 128.0, 128.5, 139.0.

= MS (EI): m/z (%) 783 (20) [M]+, 739 (5) [M - C3H7]+, 73 (100). EI-HRMS: m/z calcd. for C5oH7oSi4+ [M]+: 782.4559, found 782.4542. EA for C5oH7oSi4 (783.43): calcd. C

76.66, H 9.01; found C 76.68, H 8.80.

135 6. Experimental Part

(3S,SS)- and (3^,8^)-[3,8-Diethynyl-3,8-diphenyl-10-(triisopropylsilyl)-l,4,6,9- decatetrayn-l-yl](triisopropyl)silane ((S,S)-ll8 and (RJi)-118)

(/?^V)-[3,8-Diethynyl-3,8-diphenyl-10-(triisopropylsilyl)-l,4,6,9-decatetrayn-l- yl](triisopropyl)silane((^^)-118)

Ph /' .Si(/Pr)3

(/'Pr)3Si Ph%

To a solution of a mixture of (R,R)-W/(S,S)-W/(R,S)-W (189 mg, 0.24 mmol) in

MeOH/THF 1:1 (4 mL), 1 N NaOH (12 drops) was added. After stirring for 30 min, the mixture was diluted with Et2Û (20 mL) and saturated solution of NH4C1 (10 mL) was added. The organic phase was separated, washed with sat. aq. NaCl solution (2x30 mL), dried over MgS04, and evaporated in vacuo, affording a mixture of diastereoisomers

(R,R)-llS/(S,S)-llS and (R,S)-llS (133 mg, 0.21 mmol, 87%) as a colorless oil.

IR(neat): 3297, 2956, 2914, 2879, 2827, 2161, 2126, 1460, 1415, 1381, 1234, 1201,

1116, 1056, 1010, 977, 952, 911, 728, 667. lîî NMR (CDC13, 300 MHz): 1.08 (s, 42 H,

Si(/Pr)3), 2.56 (s, 2 H, C=CH), 7.26-7.41 (m, 6 H, Ar), 1.11-IM (m, 4 H, Ar). 13C NMR

(CDC13, 75 MHz): 11.4, 18.7, 34.9, 66.5, 71.2, 77.0, 80.9, 85.6, 102.3, 126.2, 128.2,

= 128.6, 139.0. MS (EI): m/z (%) 639 (10) [M]+, 595 (30) [M - C3H7]+, 276 (10), 157

(20), 149 (40), 115 (90), 59 (100). EI-HRMS: m/z calcd. for C44H54Si2 [M]+: 638.3764, found 638.3766. EA for C44H54Si2 (639.07): calcd. C 82.69, H 8.52; found C 82.84, H

8.69.

136 7. Literature

[I] H. O. Pierson, Handbook of Carbon, Graphite, Diamond and Fullerene:

Properties, Processing and Applications, Noyes Publications, New Jersey, 1993.

[2] Properties, Growth and Applications ofDiamond, Institution of Engineering and

Technology, London, 2001.

[3] A. Hirsch, The Chemistry of the Fullerenes, Thieme Verlag, Stuttgart, 1994.

[4] F. Diederich, C. Thilgen, Science 1996, 271, 317-323, Covalent Fullerene

Chemistry.

[5] A Suzuki, in Perspectives in Organopalladium Chemistry for the X X I-Century

(Ed.: J. Tsuji), Elsevier, Lausanne, 1999, pp. 147-168.

[6] K. Sonogashira, J. Organomet. Chem. 2002, 653, 46-49, Development of Pd-Cu

Catalyzed Cross-Coupling of Terminal with Sp2-Carbon Halides.

[7] N. Miyaura, m Metal-Catalyzed Cross-Coupling Reactions, 2nd Ed. (Eds.: A. d.

Meijere, F. Diederich), Wiley-VCH, Weinheim, 2004, pp. 41-123.

[8] T. N. Mitchell, m Metal-Catalyzed Cross-Coupling Reactions (Eds.: F. Diederich,

P. J. Stang), Wiley-VCH, Weinheim, 1998, pp. 167-202.

[9] P. Siemsen, R. C. Livingston, F. Diederich, Angew. Chem. 2000, 112, 2740-2767;

Angew. Chem. Int. Ed. 2000, 39, 2633-2657, Acetylenic Coupling: A Powerful

Tool in Molecular Construction.

[10] S. Eisler, A. D. Slepkov, E. Elliott, T. Luu, R. McDonald, F. A. Hegmann, R. R.

Tykwinski, J. Am. Chem. Soc. 2005, 127, 2666-2676, Polyynes as a Model for

Carbyne: Synthesis, Physical Properties, and Nonlinear Optical Response.

[II] P. P. K. Smith, P. R. Buseck, Science 1982, 216, 984-986, Carbyne Forms of

Carbon - Do They Exist.

[12] Q. Zheng, J. A. Gladysz, J. Am. Chem. Soc. 2005, 127, 10508-10509, A Synthetic

Breakthrough into an Unanticipated Stability Regime: Readily Isolable

Complexes in Which C16-C28 Polyynediyl Chains Span Two Platinum Atoms.

[13] Q. Zheng, J. C. Bohling, T. B. Peters, A. C. Frisch, F. Hampel, J. A. Gladysz,

Chem. Eur. J. 2006, 12, 6486-6505, A Synthetic Breakthrough into an 7. Literature

Unanticipated Stability Regime: A Series of Isolable Complexes in Which Co, Cg,

Cio, C12, Ci6, C20, C24, and C28 Polyynediyl Chains Span Two Platinum Atoms.

[14] U. H. F. Bunz, Angew. Chem. 1994, 106, 1127-1130; Angew. Chem. Int. Ed.

1994, 33, 1073-1076, Polyynes-Fascinating Monomers for the Construction of

Carbon Networks?

[15] K. Tahara, T. Yoshimura, M. Sonoda, Y. Tobe, R. V. Williams, J. Org. Chem.

2007, 72, 1437-1442, Theoretical Studies on Graphyne Substructures: Geometry,

Aromaticity, and Electronic Properties of the Multiply Fused

Dehydrobenzo[12]Annulenes.

[16] T. Yoshimura, A. Inaba, M. Sonoda, K. Tahara, Y. Tobe, R. V. Williams, Org.

Lett. 2006, 8, 2933-2936, Synthesis and Properties of Trefoil-Shaped

Tris(Hexadehydrotribenzo[12]Annulene) and

Tris(Tetradehydrotribenzo[12]Annulene).

[17] R. H. Baughman, H. Eckhardt, M. Kertesz, J. Chem. Phys. 1987, 87, 6687-6699,

Structure-Property Predictions for New Planar Forms of Carbon: Layered Phases

Containig Sp2 and Sp Atoms.

[18] M. M. Haley, S. C. Brand, J. J. Pak, Angew. Chem. 1997, 104, 863-866; Angew.

Chem. Int. Ed. 1997, 36, 836-838, Carbon Networks Based on

Dehydrobenzoannulenes: Synthesis of Graphdiyne Substructures.

[19] J. A. Marsden, M. M. Haley, J. Org. Chem. 2005, 70, 10213-10226, Carbon

Networks Based on Dehydrobenzoannulenes. 5. Extension of Two-Dimensional

Conjugation in Graphdiyne Nanoarchitectures.

[20] R. Hoffmann, T. Hughbanks, M. Kertész, J. Am. Chem. Soc. 1983, 105, 4831-

4832, A Hypothetical Metallic Allotrope of Carbon.

[21] F. Diederich, Y. Rubin, Angew. Chem. 1992, 104, 1123-1146; Angew. Chem. Int.

Ed. 1992, 31, 1101-1123, Synthetic Approaches toward Molecular and Polymeric

Carbon Ätiotropes.

[22] R. Chauvin, Tetrahedron Lett. 1995, 36, 397-400, "Carbomers". I. A General

Concept of Expanded Molecules.

[23] V. Maraval, R. Chauvin, Chem. Rev. 2006, 106, 5317-5343, From Macrocyclic

Oligo-Acetylenes to Aromatic Ring Carbo-Mers.

138 7. Literature

[24] C. Godard, C. Lepetit, R. Chauvin, Chem. Commun. 2000, 1833-1834, Dft

Exploration of Structural and Magnetic Properties of [n]Annulene Ring

Carbomers.

[25] Y. Kuwatani, N. Watanabe, I. Ueda, Tetrahedron Lett. 1995, 36, 119-122,

Synthesis of the First 3,6,9,12,15,18-Hexa-Substituted-

1,2,4,5,7,8,10,11,13,14,16,17-Dodecadehydro[18]Annulenes with Aa-Symmetry.

[26] C. Saccavini, C. Tedeschi, L. Maurette, C. Sui-Seng, C. Zou, M. Soleilhavoup, L.

Vendier, R. Chauvin, Chem. Eur. J. 2007, 13, 4895-4913, Functional

[6]Pericyclynes: Synthesis through [14+4] and [8+10] Cyclization Strategies.

[27] C. Saccavini, C. Sui-Seng, L. Maurette, C. Lepetit, S. Soula, C. Zou, B.

Donnadieu, R. Chauvin, Chem. Eur. J. 2007, 13, 4914-4931, Functional

[6]Pericyclynes: Aromatization to Substituted Carèo-.

[28] C. Zou, C. Duhayon, V. Maraval, R. Chauvin, Angew. Chem. 2007, 119, 4415-

4419; Angew. Chem. Int. Ed. 2007, 46, 4337-4341, Hexasilylated Total Carbomer

of Benzene.

[29] F. Diederich, Nature 1994, 369, 199-207, Carbon Scaffolding - Building

Acetylenic All-Carbon and Carbon-Rich Compounds.

[30] Y. Rubin, F. Diederich, in Stimulating Concepts in Chemistry (Eds.: F. Vögtle, J.

F. Stoddart, M. Shibasaki), Wiley-VCH, Weinheim, 2000, pp. 163-186.

[31] H. Hopf, m Modern Arene Chemistry (Ed.: D. Astruc), Wiley-VCH, Weinheim,

2002, Chapter 5, pp. 169-195.

[32] M. B. Nielsen, F. Diederich, in Modern Arene Chemistry (Ed.: D. Astruc), Wiley-

VCH, Weinheim, 2002, Chapter 6, pp. 196-216.

[33] Carbon-Rich Compounds (Eds.: M. M. Haley, R. R. Tykwinski), Wiley-VCH,

Weinheim, 2006.

[34] M. Gholami, R. R. Tykwinski, Chem. Rev. 2006, 106, 4997-5027, Oligomeric and

Polymeric Systems with a Cross-Conjugated -Framework.

[35] F. Diederich, Chem. Commun. 2001, 219-227, Carbon-Rich Acetylenic

Scaffolding: Rods, Rings and Switches.

[36] F. Mitzel, C. Boudon, J. P. Gisselbrecht, P. Seiler, M. Gross, F. Diederich, Helv.

Chim. Acta 2004, 87, 1130-1157, Donor-Substituted Perethynylated

139 7. Literature

Dehydroannulenes and Radiaannulenes: Acetylenic Carbon Sheets Featuring

Intense Intramolecular Charge Transfer.

[37] M. B. Nielsen, F. Diederich, Chem. Rec. 2002, 2, 189-198, The Art of Acetylenic

Scaffolding: Rings, Rods, and Switches.

[38] M. B. Nielsen, F. Diederich, Chem. Rev. 2005, 105, 1837-1867, Conjugated

Oligoenynes Based on the Diethynylethene Unit.

[39] P. J. Stang, T. E. Fisk, Synthesis 1979, 438-440, Synthesis of l-(Ethynyl)-Vinyl

Trifluoromethanesulfonates.

[40] M. Schreiber, J. Anthony, F. Diederich, M. E. Spahr, R. Nesper, M. Hubrich, F.

Bommeli, L. Degiorgi, P. Wächter, P. Kaatz, C. Bosshard, P. Günter, M. Colussi,

U. W. Suter, C. Boudon, J.-P. Gisselbrecht, M. Gross, Adv. Mater. 1994, 6, 786-

790, Polytriacetylenes: Conjugated Polymers with a Novel All-Carbon Backbone.

[41] Y. Rubin, C. B. Knobler, F. Diederich, Angew. Chem. 1991, 103, 708-710;

Angew. Chem. Int. Ed. 1991, 30, 698-700, Tetraethynylethene.

[42] J. Anthony, A. M. Boldi, C. Boudon, J-P. Gisselbrecht, M. Gross, P. Seiler, C. B.

Knobler, F. Diederich, Helv. Chim. Acta 1995, 78, 797-817, Macrocyclic

Tetraethynylethene Molecular Scaffolding: Perethynylated Aromatic

Dodecadehydro[18]Annulenes, Antiaromatics Octadehydro[ 12]Annulenes, and

Expanded Radialenes.

[43] R. R. Tykwinski, M. Schreiber, R. P. Carlon, F. Diederich, V. Grämlich, Helv.

Chim. Acta 1996, 79, 2249-2281, Donor/Acceptor-Substituted

Tetraethynylethenes: Systematic Assembly of Molecules for Use as Advanced

Materials.

[44] R. R. Tykwinski, F. Diederich, Liebigs Ann./Recueil 1997, 649-661,

Tetraethynylethene Molecular Scaffolding.

[45] R. E. Martin, J. Bartek, F. Diederich, R. R. Tykwinski, E. C. Meister, A. Hilger,

H. P. Liithi, J. Chem. Soc, Perkin Trans. 2 1998, 233-241, Photochemical Trans-

Cis Isomerisation of Donor/Acceptor-Substituted (£)-Hex-3-Ene-l,5-Diynes (1,2-

Diethynylethenes, DEEs) and 3,4-Diethynylhex-3-Ene-l,5-Diynes

(Tetraethynylethenes, TEEs).

140 7. Literature

[46] E. J. Corey, P. L. Fuchs, Tetrahedron Lett. 1972, 13, 3769-3772, Synthetic

Method for Formyl > Ethynyl Conversion (RCHO -> RC=CH or RC=CR').

[47] K. Sonogashira, in Metal-Catalyzed Cross-Coupling Reactions (Eds.: F.

Diederich, P. J. Stang), Wiley-VCH, Weinheim, 1998, Chapter 5, pp. 203-229.

[48] J. A. Marsden, M. M. Haley, in Metal-Catalyzed Cross-Coupling Reactions, 2nd

Ed., Vol. 1 (Eds.: A. De Meijere, F. Diederich), Wiley-VCH, Weinheim, 2004,

pp. 317-394.

[49] J. Anthony, A. M. Boldi, Y. Rubin, M. Hobi, V. Grämlich, C. B. Knobler, P.

Seiler, F. Diederich, Helv. Chim. Acta 1995, 78, 13-45, 2. Tetraethynylethenes:

Fully Cross-Conjugated-Electron Chromophores and Molecular Scaffolds for All-

Carbon Networks and Carbon-Rich Nanomaterials.

[50] R. E. Martin, T. Mader, F. Diederich, Angew. Chem. 1999, 111, 834-838; Angew.

Chem. Int. Ed. 1999, 38, 817-821, Monodisperse Poly(Triacetylene) Rods:

Synthesis of a 11.9 nm Long Molecular Wire and Direct Determination of the

Effective Conjugation Length by UV/Vis and Raman Spectroscopies.

[51] R. E. Martin, U. Gubler, C. Boudon, C. Bosshard, J.-P. Gisselbrecht, P. Günter,

M. Gross, F. Diederich, Chem. Eur. J. 2000, 6, 4400-4412, Synthesis and Physical

Investigation of Donor-Donor and Acceptor-Acceptor End-Functionalized

Monodisperse Poly(Triacetylene) Oligomers.

[52] M. J. Edelmann, M. A. Estermann, V. Grämlich, F. Diederich, Helv. Chim. Acta

2001, 84, 473-479, Poly(Triacetylene) Oligomers: Conformational Analysis by X-

Ray Crystallography and Synthesis of a 17.8 nm-Long Monodisperse 24-Mer.

[53] A. S. Hay, J. Org. Chem. 1962, 27, 3320-3321, Oxidative Coupling of

Acetylenes.

[54] P.Siemsen, U. Gubler, C. Bosshard, P. Günter, F. Diederich, Chem. Eur. J. 2001,

7, 1333-1341, Pt-Tetraethynylethene Molecular Scaffolding: Synthesis and

Characterization of a Novel Class of Organometallic Molecular Rods.

[55] J. E. Taylor, M. F. Mahon, J. S. Fossey, Angew. Chem. 2007, 119, 2316-2318;

Angew. Chem. Int. Ed. 2007, 46, 2266-2268, An Intermolecular Double [2+2]

Cyclodimerization of a Tetraalkyne.

141 7. Literature

[56] J. Anthony, C. B. Knobler, F. Diederich, Angew. Chem. 1993, 105, 437-444;

Angew. Chem. Int. Ed. 1993, 32, 406-409, Stable [12]Annulenes and

[18]Annulenes Derived from Tetraethynylethene.

[57] F. Mitzel, C. Boudon, J. P. Gisselbrecht, M. Gross, F. Diederich, Chem. Commun.

2002, 2318-2319, Pi-Electron Conjugation Effects in Antiaromatic Dehydro[12]-

and Aromatic Dehydro[18]-Annulenes.

[58] M. B. Nielsen, M. Schreiber, Y. G. Baek, P. Seiler, S. Lecomte, C. Boudon, R. R.

Tykwinski, J.-P. Gisselbrecht, V. Grämlich, P. J. Skinner, C. Bosshard, P. Günter,

M. Gross, F. Diederich, Chem. Eur. J. 2001, 7, 3263-3280, Highly Functionalized

Dimeric Tetraethynylethenes and Expanded Radialenes: Strong Evidence for

Macrocyclic Cross-Conjugation.

[59] M. Schreiber, R. R. Tykwinski, F. Diederich, R. Spreiter, U. Gubler, C. Bosshard,

I. Poberaj, P. Günter, C. Boudon, J.-P. Gisselbrecht, M. Gross, U. Jonas, H.

Ringsdorf, Adv. Mater. 1997, 9, 339-343, Tetraethynylethene Molecular

Scaffolding: Non Linear Optical, Redox, and Amphiphilic Properties of Donor

Functionalized Polytriacetylenes and Expanded Radialenes.

[60] A. M. Boldi, F. Diederich, Angew. Chem. 1994, 106, 482-485; Angew. Chem. Int.

Ed. 1994, 33, 468-471, Expanded Radialenes - a Novel Class of Cross-Conjugated

Macrocycles.

[61] F. Mitzel, C. Boudon, J. P. Gisselbrecht, P. Seiler, M. Gross, F. Diederich, Chem.

Commun. 2003, 1634-1635, Donor-Substituted Peralkynylated "Radiaannulenes":

Novel All-Carbon Macrocycles with an Intense Intramolecular Charge-Transfer.

[62] M. Kivala, F. Mitzel, C. Boudon, J. P. Gisselbrecht, P. Seiler, M. Gross, F.

Diederich, Chem. Asian J. 2006, 1, 479-489, Two-Dimensional Acetylenic

Scaffolding: Extended Donor-Substituted Perethynylated Dehydroannulenes.

[63] W. Chodkiewicz, P. Cadiot, C R. Hebd. Séances Acad. Sei. 1955, 241, 1055-

1057, Nouvelle Synthèse Des Composés Polyacetyléniques Conjugués

Symétriques Et Dissymétriques.

[64] R. Dembinski, T. Lis, S. Szafert, C. L. Mayne, T. Bartik, J. A. Gladysz, J.

Organomet. Chem. 1999, 578, 229-246, Appreciably Bent Sp Carbon Chains:

142 7. Literature

Synthesis, Structure, and Protonation of Organometallic 1,3,5-Triynes and

1,3,5,7-Tetraynes of the Formula (ri5-C5Me5)Re(NO)(PPh3)((C=C)n-jp-C6H4Me).

[65] R. R. Tykwinski, U. Gubler, R. E. Martin, F. Diederich, C. Bosshard, P. Gunter, J.

Phys. Chem. B 1998, 102, 4451-4465, Structure-Property Relationships in Third

Order Nonlinear Optical Chromophores.

[66] T. Lange, J. D. vanLoon, R. R. Tykwinski, M. Schreiber, F. Diederich, Synthesis

1996, 537-550, Towards the Synthesis of Tetraethynylallene.

[67] R. B. Livingston, L. R. Cox, S. Odermatt, F. Diederich, Helv. Chim. Acta 2002,

85, 3052-3077, 1,3-Diethynylallenes: Carbon-Rich Modules for Three-

Dimensional Acetylenic Scaffolding.

[68] R. C. Livingston, L. R. Cox, V. Grämlich, F. Diederich, Angew. Chem. 2001, 113,

2396-2399; Angew. Chem. Int. Ed. 2001, 40, 2334-2337, 1,3-Diethynylallenes :

New Modules for Three-Dimensional Acetylenic Scaffolding.

[69] S. Odermatt, Ph. D. Dissertation No. 16185, Eidgenössische Technische

Hochschule (Zürich), 2005.

[70] H Hopf, in The Chemistry ofAliènes, Vol. 2 (Ed.: S. R. Landor), Academic Press,

New York, 1982, pp. 536-543.

[71] M. Christi, S. Groetsch, K. Guenther, Angew. Chem. 2000, 112, 3395-3397;

Angew. Chem. Int. Ed. 2000, 39, 3261-3263, The Dimerization of Chiral Aliènes:

Pairs of Enantiomers and Pairs of Homomers Furnish Différent Diastereomers.

[72] S. Thorand, F. Vögtle, N. Krause, Angew. Chem. 1999, 111, 3929-3931; Angew.

Chem. Int. Ed. 1999, 38, 3721-3723, Synthesis of the First [34]Allenophane:

1,3,10,12,19,21,28,30-Octamethyl[3.3.3.3]Paracyclophan-l,2,10,l 1,19,20,28,29-

Octaene.

[73] M. D. Clay, A. G. Fallis, Angew. Chem. 2005, 117, 4107-4110; Angew. Chem. Int.

Ed. 2005, 44, 4039-4042, Acetylenic Allenophanes: An Asymmetric Synthesis of

aBis(Alleno)-Bis(Butadiynyl)-Meta-Cyclophane.

[74] T. Kawase, Angew. Chem. 2005, 117, 7500-7502; Angew. Chem. Int. Ed. 2005,

44, 7334-7336, Allenophane and Allenoacetylenic Macrocycles: A New Class of

Chiral Cyclophanes.

143 7. Literature

[75] H. Hopf, Classics in Hydrocarbon Chemistry Synthesis, Concepts, Perspectives,

Wiley-VCH, Weinheim, 2000.

[76] S. Odermatt, J. L. Alonso-Gomez, P. Seiler, M. M. Cid, F. Diederich, Angew.

Chem. 2005, 777, 5203-5207; Angew. Chem. Int. Ed. 2005, 44, 5074-5078,

Shape-Persistent Chiral Alleno-Acetylenic Macrocycles and Cyclophanes by

Acetylenic Scaffolding with 1,3-Diethynylallenes.

[77] G. Eglinton, A. R. Galbraith, Chem. Ind. (London) 1956, 737-738, Cyclic Diynes.

[78] M. K. J. ter Wiel, S. Odermatt, P. Schanen, P. Seiler, F. Diederich, Eur. J. Org

Chem. 2007, 3449-3462, 1,3-Diethynylallenes: Stable Monomers, Length-Defined

Oligomers, Asymmetrie Synthesis, and Optical Resolution.

[79] J. -D. van Loon, P. Seiler, F. Diederich, Angew. Chem. 1993. 105, 1235-1237;

Angew. Chem. Int. Ed. 1993, 32, 1187-1189,

Tetrakis(Trialkylsilylethynyl)Butatriene and 1,1,4,4-

Tetrakis(Trialkylsilylethynyl)-l,3- - Novel Cross-Conjugated

Chromophores.

[80] L. Hagelee, R. West, J. Calabrese, J. Norman, J. Am. Chem. Soc. 1979, 707, 4888-

4892, Catalyzed Dimerization of a Diquinoethylene and Formation of

Diquinoethy 1 ene-Rhodium Complexes.

[81] M. G. Burnett, T. Oswald, B. J. Walker, J. Chem. Soc, Chem. Commun. 1977,

155-156, Stoichiometric Reduction of Activated Olefins by Coordinated and Free

Tertiary Alkyl Phosphines.

[82] A. Auffrant, F. Diederich, C. Boudon, J. P. Gisselbrecht, M. Gross, Helv. Chim.

Acta 2004, 87, 3085-3105, Synthesis of 1,4-Diethynyl- and 1,1,4,4-

Tetraethynylbutatrienes.

[83] A. Auffrant, B. Jaun, P. D. Jarowski, K. N. Houk, F. Diederich, Chem. Eur. J.

2004, 10, 2906-2911, Peralkynylated Buta-1,2,3-Trienes: Exceptionally Low

Rotational Barriers of Cumulenic C=C Bonds in the Range of Those of Peptide C-

N Bonds.

[84] P. D. Jarowski, F. Diederich, K. N. Houk, J. Phys. Chem. A 2006, 770, 7237-

7246, Butatrienes as Extended : Barriers to Internal Rotation and

Substitution Effects on the Stabilities of the Ground States and Transition States.

144 7. Literature

[85] Y. Kuwatani, I. Ueda, Angew. Chem. 1995,707, 2017-2019; Angew. Chem. Int.

Ed. 1995, 34, 1892-1894, Synthesis of New Sworski-Type Dehydroannulenes -

3,4-Benz-l,2,5,6,8,9,12,13-Octadehydro[14] Annulenes.

[86] T. J. Sworski, J. Chem. Phys. 1948, 16, 550, Cyclic Acetylenic Compounds.

[87] R. R. Tykwinski, F. Diederich, V. Grämlich, P. Seiler, Helv. Chim. Acta 1996, 79,

634-645, 1,1,2,2-Tetraethynylethanes: Synthons for Tetraethynylethenes and

Modules for Acetilenic Molecular Scaffolding.

[88] R. Faust, C. Weber, V. Fiandanese, G. Marchese, A. Punzi, Tetrahedron 1997, 53,

14655-14670, One-Step Synthesis of Dialkynyl-l,2-Diones and Their Conversion

to Fused Pyrazines Bearing Enediyne Units.

[89] S. Kammermeier, R. R. Tykwinski, P. Siemsen, P. Seiler, F. Diederich, Chem.

Commun. 1998, 1285-1286, Synthesis of a Highly Strained Permethylenated

Cycloocta-l,5-Diyne Derivative by Acid-Catalysed Thermal Rearrangement.

[90] A. H. Alberts, H. Wynberg, J. Chem. Soc, Chem. Commun. 1988, 748-749,

Carbon Network Building Blocks: Triethynyl Methanol and Derivatives.

[91] J. -D. van Loon, P. Seiler, F. Diederich, Angew. Chem. 1993, 105, 1817-1820;

Angew. Chem. Int. Ed. Engl. 1993, 32, 1706-1709, Tricyclo[6.2.0.0]Deca-l,3,6,8-

Tetraene: A Remarkably Stable Para-Quinodimethane from a Novel

Rearrangement Reaction.

[92] P. Manini, W. Amrein, V. Grämlich, F. Diederich, Angew. Chem. 2002, 114,

4515-4519; Angew. Chem. Int. Ed. 2002, 41, 4339-4343, Expanded Cubane:

Synthesis of a Cage Compound with a C56 Core by Acetylenic Scaffolding and

Gas-Phase Transformations into Fullerenes.

[93] P. Manini, Ph. D. Dissertation No. 15471, Eidgenössische Technische Hochschule

(Zürich), 2004.

[94] P. P. Radi, T. L. Bunn, P. R. Kemper, M. E. Molchan, M. T. Bowers, J. Chem.

Phys. 1988, 88, 2809-2814, A New Method for Studying Carbon Clusters in the

Gas Phase: Observation of Size Specific Neutral Fragment Loss from Metastable

Reactions of Mass Selected Cn+, n 60.

[95] S. C. O'Brien, J. R. Heath, R. F. Curl, R. E. Smalley, J. Chem. Phys. 1988, 88,

220-230, Photophysics of Buckminsterfullerene and Other Carbon Cluster Ions.

145 7. Literature

[96] T. T. Weiske, D. K. Böhme, J. Hrusak, W. Krätschmer, H. Schwarz, Angew.

Chem. 1991, 103, 898-900; Angew. Chem. Int. Ed. Engl. 1991, 30, 884-886,

Endohedral Cluster Compounds: Inclusion of Helium within C6o+ and C70+

through Collision Experiments.

[97] Z. Wan, J. F. Christian, S. L. Anderson, J. Chem. Phys. 1992, 96, 3344-3347, Ne+

+ Coo: Collision Energy and Impact Parameter Dependence for Endohedral

Complex Formation, Fragmentation, and Charge Transfer.

[98] C. Yeretzian, K. Hansen, F. Diederich, R. L. Whetten, Nature 1992, 359, 44-47,

Coalescence Reactions of Fullerenes.

[99] R. D. Beck, P. Weis, G. Brauchte, M. M. Kappes, J. Chem. Phys. 1994, 100, 262-

270, Mechanistic Aspects of Fullerene Coalescence Upon Ultraviolet Laser

Desorption from Thin Films.

[100] Z. X. Xie, Z. Y. Liu, C. R. Wang, R. B. Huang, F. C. Lin, L. S. Zheng, J. Chem.

Soc, Faraday Trans. 1995, 91, 987-990, Formation and Coalescence of Fullerene

Ions from Direct Laser Vaporization.

[101] K. S. Feldman, C. M. Kraebel, M. Parvez, J. Am. Chem. Soc. 1993, 115, 3846-

3847, Tetraethynylmethane.

[102] K. S. Feldman, C. K. Weinreb, W. J. Youngs, J. D. Bradshaw, J. Am. Chem. Soc.

1994, 116, 9019-9026, Preparation and Some Subsequent Transformations of

Tetraethynylmethane.

[103] K. S. Feldman, C. K. Weinreb, W. J. Youngs, J. D. Bradshaw, J. Org Chem.

1994, 59, 1213-1215, Novel Products Derived from Unprecedented

Transformations of 3,3,3-Trialkynylpropionaldehyde Derivatives.

[104] S. Kano, T. Yokomatsu, S. Shibuya, J. Org Chem 1978, 43, 4366-4367, New

Synthetic Design for Formation of Carbon-Carbon Triple Bonds.

[105] K. S. Feldman, D. A. Mareska, C. K. Weinreb, M. Chasmawala, Chem. Commun.

1996, 865-866, Preliminary Studies Towards Crosslinking Polymerizations with

Tetraethynylmethane and Its Derivatives: Evidence for Unusually Facile Alkyne

Hydration.

[106] R. Amemiya, K. Suwa, J. Toriyama, Y. Nishimura, M. Yamaguchi, J. Am. Chem.

Soc. 2005, 127, 8252-8253, One-Step Synthesis of Triethynylvinylmethanes and

146 7. Literature

Tetraethynylmethanes by GaCb-Promoted Diethynylation of 1,4-Enynes and 1,4-

Diynes.

[107] F. Yonehara, Y. Kido, S. Monta, M. Yamaguchi, J. Am. Chem. Soc. 2001, 123,

11310-11311, GaCb-Catalyzed Arylation of .

[108] F. Yonehara, Y. Kido, H. Sugimoto, S. Monta, M. Yamaguchi, J. Org. Chem

2003, 68, 6752-6759, Equatorial Preference in the C-H Activation of

Cycloalkanes: GaCb-Catalyzed Aromatic Alkylation Reaction.

[109] U. Bunz, K. P. C. Vollhardt, J. S. Ho, Angew. Chem. 1992, 104, 1645-1648;

Angew. Chem. Int. Ed. 1992, 31, 1648-1651, Tetraalkynylmethanes - Synthesis of

Diethynyldipropargylmethane and Tetrapropargylmethane.

[110] D. J. Cram, K. R. Kopecky, J. Am. Chem. Soc. 1959, 81, 2748-2755, Studies in

Stereochemistry. XXX. Models for Steric Control of Asymmetric Induction.

[Ill] D. J. Cram, D. R. Wilson, J. Am. Chem. Soc. 1963, 55, 1245-1249, Studies in

Stereochemistry. XXXII. Models for 1,2-Asymmetric Induction.

[112] Manfred T. Reetz, Ace. Chem. Res. 1993, 26, 462-468, Structural, Mechanistic,

and Theoretical Aspects of Chelation-Controlled Carbonyl Addition Reactions.

[113] R. M. Devant, H. -E. Radunz, in Stereoselective Synthesis, Vol. E21b (Eds.: G.

Helmchen, R. W. Hoffmann, J. Mulzer, E. Schaumann), Georg Thieme, Stuttgart,

1995, pp. 1196-1235.

[114] W. R. Roush, C. E. Bennett, S. E. Roberts, J. Org. Chem. 2001, 66, 6389-6393,

Studies on the Synthesis of Landomycin A: Synthesis and Glycosidation

Reactions of L-Rhodinosyl Acetate Derivatives.

[115] A. M. Gilbert, R. Miller, W. D. Wulff, Tetrahedron 1999, 55, 1607-1630,

Synthetic Studies Towards the Total Synthesis of Olivin: Synthesis of a Fully

Functionalized Alkyne Appropriate for the Benzannulation Reaction.

[116] I. Paterson, D. J. Wallace, C. J. Cowden, Synthesis 1998, 639-652, Polyketide

Synthesis Using the Boron-Mediated, Anti-Aldol Reactions of Lactate-Derived

Ketones: Total Synthesis of (-)-Acrl Toxin Iiib.

[117] S. Nahm, S. M. Weinreb, Tetrahedron Lett. 1981, 22, 3815-3818, #-Methoxy-#-

Methylamides as Effective Acylating Agents.

147 7. Literature

[118] J. I. Levin, E. Turos, S. M. Weinreb, Synth. Commun. 1982, 72, 989-993, An

Alternative Procedure for the Aluminum-Mediated Conversion of Esters to

Amides.

[119] J. M. Williams, R. B. Jobson, N. Yasuda, G. Marchesisni, U.-H. Dolling, E. J. J.

Grabowski, Tetrahedron Lett. 1995, 36, 5461-5464, A New General Method for

Preparation of N-Methoxy-iV-Methylamides. Application in Direct Conversion of

an Ester to a Ketone.

[120] L. R. Cox, Final Report, Eidgenössische Technische Hochschule (Zürich), 1999.

[121] M. T. Reetz, Angew. Chem. 1984, 96, 542-555; Angew. Chem. Int. Ed. 1984, 23,

556-569, Chelation or Non-Chelation Control in Addition-Reactions of Chiral oc-

Alkoxy and ß-Alkoxy Carbonyl-Compounds.

[122] K. Tomooka, M. Kikuchi, K. Igawa, M. Suzuki, P. -H. Keong, T. Nakai, Angew.

Chem. 2000, 39, 4502-4505; Angew. Chem. Int. Ed. 2000, 39, 4502-4505,

Stereoselective Total Synthesis of Zaragozic Acid a Based on an Acetal [1,2]

Wittig Rearrangement.

[123] S. Torii, H. Tanaka, T. Inokuchi, S. Nakane, M. Akada, N. Saito, T. Sirakawa, J.

Org. Chem. 1982, 47, 1647-1652, Indirect Electrooxidation (an Ex-Cell Method)

of Alkylbenzene by Recycle Use of (NH4)2Ce(N03)6 in Various Solvent Systems.

[124] R. Johansson, B. Samuelsson, J. Chem. Soc, Perkin. Trans 1 1984, 2371-2374,

Regioselective Reductive Ring-Opening of 4-Methoxybenzylidene Acetals of

Hexopyranosides. Access to a Novel Protecting-Group Strategy. Part 1.

[125] R. L. Amey, J. C. Martin, J. Am. Chem. Soc. 1978, 700, 300-301, An

Alkoxyaryltrifluoroperiodinane. A Stable Heterocyclic Derivative of

Pentacoordinated Organoiodine(V).

[126] R. L. Amey, J. C. Martin, J. Am. Chem. Soc. 1979, 707, 5294-5299, Synthesis and

Reactions of Stable Alkoxyaryltrifluoroperiodinanes. A "Tamed" Analog of

Iodine Pentafluoride for Use in Oxidations of Amines, Alcohols, and Other

Species.

[127] D. B. Dess, J. C. Martin, J. Org. Chem 1983, 48, 4155-4156, Readily Accessible

12-1-5 Oxidant for the Conversion of Primary and Secondary Alcohols to

Aldehydes and Ketones.

148 7. Literature

[128] D. B. Dess, J. C. Martin, J. Am. Chem. Soc. 1991, 113, 7277-7287, A Useful 12-1-

5 Triacetoxyperiodinane (the Dess-Martin Periodinane) for the Selective

Oxidation of Primary or Secondary Alcohols and a Variety of Related 12-1-5

Species.

[129] J. B. Arterburn, Tetrahedron 2001, 57, 9765-9788, Selective Oxidation of

Secondary Alcohols.

[130] R. H. Shapiro, H. J. Heath, J. Am. Chem. Soc. 1967, 89, 5734, Reaction of

Tosylhydrazones with Alkyllithium Reagents. A New Olefin Synthesis.

[131] R. M. Adlington, A. G. M. Barrett, Ace. Chem. Res. 1983, 16, 55-59, Recent

Applications of the Shapiro Reaction.

[132] A. R. Chamberlin, S. H. Bloom, L. A. Cervini, C. H. Fotsch, J. Am. Chem. Soc.

1988, 110, 4788-4796, Vinyllithium Cyclizations with Unactivated Alkenes as

Internal Electrophiles - Stereoselective Formation of Substituted

Methylenecyclopentanes.

[133] O. P. Törmäkangas, R. J. Toivola, E. K. Karvinen, A. M. P. Koskinen,

Tetrahedron 2002, 58, 2175-2181, A Short and Convenient Way to Produce the

Taxol a-Ring Utilizing the Shapiro Reaction.

[134] E. Negishi, A. O. King, W. L. Klima, W. Patterson, Jr. A. Silveira, J. Org. Chem.

1980, 45, 2526-2528, Conversion of Methyl Ketones into Terminal Acetylenes

and (£)-Trisubstituted Olefins of Terpenoid Origin.

[135] P. E. Eaton, D. Stössel, J. Org. Chem. 1991, 56, 5138-5142, Synthesis of

Alkynylcyclooctatetraenes and Alkynylcubanes.

[136] D. L. Comins, A. Dehghani, Tetrahedron Lett. 1992, 33, 6299-6302, Pyridine-

Derived Triflating Reagents: An Improved Preparation of Vinyl Triflates from

Métallo Enolates.

[137] C. Kowalski, X. Creary, A. J. Rollin, M. C. Burke, J. Org. Chem 1978, 43, 2601-

2608, Reductions of Alpha-Substituted Ketones by Lithium Diisopropylamide.

[138] M. Majewski, Tetrahedron Lett. 1988, 29, 4057-4060, Lithium Diisopropylamide

as a Hydride Donor. Reduction of Aldeydes.

[139] H. Meerwein, R. Schmidt, Justus Liebigs Ann. Chem. 1925, 444, 221-238, A New

Process for the Reduction of Aldehydes and Ketones.

149 7. Literature

[140] A. Verley, Bull. Soc. Chim. Franc. 1925, 37, 537-542, Exchange of Functional

Groups between Two Molecules. Exchange of Alcohol and Aldehyde Groups.

[141] E. P. Woo, K. T. Mak, Tetrahedron Lett. 1974, 15, 4095-4098, Reduction of Non-

Enolizable Ketones by Lithium Amides.

[142] Martin Demuth, Sosale Chandrasekehar, Kurt Schaffner, J. Am. Chem. Soc. 1984,

106, 1092-1095, Total Syntheses with Tricyclooctanone Building Blocks.

Loganin Aglycon 6-Acetate.

[143] R. K. Hill, G. H. Morton, J. R. Peterson, J. A. Walsh, L. A. Paquette, J. Org.

Chem. 1985, 50, 5528-5533, Synthesis and Chiroptical Properties of 5,7-

Dioxobicyclo[2.2.2]Oct-2-EneandBicyclo[2.2.2]Octane-2,5-Dione.

[144] M. Demuth, P. Ritterskamp, E. Weigt, K. Schaffner, J. Am. Chem. Soc. 1986, 108,

4149-4154, Tothal Synthesis of (-)-Coriolin.

[145] K. Tamoto, M. Sugimori, S. Terashima, Tetrahedron 1984, 40, 4617-4623, Novel

Resolution of the Antracyclinone Intermediate by the Use of (2R,3R)-(+)- and

(2S,3S)-(-)-l,4-Bis(4-Chlorobenzyloxy)Butane-2,3-Diol.

[146] N. J. Leonard, J. H. Boyer, J. Org. Chem. 1950, 15, 42-45, 5-(oc-

Phenylethyl)Semioxamazide as a Carbonyl Reagent.

[147] T. Kurtan, E. Baitz-Gacs, Z. Majer, A. Benyei, S. Antus, J. Chem. Soc, Perkin

Trans 1 2002, 888-894, Resolution and Configurational Assigment of, 3,4,5,6-

Tetrahydro-2-Methyl-2,6-Methano-2h-l-Benzoxocine Derivatives.

[148] G. Nadler, I. Delimoge, P. Lahourate, I. Leger, M. Morvan, R. G. Zimmermann,

Eur. J. Med. Chem. 1996, 31, 805-812, Stereospecificity of Myofibrillar Calcium

Sensitivity and Pde Inhibition in Cardiotonic Thiadiazinones.

[149] L. Fitjer, A. Kanschik, R. Gerke, Tetrahedron 2004, 60, 1205-1213, A New

Approach to Helical Primary Structures of Four-Membered Rings: (P)- and (M)-

Tetraspiro[3.0.0.0.3.2.2.2]Hexadecane.

[150] A. Thompson, E. G. Corley, M. F. Huntington, E. J. J. Grabowski, J. F. Remenar,

D. B. Collum, J. Am. Chem. Soc. 1998, 120, 2028-2038, Lithium Ephedrate-

Mediated Addition of a Lithium Acetylide to a Ketone: Solution Structures and

Relative Reactivities of Mixed Aggregates Underlying the High

Enantioselectivities.

150 7. Literature

[151] F. Xu, R. A. Reamer, R. Tillyer, J. M. Cummins, E. J. J. Grabowski, P. J. Reider,

D. B. Collum, J. C. Huffman, J. Am. Chem. Soc. 2000, 122, 11212-11218, Highly

Enantioselective 1,2-Addition of Lithium Acetylide-Ephedrate Complexes:

Spectroscopic Evidence for Reaction Proceeding Via a 2:2 Tetramer, and X-Ray

Characterization of Related Complexes.

[152] H. S. M. Coxeter, Regular Polytopes, 3rd Ed., Dover, New York, 1973.

[153] H. Steinhaus, m Mathematical Snapshot, 3rd. Ed., Dover, New York, 1983, Ch. 8,

pp. 199-201 and 252-256.

[154] P. R. Cromwell, Polyhedra, Cambridge University Press, New York, 1997.

[155] M. Atiyah, P. Sutcliffe, Milan J. Math 2003, 71, 33-58, Polyhedra in Physics,

Chemistry and Geometry.

[156] A. F. Wells, Structural Inorganic Chemistry, 4th Ed., Clarendon Press, Oxford,

1975

[157] I. Takei, Y. Wakebe, K. Suzuki, Y. Enta, T. Suzuki, Y. Mizobe, M. Hidai,

Organometallics 2003, 22, 4639-4641, Synthesis of Cubane-Type Mo3nis4

Clusters and Their Catalytic Activity for the Cyclization of Alkynoic Acids to

Enol Lactones.

[158] R. Llusar, S. Uriel, Eur. J. Inorg. Chem. 2003, 1271-1290, Heterodimetallic

Chalcogen-Bridged Cubane-Type Clusters of Molybdenum and Tungsten

Containing First-Row Transition Metals.

[159] S. Langley, M. Helliwell, J. Raftery, E. I. Tolis, R. E. P. Winpenny, Chem.

Commun. 2004, 142-143, Phosphonate Ligands Encourage a Platonic

Relationship between Cobalt(II) and Alkali Metal Ions.

[160] P. E. Eaton, T. W. Cole, Jr., J. Am. Chem. Soc. 1964, 86, 962-964, The Cubane

System.

[161] P. E. Eaton, T. W. Cole, Jr., J. Am. Chem. Soc. 1964, 86, 3157-3158, Cubane.

[162] P. E. Eaton, Angew. Chem. 1992, 104, 1447-1462; Angew. Chem. Int. Ed. 1992,

31, 1421-1436, Cubanes: Starting Materials for the Chemistry of the 1990s and

the New Century.

[163] T. J. Katz, N. Acton, J. Am. Chem. Soc. 1973, 95, 2738-2739, Synthesis of

Prismane.

151 7. Literature

[164] N. J. Turro, V. Ramamurthy, T. J. Katz, Nouv. J. Chim. 1977, 7, 363, Energy

Storage and Release. Direct and Sensitized Photoreactions of Dewar Benzene and

Prismane.

[165] R. J. Ternansky, D. W. Balogh, L. A. Paquette, J. Am. Chem. Soc. 1982, 104,

4504-4506, Dodecahedrane.

[166] H. Hopf, in Classics in Hydrocarbon Chemistry, Wiley-VCH, Weinheim, 2000,

pp. 53-80.

[167] G Maier, S. Pfriem, U. Schäfer, R. Matusch, Angew. Chem. 1978, 90, 552-553;

Angew. Chem. Int. Ed. 1978, 17, 520-521, Tetra-Tert-Butyltetrahedrane.

[168] P. D. Jarowski, F. Diederich, K. N. Houk, J. Org. Chem. 2005, 70, 1671-1678,

Structures and Stabilities of Diacetylene-Expanded Polyhedranes by Quantum

Mechanics and Molecular Mechanics.

[169] G. W. Griffin, Chem. Rev. 1989, 89, 997-1010, Synthesis and Chemistry of

Cubanes.

[170] S. M. Bachrach, J. Phys. Chem. A 2003, 707, 4957-4961, Structure,

Deprotonation Energy, and Cation Affinity of an Ethynyl-Expanded Cubane.

[171] S. M. Bachrach, D. W. Demoin, J. Org. Chem. 2006, 71, 5105-5116,

Computational Studies of Ethynyl- and Diethyntl-Expanded Tetrahedranes,

Prismanes, Cubanes, and Adamantanes.

[172] M. Schelhaas, H. Waldmann, Angew. Chem. 1996, 705, 2192-2219; Angew.

Chem. Int. Ed. 1996, 35, 2056-2083, Protecting Group Strategies in Organic

Synthesis.

[173] R. W. Hoffmann, Angew. Chem. 2003, 775, 1128-1142; Angew. Chem. Int. Ed.

2003, 42, 1096-1109, Meso Compounds: Stepchildren or Favored Children of

Stereoselective Synthesis?

[174] P. Cadiot, W. Chodkiewicz, in Chemistry of Acetylenes (Eds.: H. G. Viehe, M.

Dekker), New York, 1969, Chapter 9, pp. 597-647.

[175] J. Poplawski, J. T. Wrobel, T. Glinka, Phytochemistry 1980, 19, 1539-1541,

Panaxydol, a New Polyacetylenic Epoxide from Panax Ginseng Roots.

152 7. Literature

[176] W. Lu, G. Zheng, Haji, A. Aisa, J. Cai, Tetrahedron Lett. 1998, 39, 9521-9522,

First Total Synthesis of Optically Active Panaxydol, a Potential Antitumor Agent

Isolated from Panax Ginseng.

[177] C. Harcken, R. Brückner, E. Rank, Chem. Eur. J. 1998, 4, 2342-2352, Total

Syntheses of (-)-Grandinolide and (-)-Sapranthin by the Sharpless Asymmetric

Dihydroxylation of Methyl Zhms-S-Pentenoate: Elucidation of the Stereostructure

of (-)-Sapranthin.

[178] T. Ohta, K. Uwai, R. Kikuchi, S. Nozoe, Y. Oshima, K. Sasaki, F. Yoshizaki,

Tetrahedron 1999, 55, 12087-12098, Absolute Stereochemistry of Cicutoxin and

Related Toxic Polyacetylenic Alcohols from Cicuta Virosa.

[179] G. Zheng, W. Lu, J. Cai, J. Nat. Prod. 1999, 62, 626-628, Stereoselective Total

Synthesis of (3i?,8,S)-Falcarindiol, a Common Polyacetylenic Compound from

Umbellifers.

[180] H. Yun, S. J. Danishefsky, J. Org. Chem 2003, 68, 4519-4522, Straightforward

Synthesis of Panaxytriol: An Active Component of Red Ginseng.

[181] A. L. K. Shi Shun, R. R. Tykwinski, Angew. Chem. 2006, 118, 1050-1073;

Angew. Chem. Int. Ed. 2006, 45, 1034-1057, Synthesis of Naturally Occurring

Polyynes.

[182] T. Nishikawa, S. Shibuya, S. Hosokawa, M. Isobe, Synlett 1991, 485-486, One

Pot Synthesis of Haloacetylene from Trimethylsilylacetylenes.

[183] D. M. Bowles, J. E. Anthony, Org. Lett. 2000, 2, 85-87, A Reiterative Approach

to 2,3-Disubstituted and .

[184] P. D. Rege, O. L. Malkina, N. S. Goroff, J. Am. Chem. Soc. 2002, 124, 370-371,

The Effect of Lewis Bases on the C-13 NMR of Iodoalkynes.

[185] J. A. Webb, J. E. Klijn, P. A. Hill, J. L. Bennett, N. S. Goroff, J. Org. Chem 2004,

69, 660-664, Experimental Studies of the C-13 NMR of Iodoalkynes in Lewis-

Basic Solvents.

[186] M. Alami, F. Ferri, Tetrahedron Lett. 1996, 37, 2763-2766, A Convenient Route

to Unsymmetrical Conjugated Diynes.

[187] J. Wityak, J. B. Chan, Synth. Commun. 1991, 21, 977-979, Synthesis of 1,3-

Diynes Using Palladium-Copper Catalysis.

153 7. Literature

[188] N. Miyakoshi, D. Aburano, C. Mukai, J. Org. Chem 2005, 70, 6045-6052, Total

Syntheses of Naturally Occurring Diacetylenic Spiroacetal Enol Ethers.

[189] J. M. Schulman, T. J. Venanzi, J. Am. Chem. Soc. 1974, 96, 4739-4746, A

Theoretical Study of the Tetrahedrane Molecule.

[190] M. N. Glukhovtsev, S. Laiter, A. Pross, J. Phys. Chem. 1995, 99, 6828-6831,

Thermochemistry of Cyclobutadiene and Tetrahedrane: A Highly-Level

Computational Study.

[191] J. M. Seminario, P. Politzer, H. J. M. Soscum, A. G. Zacarias, M. Castro, Int. J.

Quantum Chem. 1996, 60, 139-148, Reaction Energetics of Tetrahedrane and

Other Hydrocarbons: Ab Initio and Density Functional Treatments.

[192] D. W. Rogers, F. J. McLafferty, A. V. Podosenin, J. Phys. Chem. 1996, 100,

17148-17151, Ab Initio Calculation of Enthalpies of Hydrogénation and

Isomerization of Cyclic C4 Hydrocarbons.

[193] M. Balci, M. L. McKee, P. R. Schleyer, J. Phys. Chem. A 2000, 104, 1246-1255,

Theoretical Study of Tetramethyl- and Tetra-Tert-Butyl-Substituted

Cyclobutadiene and Tetrahedrane.

[194] B. S. Jursic, J. Mol. Struct. (Theochem) 2000, 499, 137-140, Computing the Heat

of Formation for Cubane and Tetrahedrane with Density Functional Theory and

Complete Basis Set Ab Initio Methods.

[195] B. S. Jursic, J. Mol. Struct. (Theochem) 2000, 507, 185-192, Theoretical Study of

Structural Properties, Infrared Spectra, and Energetic Properties of C4I14 Isomers.

[196] G. Fuhrmann, T. Debaerdemaeker, P. Bäuerle, Chem. Commun. 2003, 948-949,

C-C Bond Formation through Oxidatively Induced Elimination of Platinum

Complexes - a Novel Approach Towards Conjugated Macrocycles

[197] K. Maruoka, T. Ooi, H. Yamamoto, J. Am. Chem. Soc. 1989, 111, 6431-6432,

Organoaluminum-Promoted Rearrangement of Epoxy Silyl Ethers to Siloxy

Aldehydes.

[198] K. Maruoka, T. Ooi, S. Naahara, H. Yamamoto, Tetrahedron 1991, 47, 6983-

6998, Organoaluminum Catalyzed Rearrangement of Epoxides a Facile Route to

the Synthesis of Optically Active Siloxy Aldehydes.

154 7. Literature

[199] T. Ooi, T. Kiba, K. Maruoka, Chem. Lett. 1997, 26, 519-520, Organoaluminum-

Promoted Rearrangement of Epoxysilanes to A-Silylaldehydes.

[200] M. S. Wilson, J. C. S. Woo, G. R. Dake, J. Org. Chem 2006, 77, 4237-4245, A

Synthetic Approach toward Nitiol: Construction of Two 1,22-Dihydroxynitianes.

[201] B. M. Trost, C. Chan, G Ruther, J. Am. Chem. Soc. 1987, 109, 3486-3487, Metal-

Mediated Approach to Enynes.

[202] B. M. Trost, M. T. Sorum, C. Chan, A. E. Harms, G. Rühter, J. Am. Chem. Soc.

1997, 779, 698-708, Palladium Catalyzed Additions of Terminal Alkynes to

Acceptor Alkynes.

[203] B. Buschhaus, Final Report, Eidgenössische Technische Hochschule (Zürich),

2006.

[204] T. Katsuki, K. B. Sharpless, J. Am. Chem. Soc. 1980, 102, 5974-5976, The First

Practical Method for Asymmetric Epoxidation.

[205] Y. Gao, J. M. Klunder, R. M. Hanson, H. Masamune, S. Y. Ko, K. B. Sharpless,

J. Am. Chem. Soc. 1987, 109, 5765-5780, Catalytic Asymmetric Epoxidation and

Kinetic Resolution: Modified Procedures Including in Situ Derivatization.

[206] R. A. Johnson, K. B. Sharpless, in Catalytic Asymmetric Synthesis, 2nd Ed. (Ed.:

I. Ojima), Wiley-VCH, Weinheim, 2000, Chapter 6A, pp. 231-280.

[207] S. G Hentges, K. B. Sharpless, J. Am. Chem. Soc. 1980, 102, 4263-4265,

Asymmetric Induction in the Reaction of Osmium Tetroxide with Olefins.

[208] D. Xu, G A. Crispino, K. B. Sharpless, J. Am. Chem. Soc. 1992, 114, 7570-7571,

Selective Asymmetric Dihydroxylation (AD) of .

[209] C. H. Kolb, M. S. VanNieuwenhze, K. B. Sharpless, Chem. Rev. 1994, 94, 2483-

2547, Catalytic Asymmetric Dihydoxylation.

[210] E. N. Jacobsen, W. Zhang, A. R. Muci, J. R. Ecker, L. Deng, J. Am. Chem. Soc.

1991, 773, 7063-7064, Highly Enantioselective Epoxidation Catalysts Derived

from 1,2-Diaminocyclohexane.

[211] T. Katsuki, in Catalytic Asymmetric Synthesis, 2nd Ed. (Ed.: I. Ojima), Wiley-

VCH, Weinheim, 2000, Chapter 6B, pp. 287-325.

155 7. Literature

[212] Y. Tu, Z-X. Wang, Y. Shi, J. Am. Chem. Soc. 1996, 775, 9806-9807, An Efficient

Asymmetric Epoxidation Method for Trans-Olefins Mediated by a Fructose-

Derived Ketone.

[213] Z. X. Wang, Y. Tu, M. Frohn, J-R. Zhang, Y. Shi, J. Am. Chem. Soc. 1997, 779,

11224-11235, An Efficient Catalytic Asymmetric Epoxidation Method.

[214] Z. X. Wang, Y. Tu, M. Frohn, Y. Shi, J. Org. Chem 1997, 62, 2328-2329, A

Dramatic Ph Effect Leads to a Catalytic Asymmetric Epoxidation.

[215] R. D. Bach, J. L. Andres, A. L. Owensby, H. B. Schlegel, J. J. W. Mcdouall, J.

Am. Chem. Soc. 1992, 114, 7207-7217, Electronic-Structure and Reactivity of

Dioxirane and Carbonyl Oxide.

[216] J. A. Dale, D. L. Dull, H. S. Mosher, J. Org. Chem. 1969, 34, 2543-2549, A-

Methoxy-a-Trifluoromethylphenylacetic Acid, a Versatile Reagent for the

Determination of Enantiomeric Composition of Alcohols and Amines.

[217] D. Seyferth, R. S. Marmor, P. Hubert, J. Org. Chem 1971, 36, 1379-1386,

Reactions of Dimethylphosphono-Substituted Diazoalkanes. (MeO)2P(0)CR

Transfer to Olefins and 1,3-Dipolar Additions of (MeO)2P(0)C(N2)R.

[218] J. C. Gilbert, U. Weerasooriya, J. Org. Chem 1982, 47, 1837-1845, Diazoethenes:

Their Attempted Synthesis from Aldehydes and Aromatic Ketones by Way of the

Horner-Emmons Modification of the Wittig Reaction. A Facile Synthesis of

Alkynes.

[219] S. Müller, B. Liepold, G J. Roth, H. J. Bestmann, Synlett 1996, 521-522, An

Improved One-Pot Procedure for the Synthesis of Alkynes from Aldehydes.

[220] V. Prelog, G. Helmchen, Angew. Chem. 1982, 94, 614-631; Angew. Chem. Int.

Ed. 1982, 21, 567-583, Basic Principles of the CIP-System and Proposals for a

Revision.

156 8 Appendix

8.1 Crystal Structure Data of (+)-(R)-70

Table 8.1. Crystal data and structure refinement for (+)-(R)-70.

Z = 6 C24H3sN203SSi2 Dx = 1.095 Mg m"3 Mr = 490.815 Density measured by: not measured Triclinic P1 fine-focus sealed tube

a = 11.2537 (2)Â Mo Ka radiation X = 0.71073 b= 13.9426 (2)Â Cell parameters from 11736

= ° c 28.9064 (5)Â 9 = 0.998—25.028

= a 83.0511 (6)° u. = 0.213 mm"1 ß = 88.3274 (5)° T=172K y= 82.8675 (9)° plate 0.6 x0.4 x0.1 mm V = 4466.96 (13)Â3 Refinement on F2 S(ref) = 1.625 Full-matrix least squares refinement with 24791 reflections fixed elements per cyclematrix least 1727 parameters squares refinement 3 restraints R(all) = 0.0827 H-atom parameters not refined R(gt) = 0.0724 Calculated weights calc wR(ref) = 0.2102 MW = 0.348 wR(gt)= 0.1961 Apmax = 1.571eÂ3 OZZZZZZZZZZZZOOOOOOOOOOOOOOOOOOWMMMMMMWtlltllÛlM S1 > m > a- 0 o>a>wwooro->-oco cdcdcdwwwoooocdoooo-jcd wN)-^oSM-viœwS°)^vlu,w•_. »w «* ^i u i- o oo ^j c» en -ü. ^ _^ w cncnji.4i.wroro->-o ^ (D R 3 Z3 00 o y. II en 0 1 N O 3 O -n 03 0 O) -V 0 ro 03 -i M CD J^ 1 1 1 1 I 1 l 1 \^ 1 1 1 1 I I I I I I I I I I I I I I 1 1 I 1 l \^ l \^ 1 \^ 1 \^ 1 1 1 1 CD \^ \^ \^ \^ \^ g. 3' o O O o o o o o o o o o oooooooo o o o o o o o o o o o o o' CQ a > W en CD 00 o ro en wc/i^^œco^cob^-rororob N) 00 o m en —s. en o co -Ü. ^J co -Ü. -Ü. ^J 00 —s. —s. C3 CD CD en ro 00 -Ü- 00 ro 00 ro CD -Ü. CD en e» -Ü. e» -ü. CD CD 00 CD 00 -Ü. 00 -Ü. 03 00 w (3)O-'OüiW00MÖ)N)^-'Mvl o w ^^m en -Ü- w 00 O w 00 CD en -&. o ^J CO m m -ü. en en co m m m m -Ü- N) CO CO ^J m O -ü. ro -ü. CD ro CD 00 Nl(ON)MO)U1-'<»(00-iOvlU en co CO N) 00 en en N) -ü. ^j —^ CO CO N) —^ 03 O o w m —» —» m m O 3 CD 00 ro o a> ^-^ w -ü. en 00 a> ^-^ o ro CD CD 00 o 0 -Ü. W w w -&. w w WO w w w w w w w w ^J wwwwwwwwwwwwww s—.N s—.N s—.N ro s—.N s—.N s—.N ,,—s s—.N s—.N ,,—s w s—.N s—.N s—.N s—.N s—.N s—.N 3 *—' a. a. *—' —i. —i. —i. —i. _ï. _ï. _ï. _ï. _ï. _ï. _ï. _ï. _ï. _ï. § —h CD O) -&. O) O) ro w en ^J O) ro o o o o O o O O o R o o 3 ~3 U 0) à' 3 I I I IIOOIOIIIIIIIIIIIOOO 1 1 1 1 1 1 1 1 l l 1 1 1 1 O O 1 1 loi loi 1 1 03 03 o o o OOqqOqOOOOOOOOOOOj^^.^. oooooooo o O o O o Lij^OO 0^.00^.000 s- «—1- ^ O) O) roüivi-ibo)rowo)ro^^üi*.b)i3obN)oio o->--ii.->-ro->-4i.w o ^J -&. -> -Ü. o CD 00 ^J Ji. -»cncn^jcnoro-li. Co O w o ai cnc»^j-ii.o-»-c354i.wc35C35cn^jen^jooowoocn -»WOTwocn^jcn co co w en —ï. 00 -i. Ji. ^J CD encorowœ^jo-»- 3 ro o oo (DCH0)ö)C0W00MWW00W*U1ülN)OOK)^ Aü1*.-ivlW00lO ^J N) a> a> co co -> G) O -> -'CDrowcxicnroro 03 03 CD CD CD woooi*.ro*.(Ovi ro CD o w en —i o ro O) en ji.wcncn^j-'ro-' -T ^o^^u^rowooiauoiüi wuiw^^^ Q. w^-v w^^^--^--^--^--^--^--^--^--^-. ro ro ro *—N ^—N ^—N ^—N ^—N ^—N ^—N ^—N o CD ^J 00 CD en ro o O 00^ N) (O O) w ^^—^ —^ ^1^ -' w w w w w~ ros rorowwrororowrowro" rorororororororo ^—^ ^—^ S~N S~N ^—^ ^—^ ^—^ ^—^ ^—N ^—N ^—N 00 ^—v ^—v ^—v CI) -• -• -• -• -• -• -• -• —*- —' —*- —*- —*- —*- MO-'-' -iJi.CDCD^-'OOOOOO -o o-ii.-ii.wro o en ro~ c < U) CD -n -n ~1« 03 03 '—. O n H -'OOOOOOOOOO-'-'OOOOOOO ooooooooo OOOOOOOOOO-'-'OOOO 00 ;*- ;*- 03 ^ ^ CD k)k)^wencn^^ex)CDÖö^Ji.Ji.bo^j o CT WWOOWrjOO-i

II H 03 03 3i O CT T-l r> O CD 03 03 ro tn 5 -ü. o o o o o o o o o o o o o O o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o 3 ro o o o o o o o o o o o o o o o o -> o o o o o o o o o o o o o o o o o o o o o o o o o —i. o o o o o o CD O) -Ü. -ü. -ü. -Ü. -Ü. -Ü. -> -Ü. en -Ü. -ü. en -ü. -ü. -ü. en -Ü. -ü. -ü. -ü. -ü. en ^j 00 ^j a> en en en a> ^j en ro -ü. -Ü. w w w w w w w w w w w w w w CD Ü) 00 -Ü. en en —^ ^j en en CD ^J ^.1 CD -> 00 -Ü. CO -ü. o 00 N) —^ eo eo N) en co ^j en —' ü) -ü. -ü. -ü. ro en —' 00 o w co ^j en 00 00 -' m m -' m W m -> -' ~> ro 00 CD CD a> o ^j ro ^j O -Ü- w CD ^~* a> CD en a> -ü. ro en w 00 a> CD o a> CD o o a> 00 en ^j o w o w -ü. en o ro o ^j Co eo 03 -^^ CD 3 00 00 cocooooooooooooooooooooo* oocD^j^joo^joo^JOo^j^j^JOooo-ii.enc35enen4i.4i.4i.4i.enw w w w ro ro ro Jio Q. ro~ SNJ 00 a> m^.1 —' 00 00 ji. oooooooooooooooooooooooooooooooooooooooooooooooooooooooo (DCO>IO)01*U*.WM-'OCDOOv)0)ü1^u|0-i-iO(DOOv)0)U1^WM-'IO-'0(OCOvl(])W^WUM-iOIOOOvlCi)01JiUiy-'0^^^^^^^OTO)OTO)OTC/iCJiC/iCJiC/iCJiC/iCJiC/iCJiC/i4^4^4^4^4^4^4^4^4^WWWIV^ CD > CD

\^ 1 1 1 \^ 1 1 \^ l l l \^ 1 \^ I l 1 \^ 1 \^ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 o -» o o o \^ \^ \^ \^ \^ \^ \^ \^ \^J^ \^ \^ o o o o \^ o -» O \^ o \^ o o o o o o o o o o \^ \^ \^ _i CO O CD o CD CD en CO CO -p- -p- CO IV) en en en eo IV) —i. vi vl 00 o CO —i. o CD O CO o —i. 00 o o CO 00 CO o -P- en CO IV) CO IV) _i ^J vi 00 vi CO vl CO O CO IV) en en -» a> 00 en eo 00 en -p- a> CD a> a> CO CO —^ -g _». ro ro 00 a> CD -P". ro en CO CD ro ^J -p- en 00 —i CO en O) ^J iv) co en en en CD 00 en o o O —^ o o o —^o o o -P- (7> en O) 00 O) ~~l 00 —^ ro —^ o —^ —^ 00 CO -» -g CD -> 00 o (7> CO ^J —^ 00 -» —^ IV) —^ o ^J -p- CO —i —i en -P- o CD CD (7> CO o -P* cd en eo o CO ^J -P>- en -» ~^ ~~^ ~~^ 00 a> CD en en o 00 ~^ ro 00 a> ~^ CD ~^ CO CD -P* ro ro IV) ^-^ 00 ~~i 00 ro -p- CD CD o CO -p- o o o CO ~^ 00 CD o CD a> CO ~^ -P>- CD CD IV) o CD -» CD ~^ ^Icn-Pt-Pt-Pt-Pto-Ptoi-Ptoi c»j!>.en-P>.-P>.-P>.-P>.^j O).p».cn^jcnc3)cnooc3)-P«.-P«.-P«.-P«. ^j 4*. ^T

UicnUM^^^bPbPPooooooooloiI o1 o1 o1 o1 o1 o1 o1 OOOOOOOOOOOOOOOOOOOO^.^.Jvj^.qOOOOOOqOOIIIIIIIIIIIIIIIIIIIIOOOOOIIIIIIOII o1 o1 o1 en-P>.c»ooo->-cDOOOO->- _i. _i. -p- -P- m -p- -p- _i IV) IV) cocoj!>.oo-P>.iv)C350ocoen-P>.-P>. CO -p- (7> o IV) ^j ^j ^œlV)C354^e^œcD4^^œcD^IV)4^CD^CD4^^C»CDO^JCDCOOOCDIV)00->-IV)IV)-P>. CO —^ —i. OOC35C35C35^J^J->-^JCD^JCOen -p- —i (7> en o ^j IV) vl0)v|0)00Ül^0000OMIOW(0C0vlU(D00^O00*i>.vl0)lDÜlU^Ü1O0)M 00 00 IV) ^^^^^^^^ ^~, £> -» —^ IV) en o a> —^ -p- coc35enji.c35iv)-P>.iv)->-->-enji.iv)cD-P>.iv)-P>.coo & ^^^^^ ro o o * oo iv)^, en o -p- CD IV) Oi -~i J*. CO 4*. CO CO o>^~, 4*.^^^ ^^^^^^^^3^3^^^^^^'ôi'co^^'én^'cox-' O -» Ji.x-'^^^j33^x-''én^ CO 4*. CO x—' x—' x—' x—' x—' -» co ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ x—' v_^s_^s_^ s_^^^s_^^^ s_^s_^

CD a

oooooooooooooooooooooooooooooooo o o 0)vl>lvlv|v)Nl(OOOOOCOCoa)COCDOO(OlD(D(DCOOOOO(D(OOOOOIO(DCOOOCDOOOOO-'-'-»00-'00(DIOO-»-'00000 0 (DMroW03COMvl^«Wvl03roWOOOO^ o>^ cd o^_^ o^_^ en^ -P>. oo^-^^^^^^^^^ o> oo^-^^^^^^^^^^^ o> -4^ en COCJl^^^^N3^^^^W^^IV3IV3IV3^^^^4^4^C35IV3^^IV3C»CD4^WWCflCO^^^^IV3^^^^^^ CD O) O) ^J CD cd en 00 CD 00 ^J O) 00 00 cd en 00 00 ^J ^J O)

o o o o O O o o o o o o o o o o o O o oooooooo o o o o o o o o o o o o o o o o o o o o o o o o o o o o o _i. _i o o O O o o o o o o o o -> _i _i o o o-»-o-»-oo-»-o o o o o o o o o o o o O O IV) o -> o o o o o o o -> o o o o o CO Ji. en CO -P>. CO CO 00 -p>. en en en en co en iv) o> en -p>. ^JIV)00-P>.CO00COCO -p>. -p>. en CO CO ^j -p>. en en en -p>. CO 00 IV) CD -» O) -p>. en cd ^J 00 o> ^J -p>. -p>. en CO o —i IV) 00 o CD CO en 00 IV) 00 (7> -p>. 00 o en en CD CD CO en O00-»--P>.^J-P>.|V)00 00 en (7> 00 ^j -p>. en IV) IV) CO ^j en oo en oi iv) -p>. en o> -4 CD 05 -P>. IV) o O) IV) O) —^ —^ —^ —* —^ ^—N ^—N CD ^J o ^~* a> en a> CO oo ^ ^—N ^—N IV) en ro ^—^ ^—^ ^—^ ^—^ ^—^ ^—^ ^—^ a> ^j 00 CO ^j a> 00 o -p>. -p>. ji. ^ ^, ^, ^, 00 en ro^-v ^^ tO^-v 00 CD IV) CD

IV) O IV) o o IV) -P». CO Ji. IV) o IV) -P». O O ^J IV) CO Ji. IV) o O) m CN CT) CD m o CN CN o r» o o -«t o co ocN-«frcococoCT>mco m cd m

CN CN CN ^-'^-'^-'00 co - T- UO UO OlMOi-OJOfflN '-'CO h- -CDCOt-t-CNOOCNCNI^CT)CDUOUOCNOOOCOCDOUOt-r^r^OOOOOCT) CT) CO CD cD-«t-

0O0O (ONOJCOOON (DN (DOO OO CD

CN^^^C^C^CN^C^C^^CN^^^^^^^C^^^CN^^^C^C^C^C^ ^w'^-'^-'^-'^-'^-'^-'^-'^-'^-'^-'^-'^-'^-'^-'^-'^-'^-'^-'^-'^-' T-o)^T-in(Noo(DCNtDooon(N^wroooNtDino(D'*'*'i-(O(Oinc\isrviin^oc\io)S0ST-T-oo(O'*in'i-'*so)(OOT-(oo)s'-'co 1- ^-'^-'^-'^-'^-'^-'^-'oj CN -«t -

-g

- CO CT) CN -t O cououot-CT>uot-ooooocNt-T-cDr^ooooCT)uocNt-T-r^ CT) CN 1- r» CT) cd o ^m^flomsi-i-T-mi-soKomT-OT-ss'^flO'* r» T- co CNUOt-or^COCNUOCNOOI^CT)COCOOCOCOCT)CT)CDCT)-! v>! v>! '.'•'.v>! v'. O O O O O O O O O O O o o o o ddd OOOOOOOI I I I I I I I I I I I loi I I I I I I I I loooooool I I I I I I I I I I I I I I

lÔv^lÔvcovP^Pcov67cov^^^^^^^^^^^^P^P^^lÔ'-i- S"-!- T- P£'^^^iÔvlÔv^covcovcovoÔ'covcd'o>'cd'-i- «- oPP

l^0OCT)CNCNCDCT)CT) NMCNCMtDOJi-OtDS CDCT)0OCDCOcO0O0O0OCDU0CDCNt-CT)CDCNCDU0 co r^ CN tf CT) CN CT) uo o CT) CD CT) -

uo cd r^ oo CT) o (Nn^mtDNoooiOi-rgco^iTKDSoosooo) Oi-wn^intDsoooiOT- Oi-tMco^ifltDMaooi-Mn^mooooooT- T-T-T-T-T-T-T-t-CNCNCNCNCNCNCNCNCNCOCOCO oooooooooooooooooooooooooooooooooooooooooooooooooooooooo0O0O0O0O0O0O0O0O0O0OCT>CT>CT>CT>CT>CT>CT>t-t-t-t-t-t- 8. Appendix

C152 -0.1261 (7) -0.4172 (8) 0.4839 (3) 0.109(3) C153 -0.0149(11) -0.3987 (8) 0.5083 (5) 0.152(5) C154 -0.3316(4) -0.7951 (4) 0.44845 (1 8) 0.0464(12) C155 -0.2495 (4) -0.7435 (4) 0.4206 (2) 0.0505(12) C156 -0.1755(5) -0.7905 (4) 0.3897 (2) 0.0630(15) C157 -0.1756(5) -0.8899 (4) 0.3876 (2) 0.0639(15) C158 -0.2532 (5) -0.9398 (4) 0.4162(2) 0.0624(15) C159 -0.3337 (5) -0.8924 (4) 0.4454 (2) 0.0536(13) C160 -0.0907 (7) -0.9416 (6) 0.3530 (3) 0.095 (2) C169 -0.4516 (4) -0.7945 (3) 0.25335 (1 7) 0.0390(10) C170 -0.3870 (4) -0.7205 (3) 0.22189(1 6) 0.0377(10) C171 -0.2571 (4) -0.7188 (4) 0.2297 (2) 0.0574(14) C172 -0.5789 (4) -0.7889 (3) 0.24230 (1 6) 0.0402(10) C173 -0.6868 (5) -0.7891 (4) 0.23587 (1 9) 0.0512(12) C174 -0.8772 (9) -0.9177 (8) 0.2350 (4) 0.128(4) C175 -0.9259 (8) -0.7269 (12) 0.2694 (9) 0.252(11) C176 -0.8894(12) -0.7303 (14) 0.1727(7) 0.324 (16) C177 -0.4927 (6) -0.8283 (5) 0.33560 (1 9) 0.0652(15) C178 -0.3934 (4) -0.8934 (3) 0.24842 (1 8) 0.0405(10) C179 -0.3488 (5) -0.9749 (4) 0.24206 (1 9) 0.0490(12) C180 -0.4058 (8) -1.1180 (6) 0.1814(4) 0.105(3) C181 -0.5346 (9) -1.0926 (7) 0.1923(5) 0.133(4) C182 -0.3145(11) -1.1842 (6) 0.2797 (3) 0.123(4) C183 -0.2717(15) -1.2873 (6) 0.2755 (4) 0.179(6) C184 -0.1429(9) -1.1007 (6) 0.2059 (4) 0.102(3) C185 -0.1272(11) -1.0159 (17) 0.1679(8) 0.251 (13) C186 -0.5881 (4) -0.4683 (3) 0.17123(1 7) 0.0421 (11) C187 -0.6966 (5) -0.5019 (4) 0.1840(2) 0.0577(14) C188 -0.7665 (5) -0.4592 (5) 0.2186(3) 0.0737(18) C189 -0.7306 (5) -0.3879 (5) 0.2404 (2) 0.0661 (16) C190 -0.6187(6) -0.3563 (4) 0.2280 (2) 0.0666(16) C191 -0.5490 (5) -0.3941 (4) 0.1939(2) 0.0612(14) C192 -0.8069 (4) -0.3405 (4) 0.27698 (1 8) 0.093 (2) H40 -1.0097 -0.2593 0.8307 0.120 H14A -0.6634 -0.0324 1.0489 0.123 H14B -0.7708 0.0024 1.0154 0.120 H18A -0.6392 -0.2183 1.0093 0.120 H18B -0.7343 -0.2913 1.0186 0.120 H23A -1.1721 0.2112 1.0877 0.120 H23B -1.2147 0.1435 1.1307 0.120 H23C -1.2674 0.2536 1.1229 0.120 H23D -1.2634 0.2397 1.0231 0.120 H23E -1.2579 0.2554 1.0758 0.120 H23F -1.3638 0.3095 1.0450 0.120 H50A -0.7693 -0.8329 0.8514 0.120 H50B -0.8198 -0.7332 0.8245 0.120 H51A -0.6594 -0.7169 0.8463 0.120 H51B -0.6814 -0.7694 0.8963 0.120 H51C -0.7500 -0.6662 0.8806 0.120 H51D -0.6946 -0.7017 0.8137 0.120 H51E -0.7674 -0.6351 0.8473 0.120 H51F -0.8307 -0.6663 0.8048 0.120 H152A -0.1874 -0.3622 0.4854 0.120 H152B -0.1567 -0.4743 0.5001 0.120 H192A -0.7657 -0.2919 0.2884 0.120 H192B -0.8221 -0.3888 0.3023 0.120

161 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx OC!)v)v)v|0)ö)0)ü1(Jlü1IV)IOIV)101fl(D(»CON|N|v)UWWMiy|V)-'0(»>JUlü1^A^AOOO(D(!)(!)v|^v|0)0)ü1Ulü1-'-'-'(D OCD>OCD>OCD>OCD>OCD>CD>OCD>OCD>OCD> OCD>OCD>OCD>OCD>OCD>CD>OCD>OCD>JO

I I I I I I I I I I I I I I I I I OI OI I I I oI oI oI oI oI oI I I oI oI I I I I I I I I I oooooooooooI I I I I I I I I I I I I I oI 00^O00^O00N)OU1*v|U(DN)(000(»0)vJ-i|0-i>J-i^0)00C))-ivJ-iW(0K)*.0)l0W-'IOO0)C)J(000-i^W0)(»-'-iO00-i 0)M(0M(0^ffl(»ffl-i^ÜlO(])l0(0C0<»Ül(0AO01C0.|iOMM*O(0IDI0O»W0)00O-'0101-'-'ÜlO-'(3)-'0)l0A00-i(DÜl

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO^.^.J^Jvj^.j^OOOOOOOOOOOqq^.0000IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIOOOOOOIIIIIIIIIIIOOOIIII ffltW^JÖ)(DO0)^WWW^OÖ)OOWslOW00ö)ülNl^W0)0)CI)lD^-'IV)O0)IOCI)ö)0)(0OIOWlO0)IOOÜ1(»Ov|0)O(DCSW-'O«0)WMv|vlC0CB(D^N)N)-'O(D-'N)00U1vlCS*.00lD00-ir0-iON)M(DOOr0W-'lDr0O<»O0)A00O0)-' lDOroN)vlN)WUÜl4i.(3)00 0)0)OlDO)vlO)OOWvl-iO)U*.OOMvJvl-HD Q00-iU1Ül^ÜlU(DOlD Cn -» CO -P>-

a> a o o oooooooooo o o ooooooooo o-»--»-oooooo IDOOOffltOCOOOOOOOIDIOlDCOOffllOOIOlDOOCOOOOOOOOIOOO-'OO-'-'-'-'OOOfflOIOIOffllO-'-'-'-'-'O ö ö -» O O O O IV) -'^OCO^^AOlOWOOXOMfflOlOülWlOvI-MJffl-'lD^-'OUlvIMO^-'CO-i-iUlüliyülÜlWül.MSM-'vl -i vi Ü1 00 CO O) (DO-'O0)ü1OvlO.M3)lDOOO^^(llü1ö)WÜ1WCI)v)(0-'WÖ)Ul-'M(!)-'lD^CI)(»^00üllDOlD IV) -> ^J -P>. w WO)0)vl-i^(0-iOOAOlO)0)ÜirO-ivll>JMO)0)rOlnvlWW«(D w c» oooooooooooooooooooooooooooooooooooooooooooooooooooooooo ^^iv)wwiv)iv)iv)(^œiv)^iv)^iv)iv)woiv)^^^^^^wiv)iv)^^^^w4^iv^IV)IV)IV)IV)IV)IV)IV)IV)IV)IV)IV)IV)IV)IV)IV)IV)IV)IV)IV)IV)IV^ t-OCNICNIt-t-t-t-t-t-COt-IOCNIt-COt-t-t-CNICNICOt-t-CNIt-CNIt-OCNIt-CNIt-CNIt-Ot-OOt-CNIt-t-t-t-CNICNIt-^^t-CNICNICNIt-^ CNCNCNCNCNCNCNCNCNCNCNCNCNCNCNCNCNCNCNCNCNCNCNCNCNCNCNCNCNCNCNCNCNCNCNCNC^ ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ

r^ r^ oo ct> oo T-lO(BOCNOOOOOOOO)0

'S

«fr 00 CD O O T- ojcot-cncouo r^CT)CD-«fr o 00 UO T- o oo co m * * CNCDOOCNOOOCNt-OOOCNCDCDCNCNt-OOl^ uoooicouoor^oocOt-cocNCN N\fOT-o)^oo\fomooNnaioo r^ -fr -fr -fr cd o r» T- o CNCDOuoCT)t-r^CT)cooo-OOmc0 OMOMinOJSOli-ifii-Oi- C0CNC0C0CNOCNOt-t-CN-

Ot-mooo-r^CT>ooCT>c\ir^c\ico T-'CT>CD'CNr^0OT-CT>r^0O i-mc\i'cO',fr co r^ CN * UO O CN O CN CD N^i-OnS(DOm00^(DCv|O0)SMDMM 0O-^1-COt-t-t-CNCT)0OCT)t-CT)t-CT)COU0U00O t-CNCT)T--

H113C -0.8411 -0.1325 0.6629 0.121 H116A -0.5272 -0.3724 0.4911 0.123 H116B -0.5054 -0.4861 0.5016 0.123 H117A -0.6838 -0.4412 0.4540 0.127 H117B -0.7419 -0.3787 0.4923 0.123 H117C -0.7201 -0.4924 0.5028 0.122 H119A -0.7771 -0.5317 0.6599 0.122 H119B -0.7628 -0.4209 0.6486 0.128 H119C -0.6536 -0.4951 0.6672 0.128 H120A -0.4510 -0.4412 0.6342 0.123 H120B -0.3941 -0.5039 0.5958 0.122 H121A -0.2799 -0.3727 0.6008 0.122 H121B -0.3944 -0.2980 0.5897 0.124 H121C -0.3375 -0.3608 0.5514 0.120 H123 -1.0282 0.1710 0.4789 0.120 H124 -1.1441 0.2639 0.5307 0.121 H126 -0.8468 0.3673 0.5703 0.121 H127 -0.7274 0.2820 0.5170 0.121 H128A -1.0309 0.4189 0.6057 0.123 H128B -1.1179 0.3386 0.6130 0.121 H128C -1.1441 0.4273 0.5744 0.122 H139A -0.6699 -0.5029 0.3483 0.122 H139B -0.7063 -0.5454 0.3988 0.120 H139C -0.6418 -0.6147 0.3645 0.122 H142A -0.5438 -0.0386 0.4223 0.121 H142B -0.4586 -0.1003 0.3902 0.122 H142C -0.4866 -0.1437 0.4414 0.123 H143A -0.8086 -0.0986 0.4446 0.121 H143B -0.7434 -0.1984 0.4672 0.123 H143C -0.8389 -0.1961 0.4286 0.121 H144A -0.7574 -0.0240 0.3435 0.123 H144B -0.7824 -0.1224 0.3267 0.120 H144C -0.6604 -0.0816 0.3139 0.121 H145A -0.3880 -0.5352 0.2684 0.121 H145B -0.4007 -0.5969 0.3169 0.122 H145C -0.3029 -0.5255 0.3091 0.120 H148A 0.0435 -0.3214 0.3935 0.122 H148B -0.0405 -0.3344 0.3530 0.124 H149A -0.0868 -0.1794 0.3757 0.125 H149B -0.1124 -0.2253 0.4267 0.121 H149C -0.1964 -0.2382 0.3861 0.120 H151A 0.0775 -0.6347 0.3697 0.122 H151B 0.0595 -0.5242 0.3500 0.122 H151C -0.0508 -0.5833 0.3563 0.122 H153A -0.0374 -0.3816 0.5441 0.120 H153B 0.0252 -0.3408 0.4980 0.125 H153C 0.0440 -0.4527 0.5151 0.123 H155 -0.2443 -0.6746 0.4239 0.121 H156 -0.1189 -0.7539 0.3701 0.121 H158 -0.2514 -1.0085 0.4167 0.121 H159 -0.3873 -0.9282 0.4635 0.121 H160A -0.0971 -1.0078 0.3563 0.122 H160B -0.0061 -0.9333 0.3614 0.120 H160C -0.1041 -0.9101 0.3228 0.122 H171A -0.2274 -0.7644 0.2561 0.120 H171B -0.2411 -0.6540 0.2360 0.121 8. Appendix

H171C -0.2089 -0.7342 0.2025 0.122 H174A -0.9586 -0.9221 0.2318 0.121 H174B -0.8548 -0.9477 0.2679 0.121 H174C -0.8286 -0.9575 0.2150 0.123 H175A -1.0068 -0.7283 0.2666 0.120 H175B -0.9043 -0.6618 0.2668 0.122 H175C -0.8995 -0.7587 0.3009 0.123 H176A -0.9732 -0.7250 0.1687 0.122 H176B -0.8447 -0.7482 0.1473 0.123 H176C -0.8759 -0.6555 0.1732 0.124 H177A -0.4766 -0.8079 0.3660 0.121 H177B -0.4571 -0.8953 0.3361 0.122 H177C -0.5748 -0.8220 0.3309 0.121 H181A -0.5808 -1.1054 0.1668 0.125 H181B -0.5494 -1.0257 0.1967 0.121 H181C -0.5540 -1.1327 0.2200 0.122 H183A -0.2767 -1.3263 0.3054 0.126 H183B -0.1804 -1.2924 0.2689 0.122 H183C -0.3061 -1.3105 0.2522 0.129 H184A -0.0892 -1.0903 0.2333 0.120 H184B -0.1112 -1.1586 0.1959 0.121 H185A -0.0435 -1.0103 0.1563 0.126 H185B -0.1521 -0.9481 0.1779 0.127 H185C -0.1741 -1.0164 0.1405 0.122 H187 -0.7204 -0.5547 0.1698 0.121 H188 -0.8428 -0.4789 0.2279 0.121 H190 -0.5879 -0.3045 0.2435 0.121 H191 -0.4682 -0.3718 0.1855 0.122 H72 -1.0225 -0.0166 0.7941 0.121 H118A -0.7622 -0.4933 0.5844 0.124 H118B -0.6530 -0.5674 0.6030 0.122 H104 -0.6014 0.0790 0.4778 0.122 H136 -0.6078 -0.6698 0.4514 0.121 H150A 0.0830 -0.5428 0.4287 0.121 H150B -0.0273 -0.6019 0.4350 0.128 H182A -0.2689 -1.1639 0.3054 0.122 H182B -0.3947 -1.1820 0.2887 0.121 H180A -0.3880 -1.0775 0.1522 0.124 H180B -0.3926 -1.1845 0.1755 0.121 H168 -0.3083 -0.5956 0.1547 0.123 H8 -1.3271 -0.3379 1.1333 0.120 H46A -1.0593 -0.7549 0.8209 0.120 H46B -1.0464 -0.8636 0.8435 0.120

Table 8.3. Anisotropic displacement parameters (Ä2) Un Ul2 Ul3 U22 u23 U33 S1 0.0390 (6) -0.0067 (4) 0.0003 (5) 0.0377 (6) -0.0005 (5) 0.0387 (6) S33 0.0344 (5) -0.0014(4) -0.0044 (4) 0.0345 (6) -0.0041 (5) 0.0355 (6) S65 0.0427 (6) -0.0019(5) -0.0085 (5) 0.0322 (6) -0.0048 (5) 0.0365 (6) S97 0.0388 (6) -0.0015(5) -0.0038 (5) 0.0350 (6) -0.0001 (5) 0.0415(6) S129 0.0318(6) -0.0022 (5) -0.0079 (5) 0.0433 (7) 0.0051 (5) 0.0524 (7) S161 0.0401 (6) -0.0070 (5) -0.0038 (5) 0.0392 (6) -0.0007 (5) 0.0409 (6) Si2 0.232 (3) 0.0062(13) 0.093 (2) 0.0307(10) -0.0092(10) 0.1118(19) Si3 0.0407 (7) -0.0115(6) -0.0042 (6) 0.0602 (9) 0.0015(7) 0.0526 (8) Si34 0.0573 (9) -0.0205 (9) 0.0060 (8) 0.0820(12) 0.0200(10) 0.0809(13)

165 8. Appendix

Si35 0.0883(11) 0.0036 (7) 0.0156(8) 0.0264 (7) -0.0119(7) 0.0699(11) Si66 0.0703 (9) 0.0027 (6) 0.0093 (7) 0.0323 (7) -0.0137(6) 0.0588 (9) Si67 0.0438 (7) -0.0081 (6) -0.0002 (6) 0.0622 (9) 0.0009 (7) 0.0546 (9) Si98 0.0392 (7) -0.0099 (6) -0.0024 (7) 0.0484 (8) -0.0007 (7) 0.0761 (11) Si99 0.0740(10) 0.0128(7) -0.0101 (9) 0.0390 (8) -0.0218(8) 0.0857(12) Si30 0.1042(14) 0.0007 (9) -0.0087(10) 0.0413(9) -0.0071 (8) 0.0830(13) Si31 0.0611 (10) -0.0090 (8) 0.0097(10) 0.0624(11) 0.0154(10) 0.1147(17) Si62 0.0441 (8) -0.0204 (8) -0.0165(9) 0.0719(11) 0.0022(10) 0.1100(16) Si63 0.0815(10) -0.0034 (7) 0.0091 (8) 0.0280 (7) -0.0072 (6) 0.0604 (9) 04 0.059 (2) -0.0178(16) -0.0035(15) 0.047 (2) -0.0084(15) 0.047 (2) 05 0.0537(19) -0.0111 (14) 0.0049(14) 0.0396(18) 0.0042(14) 0.0424(19) 06 0.0464(18) -0.0023(13) -0.0098(14) 0.0349(17) -0.0129(14) 0.046 (2) 036 0.0436(17) -0.0044(14) -0.0113(14) 0.0428(18) -0.0103(15) 0.047 (2) 037 0.0412(17) -0.0044(14) -0.0020(13) 0.050 (2) 0.0011 (14) 0.0376(18) 038 0.078 (2) 0.0130(16) -0.0121 (16) 0.0366(18) -0.0081 (14) 0.0376(19) 068 0.0500(18) -0.0033(14) -0.0008(14) 0.0380(17) -0.0028(14) 0.0379(18) 069 0.061 (2) -0.0073(15) -0.0111 (16) 0.0394(18) -0.0106(15) 0.047 (2) 070 0.0592(19) 0.0077(14) -0.0050(14) 0.0316(17) -0.0055(13) 0.0362(18) 0100 0.054 (2) -0.0049(15) -0.0120(16) 0.048 (2) -0.0080(16) 0.051 (2) O101 0.0436(17) -0.0063(14) 0.0002(14) 0.0450(19) 0.0042(15) 0.0431 (19) O102 0.0576(19) 0.0022(14) -0.0057(14) 0.0366(17) -0.0038(14) 0.0346(18) Ol 32 0.0323(17) -0.0076(15) -0.0086(16) 0.059 (2) 0.0069(18) 0.071 (3) Ol 33 0.0387(17) -0.0072(15) -0.0071 (14) 0.056 (2) -0.0041 (16) 0.051 (2) Ol 34 0.238 (7) 0.002 (3) -0.024 (3) 0.043 (3) -0.006 (2) 0.048 (3) Ol 64 0.0528(19) -0.0140(15) -0.0096(15) 0.052 (2) -0.0042(16) 0.046 (2) Ol 65 0.0515(19) -0.0144(15) -0.0035(15) 0.0442(19) 0.0112(15) 0.046 (2) Ol 66 0.063 (2) -0.0088(15) -0.0050(14) 0.0462(19) -0.0090(14) 0.0320(18) N7 0.045 (2) -0.0077(16) 0.0041 (16) 0.0281 (19) -0.0038(16) 0.040 (2) N8 0.0347(19) 0.0010(15) -0.0002(16) 0.038 (2) -0.0029(17) 0.042 (2) N39 0.0370(19) 0.0038(15) -0.0009(15) 0.0284(19) -0.0024(15) 0.038 (2) N40 0.0296(18) -0.0004(14) -0.0066(15) 0.0290(19) 0.0027(16) 0.046 (2) N71 0.0362(19) 0.0008(15) -0.0019(16) 0.0297(19) -0.0099(16) 0.043 (2) N72 0.0374(19) 0.0034(15) -0.0078(16) 0.0278(19) 0.0011 (16) 0.042 (2) N103 0.039 (2) 0.0000(15) 0.0030(16) 0.030 (2) -0.0014(16) 0.040 (2) N104 0.0337(19) 0.0007(16) -0.0021 (16) 0.040 (2) 0.0036(18) 0.048 (2) N135 0.056 (2) -0.0041 (18) -0.0028(19) 0.033 (2) -0.0033(18) 0.048 (2) N136 0.036 (2) -0.0020(16) -0.0060(18) 0.040 (2) 0.0038(19) 0.059 (3) N167 0.0290(18) -0.0035(15) 0.0021 (15) 0.0296(19) -0.0043(16) 0.046 (2) N168 0.0357(19) -0.0052(15) 0.0054(16) 0.033 (2) 0.0012(17) 0.044 (2) C9 0.041 (2) -0.0027(18) -0.0024(18) 0.033 (2) -0.0068(19) 0.035 (2) C10 0.036 (2) 0.0001 (18) 0.0025(19) 0.031 (2) -0.007 (2) 0.043 (3) C11 0.035 (2) -0.005 (2) -0.009 (2) 0.051 (3) -0.002 (3) 0.070 (4) C12 0.050 (3) -0.008 (2) -0.002 (2) 0.037 (3) -0.003 (2) 0.040 (3) C13 0.047 (3) -0.015(2) -0.003 (2) 0.055 (3) 0.006 (2) 0.035 (3) C14 0.066 (4) -0.022 (3) -0.009 (3) 0.076 (4) 0.009 (3) 0.070 (4) C15 0.126(7) -0.032 (5) 0.015(5) 0.079 (5) -0.001 (5) 0.104(7) C16 0.051 (3) -0.006 (3) -0.009 (3) 0.069 (4) 0.010(3) 0.069 (4) C17 0.078 (4) 0.004 (4) 0.001 (3) 0.124(6) 0.018(4) 0.044 (3) C18 0.056 (3) -0.004 (3) 0.001 (3) 0.113(6) -0.029 (4) 0.071 (4) C19 0.082 (5) -0.036 (5) 0.000 (4) 0.156(8) -0.037 (5) 0.063 (5) C20 0.065 (3) -0.010(3) -0.003 (2) 0.066 (4) 0.001 (2) 0.037 (3) C21 0.055 (3) -0.010(2) -0.003 (2) 0.038 (3) -0.006 (2) 0.045 (3) C22 0.099 (4) 0.001 (3) 0.014(3) 0.031 (3) -0.015(3) 0.063 (4) C24 0.31 (2) 0.129(13) 0.004(12) 0.154(12) 0.051 (10) 0.155(13) C25 0.111 (6) -0.004 (4) 0.010(4) 0.074 (5) -0.029 (4) 0.081 (5) C26 0.030 (2) -0.0015(18) -0.0055(17) 0.038 (2) 0.0043(19) 0.036 (2)

166 oooooooooooooooooooooooooooooooooooooooooooooooooooooooo 0000)U1^UM-'OID(»N|0)UiJi.MM-'0(D(»^0)ü1^U^UM-'0(DOONlO)^^WIV)OID(»NlO)^^WM-'M-'0(DO)^^^^COCOCOCOCOCOCOœœœœœœœœœœ^^^^^^^(3)(3)(3)(3)(3)CnCnCnCnCnCnCnCnCn4^4^4^4^4^4^4^ vi O) (J1 o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o O o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o -p>. co co en -P>. -p>. -p>. CO -p>. CO CD CO oo en 00 -P>. vl 00 en CO CO vi £> en -P>. -P>. CO CO 00 -p>. CO en en 00 en CO CO -p>. -p>. en -P>. CO -P>. -» o CO en en co CD CD vl CO en CD CO CD 00 vi -p>. CD -p>. en o en O CD CD 00 00 -p>. 00 CD -P>. iv) vi o -p>. en 00 CD 00 -p>. CD -P>. CO o

co ro IV) CO ro CO CO ro CO ro -p>. vl -p>. en co en -P>. CO CO -p>. -> en CO CO ro ro ro -P>. CO CO CO CO ro ro a> -p>. CD CO CO en vi a> 00 CO oCO CO ro CO -p>. ro CO CO CO CO o

bbbbPPbPPPbPPPPPbPPPbPbbPbbbbbbPPbPPPPbbbPbPbbPbbbbPPbPPOOOOI IOI I IOI I I I IOI I IOIOOIOOOOOOI IOI I I IOOOIOIOOIOOOOI IOI I ^œœwooœooowwiv)o^^cnoooœw^oo^4^o4^wcnooc»^iv)C»oœiv)iv)iv)ocowc»oiv)ooo-»-oo-»-ooo-»-oooooooooc»oooooo-»-o-»--»-ooooooooiv>oo-»-ooooooo-»-oo-»-oo -1- -i ^-. -*i -»^ -*i -t^^-v (3) cn^, oi ooo) iv)^-v iv) co -»-^ co^^, co ji. oo^^^^ .£>. en oo -P>. co en o>^^^ o^, co^^, co^ en (3)^, co iv)^, en co ro^^-v co^^, ro^-v^-v to co^^^^^ co^^^, o>^ iv) ro^^^-v £> ro co nj^^^^^^^ ro co cn^, -i*.^, en ro^ ro^^, co^^, ro^^, x—' -» -».^ -» _i. ^—- -» -» ->-x-' iv) iv)x—' iv) iv)^-v^—' en ji. ji. co .p..^—' iv) iv) w^ cn^^—' iv) ^ ^ ^ iv) iv) ^j -P>. ^J cox-'x-'x—' .p..^—' cn^^—' iv)^—' iv) iv)^—' co iv) 00 vl ^-s*-' ^^_». ^ ^ ^ ^ ^ v_^s_^s_^ s_^ ^ 00 CO ^^OO^^^^ x—' x—' ^ CO CO x—'x—' x—' x—'

I I I I I I I I I I I lool I I . O O Ol IOOI o o o PPPbbbPbbbbbbbbPPPbbPPPbbPbPPbbP^-bPPPbbPPPPbbPbPloooiooooooool lool looioi loolool __. _. ooooooooooooo-»-o-»-ooo-»--»-cnooooo-»-oooooocnooooocoooooooooooooooo_ _ _ _ _bboooöö OOOCOIV)00-»--»--»-0-P>.-»- o IV) oo co o o o o oo _ ___.__._O CD (3) O O \)0)UlO)-'-'(DOO)M^O-'000(DOOIV) _____.- o vi co oo en iv) -> CO -» vl vl IV) IV). 00 oo iv) a> CO (35 iv)^^, o oo^^, ^'co'Fo'Fo'co'S^j'iv) CO^, ^^, ^-v * IV)^^, o>^ cn^^ CO^^ CO^ W Ol --v^-v o°^-v iv) iv) co ^~-£2S3^~-i9 IV) IV) ^-v -1 ^-v IV) IV) ^-v IV) ^-v ^^ W M^^.^^0^ W x—'co^^^, x—' x—' x—'en^ -—'Ji.^^^, x—' IV) rO^^^—' IV) IV) IV) IV) ^-v cox-'x-" N3JV)^-v -» Oi ^-v *>. oo cn^^—' co. ^~, COx-'x-' IV) IV) JV) JV) ^; o x—' CD 00 ID^ 00 CD CD o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o -> o o o o o o IV) o o o o o o o o o o o o o o o o o o o en IV) IV) vl CO CO -p>. en -p>. CO -p>. CD o vl vl IV) vi en -p>. IV) CO CO -p>. CO IV) O -P>. en (3) (3) en CO en en CO en -p>. 00 en vi CO -p>. -p>. CO IV) 00 -p>. -p>. (3) 00 -p>. -p>. -p>. 00 CD vl CD vl -p>. -p>. vl IV) CO CO en iv) IV) en CO 00 IV) IV) 00 CO (35 o o 00 vi -p>. en -p>. vi IV) 00 O IV) en o CD en CD -p>. IV) en ji. (3)

CO IV) IV) -P>. CO CO CO CO CO IV) CO a> a> en ji. vi -P>. CO CO CO en vi CO CO CO IV) IV) en co CO -p>. -p>. CO IV) CD 00 CO CO CO -p>. en -P>. en -p>. CO CO CO IV) IV) en CO CO CO Ji. CO

OIIIIIIIIOIIIIOOOOIIOIIIOIIIIIIIIIOOOOIII o oooooooooooool l l l l l l l l l l l l o1 0oooooooo0oooo0000oo0ooo0ooooooooo0000ooo o o WOOIV)OOOOO4^^4^IV)^œW^IV)O^4^-Ii.->-OO->-O-P>.O->-->-OOO-P>.(3)00(3)OIV)->--'bbbbbbbbobbbboMioobbo^bbobbbbbbbbb-'viwobbb ooco->-oo->-o->-ooo->-ooooooooooooo cn-»-coocnlv)-»--P>.00-P>.(3)-P>.0 ^wrOMvlvl^CDWOOCorO*. CO^^^^ rOO)^N)-'-'^-'lOO)J^(D00N)Nl(0(»00(Dœ^N)0)0)0)C0OW-'-'01-»^M-»-»^K)UMU-'0)ffl(fl^CO^Ül^O)^U^^v|(Ovl(DvlW4iv|vlNl^Wffl«Jivl^ülWW(flU^WWOJiül(DvlvlO)vlU1^00^«vlülül^O)Ü1 ^^^^^^^^^^^^^3^3^^^^3^^^^1v)^^^^^^^1v)^^^^^^^^^^^^^^^1v)^^ oooooooooooooooooooooooooooooooooooooooooooooooooooooooo WWUIOMMMMMMrOM-'-'-'-'-'-'-'-' -». O o (000vl(3)Ül*.WM-iO.C0O -'vl00N)vHOJ*^-»00-»-OOOOOOOOOOOIV)-»--»-IV)00000000 ÜIOAUMD-'.MOMCOUtO-'OOOlülOMWOOOlülWffl^ülO N)(D0000(DÜlU-'Ü1O«U1(00)vl00v|-i0)^M-iO-'.M000

vi*.^vi*.*.oio)cowN)hj|vjonn CD vi -» co co -P>. cn co .p>. co co

o1 ol ol o1 ol o1 o1 ol o ol o1 I I I I I I I I IOIOIOIOOI I I I I IOOI IOOOOIOI I I O I O I I O I I I (—I PPPPPPPPPbPbPbPbbPPPPPPbbPPbbbbPbP OO^OqOOqOOO o o o _i o o o o o o o 00000000000-»-000-P>.COOOOOOOOIV)0000000-»-0 o o ^ o o o o c, o o o —^ vi —i cn —i —^ o o o o o OOOOOOOU-'<»-»(»MMOO)0-iW-»0|yOOOOOC. oo O)^ iv)^-v oo co^ cn ji. iv) ^—^ ^—^ ^—^ ^—^ ro ü) 00 vi co ho iv) £> IV) CO, ^^ ^^ ^^ cn^ cn^, co^, ~ co^^ iv)^^, ^^-v ""** (D^^^^^^ ro ro co —^ vi ü) ro ro ^—N ^—N -P».|V)COCOCOIV)IV)vlCn' CO p». cn co co ji. co ro ros cns co en en o IV)' CO .£»." -P>. IV) IV) 00 s CD CD

I IOIOI I I I IOOI I IOI I I IOOOOOOI IOOI I I I looiol I 1 O 1 1 1 1 1 1 1 1 1 o o l o o 0 o o o o o o o o P b b P b 000-»--P>.OOOOOOIV) o o o o o o O O O ->-> IV) -P>.|V)000-P>.00-»-OOIV)00-»-00 b o b b b b b b b b o o -> o o OOOCOIV)IV)0000-P>.CO 00 -> c» -> oo iv) cn co (3) £> -» 00 -» CO -> CD IV) O O O o ^OCOMWffl-'MOWMWmOUlOO -» -» O ->o O o o O iv) oo^, co^, c» cn iv) ^j iv) o^ 00 IV) £> ^, £> o .-.^ iv) cn^^ vi O) -»-^^ -»-^, iv) vi iv) ^_^ O) cn cn co cn vi o CO (3) cn vi cn Ji. £> CO IV) ^-v iv) —'^—" CO^^ 00^^^^^ co^^ O)^,^,^,^, ^—" ^—" x—' IV) IV) cd £>" OO -i.^^—" CO CO vi CO CO^^—' W^ IV) IV) --v^—' * -^ 00 O) ^fofolo J*. IV) CD oooooooooooooooooooooooooooooooooooooooooooooooooooooooo o o O £> IV) -» o o o o o o o o o o o o -> _». o o o o o o o o o _». o o o o o o o o o o o o -». o -» o _». _i o o o -» o -> o o -p- CO vi CO CO cn CO -p- CO CO 00 CO -P>. cn cn £>. cn co cn CD CD -p- cn cn CO cn 00 vi -p- CO ü) CO CO ü) cn -P- CO cn cn CO cn cn co ü) vi -p- CO £>. (3) -> CO CO O ~^ o o -»o o CO o^, vi o -P- CD IV) vi 00 a> IV) CD ü) IV) o o o IV) 00 00 CD cn -P- o IV) CD -p- cn cn o CO ü) cn ü) 00 ü) ü) IV) -P- IV) (35 CO -P- ü) 00 cn o CD (3) O -P>. -p- co co ji.^—' ^œwwwiv)wcnww4^wwwcoœ(3)(3)4^4^4^wcnvicnvi4^

Ol l o l o o l o I I IOI I I IOOOI IOOOI | | | IOIOOI Ol IOOI OOIOOI I I IOIOOI I oP PliP ooP o oo P o P P oo P o oP o^^oooo;-.o;-1;-1ooo o P P P P o P o o oooco-»--»-oo-»- PPPoPPPPbooPPboO000-»-OOOOOOIV)00-»--»-00000 ___ OOIV)OOOOOOOOOOOC0->-O->-OOOOOIV)OO -» O O^, COO^O-' OOUO-'W-'OOOvIOO-i-iÜl^COO MOAOOO^MOCO-'-'-'UOOO-'O-'MM cn -> co en o o ^ .p». cn iv) ^ ^ —.iv) vi . £> CO ^.^^^-.^-.^^ co^-. cn co^-. iv) co^-v, CO^-v CD (3)^-v^-v^-v^-v IV)^-v -P>- cn^-. cn x—' -—' x—'CO^^^, ~ co^^ IV) CO ^^ IV) IV) IV) Ü1^ CO CO CO IV) OTCT)1 IV) Ji.^-'^-' (3) -> CO IV) " cnx-'x-' IV) ^-v 4^(3)cncpx^^x^x^^x^scoscox-'x-'jv) CD ^_^ ^ ^^ ^, ^, CD

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o IV) o o o o o o o o o o o IV) o o o o o o cn -p>. cn50(3)-p>. CO 00 CO -p>. o (3) vi vi vi (3) -P>. vi 00 cn o CO o cn (3) cn cn vi cn (3) vi cn (3) (3) (3) (3) vi (3) CO o cn (3) (3) cn -p>. o IV) cd cn CO 38(2) vi vi CO CD o 00 vi (3) CD CO vi IV) -P>. 00 vi cn cn (3) -p>. CO o 00 CD CO CD -p>. CO 00 CO 00 vi o CO -p>. CO IV) -p>. o vi -p>. vi CO cn IV) -p>. (3) cn vi 00 o 00 033(3 CD -». CO CO -p>. CO CO (3) CO -p>. -p>. -p>. -P>. CO -». (3) -». -». vi 00 (3) -p>. cn CD 00 -». -p>. -p>. CD -p>. CO -p>. CO -p>. -p>. -p>. CO IV) -». vi -». -». CD -». -p>. CO CO (3) (3) a> co CO CO CO ~ o o~ CO IV)~ IV) 8. Appendix

C180 0.124(7) -0.021 (5) 0.009 (5) 0.077 (5) -0.063 (5) 0.127(8) C181 0.108(7) -0.040 (6) -0.037 (7) 0.117(7) -0.057 (8) 0.193(12) C182 0.227(11) 0.000 (5) 0.053 (6) 0.058 (5) 0.003 (4) 0.072 (5) C183 0.358(19) -0.002 (7) 0.081 (10) 0.053 (5) 0.019(5) 0.107(8) C184 0.117(6) 0.002 (4) 0.057 (5) 0.067 (5) -0.002 (4) 0.114(7) C185 0.107(9) -0.091 (13) 0.053 (12) 0.41 (3) -0.24 (2) 0.30 (3) C186 0.039 (2) 0.004 (2) -0.005 (2) 0.039 (3) 0.000 (2) 0.045 (3) C187 0.043 (3) -0.007 (2) 0.005 (2) 0.069 (4) -0.011 (3) 0.062 (4) C188 0.045 (3) -0.008 (3) 0.002 (3) 0.094 (5) -0.010(4) 0.082 (5) C189 0.058 (3) 0.023 (3) 0.003 (3) 0.073 (4) 0.001 (3) 0.058 (4) C190 0.075 (4) 0.014(3) -0.008 (3) 0.053 (3) -0.019(3) 0.070 (4) C191 0.063 (3) -0.006 (3) -0.002 (3) 0.061 (3) -0.012(3) 0.061 (4) C192 0.101 (5) 0.028 (4) 0.021 (4) 0.095 (5) -0.001 (4) 0.071 (5)

Table 8.4. Geometrie parameters (Â, °).

S1-04 1.427 (3) Si35-C46 1.857 (9) S1-05 1.450 (3) Si35-C50 1.887 (8) S1-N8 1.655 (4) Si66-C80 1.825 (7) S1-C26 1.763 (5) Si66-C79 1.851 (9) S33-036 1.434 (3) Si66-C77 1.853 (5) S33-037 1.435 (3) Si66-C78 1.873 (8) S33-N40 1.637 (3) Si67-C82 1.835 (5) S33-C58 1.775 (4) Si67-C85 1.863 (6) S65-069 1.417 (3) Si67-C87 1.867 (7) S65-068 1.440 (3) Si67-C83 1.889 (7) S65-N72 1.640 (4) Si98-C111 1.830 (7) S65-C90 1.758 (5) Si98-C110 1.841 (8) S97-O100 1.421 (3) Si98-C109 1.851 (5) S97-O101 1.438 (3) Si98-C112 1.850 (8) S97-N104 1.662 (4) Si99-C118 1.843(13) S97-C122 1.751 (5) Si99-C115 1.845 (5) S129-0133 1.423 (3) Si99-C120 1.848 (8) S129-0132 1.445 (4) Si99-C116 1.850(13) S129-N136 1.654 (4) Si30-C144 1.798(12) S129-C154 1.750 (5) Si30-C142 1.842(10) S161-0164 1.429 (3) Si30-C141 1.863 (6) S161-0165 1.442 (3) Si30-C143 1.879 (9) S161-N168 1.649 (4) Si31-C150 1.838 (9) S161-C186 1.750 (5) Si31-C152 1.863 (9) Si2-C23B 1.619 (16) Si31-C148 1.896 (7) Si2-C25 1.787 (8) Si31-C147 1.894 (9) Si2-C22 1.857 (5) Si62-C176 1.750(12) Si2-C24 1.964 (16) Si62-C175 1.798(16) Si2-C23 2.25 (2) Si62-C173 1.801 (5) Si3-C13 1.836 (5) Si62-C174 1.812(10) Si3-C16 1.865 (6) Si63-C184 1.823 (9) Si3-C18 1.866 (6) Si63-C179 1.832 (5) Si3-C14 1.868 (6) Si63-C182 1.853 (8) Si34-C56 1.819 (9) Si63-C180 1.889 (9) Si34-C54 1.832 (6) O6-C20 1.413(6) Si34-C55 1.860 (11) 06-C9 1.419(5) Si34-C57 1.881 (11) 038-C41 1.429 (6) Si35-C48 1.834 (7) 038-C52 1.435 (6) Si35-C45 1.841 (5) O70-C73 1.432 (6) Nlvl>JvlCSO)0)0)ÜiUiÜiÜiUiÜi*A^^^**.urON)N)N)lorOM-'-'-'-'-'jviuiüiuwj, ' i ' ZO c» o> & & ro ro OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO-^ro ' i ' ii.iZOZOci)-' i i i i i C v ^Nl00vlö)ö)0)0)0)ö)ÜiÜi0iüi***.^*^üiW«WI0ION)UM-'-'-'-'-'OM-' ZOZOZO-j-j^Ji. o O O O O O O oo ül-|i-'0)W^r0-'OW(0*.-'-'(0vlül0)r0-M0-'hJO O) ~~i w w o o vlfflJiWO-' 00 O O) 00 4i- (35

4i. ro w ro -p>. ro -'^OUlö)-'>JO>J lDOÜ101U100(0O^O0)0l)(D(00)0l)(D>J(DWWO-i-lö)vlNlO0l)(D0) o ^j CO (7) o ^j o —^ vio-'CDwrororooi W ^J O^, WW-iUCIl-'Ul-'^-'CO-'öl^vl-'WOOOiyM.MJOUvIW 4i. -p>. CD ^J 00 vlM(OCOvlOOO)00 4>. o> o> 00 (35 ^J (35

-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-iCDCDCDCDCDCDCDOOOOOOOO^JOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO viroro^N)O00MO.4>.4>.«W4>.*.N)N)N)N)N)Mroro-i-i-iOOO-'0^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^(^C3)4i.CO|V)Cn_i.O0C3)4i.|V)^j 00-'vlül«-»<0C0-»O00r0(DO00vl0)ül(0W-'(Dvl-i(D000)Ovl(»0)Cn^vlW-i(0vlCrH0vl0)4i00

W4i-W(^4i.4i.|V)IV)4i.(^4i.4i.W(^WWW4i.W(^4i.4i.|V)IV)4i.(^4i.4^ cococo4i.cn4i.->-iv) (D-i<»4>.vlOO-iWOOWvlO)C0 4>.Nl(Dvl-ivlN)00(0-iOlD4>.OOv|vlUvlvlOO-HDN)UN)OlD(DWlDvlO)N)lDO CDOO(3)CD-»-0000-1- CD O (3)^ 00(0(3)4»(0OU0l)M*.(0^*^*O0)MU1O-'(0*.M(DC0*.000l)00lD(»O00lDU1WO-'O-'U1.ti-' lOfflvlUvlNJOlCB cD^^^^-^-^^^^OT^OTœcDcDœœ^^-^-^-^cDœcDcDcoœœœœœœ^^-^-^-^^OT^^OTOî^joo^j^j^jOîOî-1- s-'x-'x-' ro w x—' x—' x—' x—' x—' x—' x—' x—' x—' x—' x—' x—'x—' w en ro x—' x—' x—' x—' x—' x—' x—' x—' x—' x—' x—' x—'x—' w cd en x—' x—' x—' x—' x—' x—' x—' x—' x—' x—' x—' x—'x—' ro o o~ o o o o 0 O O O O O O O O O O O O Z ooooozooooozoooo O Z O O O O OZOOOOOZOOOOO en _>_> _> ->._>.->. ro IV) IV) IV) IV) IV) IV) IV) -^ -- ^J O) O) O) O) 054-cococococoooen4-en4-4- 2 2 O) 00 O) w o> co co 4- ho en CO IV) en co en co co c» 0)0)0) O) O) co co co co co o o o o O IV) 00 CD 00 CD 7j?>?>cocococococo 00 00 CD CD oo en 4- en -I- -I- O) IV) co IV) co -» o -» o CD 00 à?à?à?à?à?à?à?à?6 6 Fco çoFço en en en 4- 4- co en J*, 4- .p.. 00 00 O) co co co IV) * 4- IVI IV) iv) iv) O o o §2 2 2 -— IV) IV) oo oo oo oo ^j 4- co 4- IV) en il O O Z o O O o O O o o -1 IV) IV) IV) O O o oo 00 00 O) O) o> çn en en co co CO IV) IV) IV) 4- 4- o> CD CD 00 oo en 4- 4- 4- CD o> IV)

_»._»._»._»._»._»._»._».-00004-en_^en004-->-->-IV)0->-000->-OOOOOIV)00000->-00000->-00000->-00000->- 4- CO œco^œcoœœœ;0;0;jjCn_i.Q_i.4-4-cDoœwœœcDœcow O 4- ^cocDcoœbi^^^^^oœ^coboboo^^^cocowiv)CDcnœ^OT CO ^J ^~S^~S^~S^~S^~S^~S^~S^~S O) -J CO^^, lO^^^^^^ O^^^^^^^^^^^ O) ^ ^ ^ ^ ^ IV) co^^^^ O CD^^^^^^^, co co co co co co iv) cox-'x-'x—' en -g^—' co o> ~~i iv) iv) iv)^-, rororororororororoiv) iv)^-, iv) iv) iv) iv) iv)^-,^-, iv) iv) iv) iv)^-,^-, iv) iv) iv) iv) iv) iv) iv) 'S'S CD CD CD CD 00 00

o o ooooooooooooooooooooooooooooooooooooooooooooooooooooo —- —- CD OO co en o> en o> o> oo iv) o iv) o o -» iv) 4- iv) 4- 4- o en oo en oo oo co o -» o -» -» O CD CoCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCO 1 1 cocococococococococococococococococococococococococococococo^^^ o o 0)0)0)roO)0)UUUWMWUUUUUCO(DIDC!)a)lfllO(ß(D(DID(D(DN|^^>Jv|v)0)0)0)0)0)0)ülü101U1U1^JiAA^^ -^ -^ MIOMN)MN)----^^OOOOOOCD(01D1DCD(OCOOO(»(OD)0''''''''''''''''''''''' co co OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOoooooooooooo-j-j-j-j-j-jenenen4-4-4-enenenenen ooooooooooooooooooooooo -» IV) *.^*WWÜlvlvlvlC000MUWW-'-'IO0)(3)0)OOUlMI0iy(DCDOviviviviviviji*.*.ji*.üi*.^^*.*.ji---'roro----'oo-

-» -» o o - O o o o - - - o o o o - o o o o o o o o o - o o o o - O O o o o o o o co en o 00 co en o> en oo IV) CD 00 4- en O) 4- 00 00 CD CD 00 co IV) en o 00 en IV) CO CD 00 00 o en en 00 o o o> co IV) 00 en co O) IV) o CO CD ^j co O co en 4- O) co IV) CD en co co O) co O) co co O) -> co 4- en O) -*i en co ^j IV) CD O) en O) IV) co IV) en -> 00 co en ^j o co 00 o>

4- ^J ^J en 4- -> 4- CO 4- 4- 4- en co en o> co 4- ^j en 4- ^J co en 4- co 4- 4- co IV) 4- 4- co co co co IV) co o> 4- CO co 4- O) co en co 4- CO -g 4- o> 4- O) CD ^j o o OO 0 O O O O o 0 O O O O O O O O O O O o o z ZOO o o o O O Z O O O O O O O oooooooooo 4i. en w en w w IV) w W IV) IV) IV) IV) IV) w W IV) IV) -> ->-> ^j ^J -> IV) O) iv) o) O) 4i. —i. ^J 4i. N) —^ —i. —^ —i. —^ —^ 4i. W oo co 00 00 O) -» O 00 00 CO 00 vl -i ->-> IV) CD ^J en iv) W -> ' ' IV) -> ^ i i -*l w w o o 4i. IV) O O) w —i. co —^ o 00 ^1 00 ^i 00 00 i 1 I l l I I 1 I I I I i i i i i i A A o O ' ' O ' o o o en oo w O) ' CD ^J (à i N) CO 4i. co 4i. 4i. O O OO O O 0 O o o 0 O O O O O O O O O O O O O -> -> O O CD C) CD CD z^i 1 O o () 1 i 1 1 1 1 -> _». _». i 4i. 4i. 4i. 4i. w w IV) IV) IV) IV) IV) IV) IV) IV) IV) IV) o O CD CD CD ^J 4i. w -j O O o ^j W O) co co co co co CO -» o CD CD (O 00 v| O) O) O) IV) -> oo O) 4i. w IV) O ' i i i ° X ° ° -» IV) -» O —* o 00 O) O) a> O) O) O) I I i I I 1 I I I 1 I I I I i i i i "^ o O O O _>. O -> iv) O) -^ o> A A -» w ? w O w w w w w O o O o O o O O o o o o o co co o ço o ço çn çn çn O O CD o IV) -» -*l O) S» Z C0 Z 00 O) 4i. O O co 1 i 1 1 1 -» -» -». ' ' i 4i. 4i. 4i- 4i- 4i. en W IV) w w W IV) IV) www CD CD o o IV) zS -g w 4^ 00 en o o o o o o ro 4i. 4i. W O CD IV) IV) o ^J O) C0 Z C0 IV) w o O O o CD IV) —i _i. —i —i —i 00 00 00 -g O) iv) 00 00 o o ^J o o O IV) IV) CD 00 CD 4i. ^J

o o o o IV) IV) IV) IV) -» IV) IV) -*l -*l IV) - O O O - - O o o -» o 00 IV) 00 00 en IV) CD o 00 IV) 00 00 o o -*l -*l O) 4i. O) 00 en en O) 00 4i. CD O ^J IV) 00 IV) O) O) O) w en IV) O) w en 4i. w w 4i. CD 4i. w ^J IV) 00 en ^j en iv) 00 ^j w IV) w O) o en -> CD W 00 -*l IV) 00 00 -> w o O) O) ^j w IV) 00 ^J O ^J CD W O) O IV) IV) O -> en CD 00 w en w CD -> 4i. 00 O 00 O) 4i. O) 00 4i. 4i. W 4i. 4i. 4i. 4i. en en en en en 4i. 4i. W 4i. O) en en 4i. en 4i. en 4i. 4i. 4i. 4i. 4i. W 4i. 4i. 4i. W W W 4i. w 4i. W W IV) w w 4i. 4i. O) 4i. w 4i. W en w en w en w

zzoooooooooooooooooooooooozzoooooooooooooooooooooooooozz 00-'00000*UllO^*-'Oül-'-'OOÖ)*.-'MO)vlül-i-i-iö)00)OOlV)UOIOIO(OOW(DCOW*-'-'-'COv|*.ÜlU(0(DJ^^^j^jj(OlOIO(D(OlOIO(D(OlO00C0C0(»00v|vlNlv|v|C0Nlv|vlvlNirofflO1OiroWO1OlülÜlUlÜlÜ1U1Ül**^Ji*C0C») WW4^00|V)00|V)IV) oa j> j> OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 1 1 1 O O O O O O O oooooooo IOffl(O(DIO(O(O(DIOlO(»C0O)C0 00v|vjNlv|v|>Jvlv|v|>jvlO)ö)ö)O)O)O)ülülUlÜlülül O O O Ji.Ji.4i.4i.4i.4i.4i. ülAWWUIO-'OOONl01UIO-'>IO)4>.|i*UMWWUUWM-'-'-'0(D(»00004>» en en en 00 O) en Ji. IV) IV) IV) OOOOOOOO o o o ooenenenenenen OOOOOOOCOCOOCOCOCOCOOCOOOOOOOOOOOOOOOOOOCOCOOCOO 6 CO CO CO o O O O

^iv)o^oo^^iv)iv)iv)iv)^iv)^iv)^iv)^^^^^^^^^iv)^o^^^o^iv)iv)iv)^iv)^^iv)iv)^^iv)^e^^^^^^^^^^^^^_^_>._i._i._i._i._i._i._i._i._i._i._i._i._i._i._i._i._i._i._i._i._i._i._i._i._i._i._i._i._i._i._i._i._i._i.O)-^-^-^-^-^-^-^ OTenœwwœo^ooooœoœocoo4i.4i.4i.enenOTœenœen^œoo^4i.œwoiv)^^cDCDOOOTOTWcDQOTOT4i.^^jeno) encDCflcDOTOTenOTenbocDcD^cDcDÖiv)^cDboOTboeniv)en^4^ o o en b) co bo w ^^^^^^^^^^^^^^^^^^3^^^^^^^^^^^^^^^^^33^^^^^^^^^^w^3^'én^^^ co^ uo "—' -—"—s uo -

t- r^ r^ r^ CD CD CD CD W Z Z Z oiffl^MDoooiooMoowoooT-oioiffl^o) t-t-t-ooi^ocncncdcd 06060606 ,_ ,_ CO CO CN cdcdcdcd->-cnot- T— t— t— CO T— t— CO *~ rvjMmmineDtDmmNSNNNNNeoŒXDgtDggggroeDtDMoooojooooo O O ÜÜW u wwo^o^o^o^o^o^o^o^o^o^wwwo^wo^o^ooo O 0 CO I zzzzoooo 1 1 llllllll 1 o o O O CN CN CO ^^U1CDI^I^I^OOCDCDCDcDCDcDCDOOOCNCOOOCDOCN' Ç— "H

CO^-vv-'COv-'COCO^-vCO^-vCOCOv-''

CD m m m 1^ CO CO CO CN CO CO CO CD 0 0 0 T— T— t— (D T— T— T— wzzz CO Ü) Ü) CD m ^~ ^~ ^— 1 • / ~z_ 1 1 1 uouo^uo^,^,^,^,!^ rg«'toooosrviotD(Dooooooo)sss„s uo CO CO CO CO CO r^ r^ r^ tf 1 1 CD CD CD co wzzzwzzz O ^t ^t t C) 0 0 CO t-t-CDt-CDCDCDCD^-^c^^-^-^-^-^-^-^-t-t-t-t-t-t-t-t-t-t-CO^-COCOCOCO,- r^ 1 1 1 1 1 j T— T— rn r^ r^ ~z_ 0 0 0 0 CM CM CM CN Z T— 7" 7" 7" 7" OOWOWWWWOWWOOOOOOOOOOOOOOOOOWOWWWWO1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7 7 Ü) CD OOOT-T-T-T-CNlCNCNCNCNCNCNCNCNCNCNCOCOcOCOcOCOCOCOCO-«t- CO O 0.1 00 CO CN *t OOOT-T-T-T-CNlCNCNCNCNCNCNCNCNCNCNCOCO^CO^T^cOCOCO^- * i^ * CNCN CO CD .00 CD m m CO r» '-'o CN CD CD '-'* '-'cn '-'cd m m MD S CB (D T- CN * h- * CD * ^-'CN CN t- CD qN «Pcn r^ r^ r^ cd o r- co CD m^i-^T-^coT-œ^-coœoosœs I T- | * T- | I 00 I * T- I i^ 1- m i i <- I I T- CN I t- t- m i I O)|(D|i-|e0T-|N|K)|r| |t-

< < < m m m T— T— T— T— T— CO CO co ,_ ,_ CDCDCDt— T!j- * * 3t c»CBc»cococooo'-CNTtcocococ\icN

,-v CD ,— ^-vCD CN * "— ^-v co ^-v (D

00 CD ,_ ,_ CO CN CO ,_ CD CD CD CO CO CO uo uo uo r^ r^ r^ CN 0 CN 0 CD * uo * * * CN CN UO uo uo r^ r^ r^ CD CD CD CN CN ^~ ^~ ^~ CN 00 CN CO CO CO CO CO 0 CN UO * * * * CO CO CO * * * * * * CO * * * * * * ^— ^— ^— ^— ^— ^— ^— ^— ^— ^— ^— CN CN CN CN O CN CM CM t- t- ,- r^ r^ r^ CN CO 1 OOOOOO 0 OOOOOO oooooozzzooooooco 1 1 1 1 1 1 OOOOOOOOOOO CN O CO CN 000 CO CO CO CN CN CN 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 O 1 1 1 0 0 UO UO UO CD CD CD 1 1 1 1 OO CD CD T- 1 T-t-t-t-CNCNCNCNCNCNCNCN' 00 co ^_ CN CN CN CN CO CN ^_ CN UO UO UO * * CO UO * CO uo * CO uo * * * * m * * m o ^—N ^—^ ^—^ ^—^ ^—^ ^—^ ^—^ ^—^ T— oo ^—^ ^—^ -CT) CD co CO in, 00 CD CT) CT) ""'' "'' m CO CD CT) o CT) CT) 1^; - ^<*> ^ ^ ^ o OO CO r^ t CT) CT)

m CD oo CN CD ocDooo>r^mmmo>o> CT) en en f— *- *- CT) CT) CT) T- co co -^ ü) CO CO CO r^ r^ r^ CN -a- CN CN CN CN CN CN CN '- t -t m m m m m CN CN CN CN CN CN o cm O O O O O O O O o w o o o o O O O O 1 OOOOOOy-OOOOO O O O i I I OOOOOOOOOOO o99 O O m m CD CD NNNOOOOCOOOOOOOOO o o CD CD cd r^ OO o o O CN CN CN CN CN cm CN C0 CN CN CN CN CN CN CN COCOCOCOCOCOCOCOCOCO r^ oo oo oo o o o CN CN *~ IM IM IM CN CN CN T— *- * -t m m m m m CN^^, CN CN CM o CN oooooo-^ooooooooooooooo O O O O O O 5S l l o o o o 1 O O O O O O i oooooooooooo O O CN m m CD CN r^ co O) O) CT) CT) CT) CT) r^ r^ r^ r^ r^ r^ CN CN CN CN CN CN CN CN COCOCOCOCOCOCOCOCOCO co co co co o o co co co - o> o> o> CN co co co co co co co co co co co co co CT) CT) CT) CT) CT) CT) CN *- 0)0)0)0)(0(OU)(0(OU)0 oooooo^-ooo W W W W OOOOOOOOOOWWWOOOO WWW www i i O i i i i cd oo m cd O T- 93 co co

^ O ^O ^O T- co x ^ r^ T- t- „ ^-^ "^m m m ^~. in, x x ^^^-^-^ OO OO ^ct> ^ ^ ^ co ^-'CT) v-'v-'^l-. mv-'m^-vv-'CT)CDv— n^ ^^ * * CT) ^-'^-'^-'^ m m CO ^-vv-' X ^^-«fr - i o 1- i I t— i T- T- | t- co -«t I t- | CD

oo tf CD m CO CO CO CT) CT) CT) m m m o o o o o o o o o o o o m00 o00 o00 *\fitNSNO)(!) oööoozzzöooöoowo o o o w 1- tf CD CD CD 00 00 00 "t t t ,_ ,_ ., m m m CM CM co o> o> o> o> o> o> o> r^ r^ r^ r^ r^ r^ r^ r^ r^ r^ in in T_ CM CM CO CO G> G> G> G> G> G> G> CD CD CD CD CD CD CD CD CD CD m m m m o n O o m co co co co co co CT) CT) CT) CT) CT) CT) CT) CT) CT) a) O O O o W W I I I I I oooooooooowI I I I I I I I I i oooowwwwwwww ( 1 m WWWWWWWWWWWWWWWWOOOOOOOOO YcOCOCO-«fr-

0>0)0) NNNt-t-t-OOCOOOCNI^-^-CDOO ^^^cD^^^cbcbcbSSSSSS^^00??05^00^????«?05 99990000000000009999999999999999 OOOOOOOl'i'i'i', ', '.'''(DtDtDtDfflfflNNtOffiOlOOT-T-^

9999oooooooooooo9999999999999999CT)CT)CT)00''''''''''''t-t--^t-t--^CDCDI^OOOOCT)CT)OCDCD ?^^!^CDCDCDCDCDCDCDCDCDCDCDCD^^^^^^~~~~~~~?~~ OOOOWWWC/)C/)C/)C/)C/)C/)C/)C/)C/)WC/)C/)C/)C/)C/)0000000000 I I I I I (DMOOl^NO^OXM^fflOOlCMO^moO^moOT-T-fflSSCOCJOlNi-I I I I I I I I I I I I I I I I I I I I I I I I I I I CDNN(D000O0O0ON0O00N00N0000

5, -cDuov-'mv-' CD, '5, o~m oo/^v-'v-'m- 'CT) 'CD 'CT) OO CO CD*co cnTct) ^«rs

annwin(D(DMiooo)0)tooo*NfloOT-o)SNN'-T-T-(0(0(o., ., ., ., inuouoinuoinuouocDuououoinuoi^i^i^i^cDCDcDCD^i^i^^i^i^^f^Jf^f^J

ooooooooooooooooooozzzoooooownnnI I I I I I I I I I I I I I I I I I I I I I I I I I I I I l^) ^ l^) ininminininminininmminmfflttXDssNNNSSNNssNnMM^^^^miflfflNNooflooirofflOXDroooooooooMMrjniii o^o^o^o^o^o^o^o^o^o^o^o^ooooonnn I I I I I I I I I I I I I I I I I I I I I I I I I I I I Iw) ^ ^ O)O)O)O)'*^fm

WWWWOOOOOOOOOOOOOZZOOOOOOOOOOWWWI I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I (DOCN0CBO)^miO(DOino)SSSSCOOO(D(NOO

8.2 Crystal Structure Data of 82b

C20a

C21o

MeO

Table 8.5. Crystal data and structure refinement for 82b.

F000 = 496.0 C56H7204Si4 Z=1 C56H7204Si4 Dx = 1.052 Mg m"3 Mr = 921.532 Density measured by: not measured Tnclinic fine-focus sealed tube

PT Mo Ka radiation X = 0.71073 a = 10.650 (3)A Cell parameters from 31538 refl. b= 10.706 (2)A 9 = 0.998-21.967° c= 14.296 (4)A u. = 0.141 mm"1

= a 68.551 (8)° T = 223 K ß = 73.596 (11)° Cube y= 83.73 (2)° 0.6 xO.25 x0.2 mm V= 1455.3 (6)A3 Refinement on F2 0 restraints

fullmatrix least squares refinement H-atom parameters not refined R(all) = 0.1254 Calculated weights 1/[g2(Io)+(Io+Ic)2/900]

= R(gt) 0.1091 A/omax = 0.007

= wR(ref) 0.3030 Apmax = 0.698eA3 0.2856 wR(gt)= Apmin = -0.272eA3 = 2.278 S(ref) Extinction correction: none 2360 reflections Atomic scattering factors from International 289 parameters

177 IIIIIIIIIIIIIIIIIIOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOWM c ri iv)iv)iv)iv)iv)^^^^^^^^^^^^^eoeoeoiv)iv)iv)iv)iv)iv)iv)iv)^^^^^^^^coœ^c»en4^w S 0) -'-'-'OoaioioooooviviviromNJMMio-'Otoooviui^.w-ioaoovioi^uMo iv) -» m en "h " s -\ OCD>CD>OCD>CD>OCD>CD>OCD> in < -M-n o -» OOOOOOOOOOO o o o o o o o o o ooooooooooooooo o «, <"> n 00(0C0vl(00)0)0)0000(DO-'OO0)roU1«N)W«-'MO(00)C0000)00 oovio)muiAcno)vico ^J ^J (35 (35 ^J 4i. k) bo ~* o H ^C00lvl0)vl(0vlln-»O >J W (O ^nIID -» a> 0) 0) MNl0)ÜlOM00>JIO0000MWÜHD-iWO.iv)o^j-»--P>.oooo^j-P>.ooo^j-»-^jcoo oioN)0)vno^wM(oro en O C3) CO CO (3) ^J * 03 CT ID-'C0ÜlvJ00OvlHJ^WNlM»-i. o -P>. 3 Kj CD o (3) o 00 o 0) a 3 3 Q. (3) o 1 o 1 1 1 l 1 1 1 l l 1 l l OOOOOOOOOOOOI I I I I I I loi loooooooooool 05 (—) o (—I o O o o o o o o o o o o -» _i _^ Kj^wb^oiwiowwwuiPPPP OOOO^pO^^yyjyly^oJ.oJyO (D (O o N) -P>. -p>. (n -p>. -P>. N) (O N) N) roiv)-»-oeno->-^j-P>.oen^j->-eoc3)cDC3)ooiv) (/) —i. ro ^j ^J —^ —^ ro en en ^j ro a> a> -p>. 00 oocoeooo-»--»--»--»-encoeoiv)-P>.-»-c3)eniv) o vlC00l(D(0-'OÜlvir000(0^vlC»vl*.(0W 0) (n c» 00 O) (n o (n —^ CO -P>. (» 00 —i. —i. (O eoenoooo^JC3)-i-eoc3)enoococ3)C3)^JC3)en p>.eoeoiv)->-c3)^joc3)C3)oo-P>.-P>.-P>.iv)enj!>.oooo 4^ CD -P>. a> -p>. eo -P>. ro ^j 00 a> ro eo eo cd en 00 00 -g -» 3 o (3)^, o -»-^^^^^^^^^^^ Q. ^J C3) oo, C3)^J^J^J^JC3)C3)C3)-P>.-P>. IV) ^-v .-^^^^ x—'-g^^, en o eo eo a> ro~ CD —» —» (3) C3) (3) C3)x_'x-'x-'x-'x-'x-'x-'x-'x-'x-'x-' IV) CD eo ros en eo^^—' ^^ ^—• J2 C < 05 3CD «—H

(/) 1 1 1 1 1 O 1 o o o O o O 1 1 o I I ooooooooo 1 1 o o o ooooooooooooooooo 1 O o o O O o O o o _». o _». _». O o O o PP^^k)k)(3)eneoeoeo o P o o o oo->-o->-iv)C3)enj!>.eoeoiv)iv)->-eoo-P>. «—H —i IV) IV) —^ —i ^J ü) —^ eo eo CD IV) ooc3)iv)en^j-»--»-^j^jiv) -> eo eo cd oc3)oo(3)enc3)C3)^JC3)-»-^jeocDiv)cDo Ö o o —^o —^ o O O) o ^J -P>. CO en (O 00 o CD ^J N) (O o vl 00 (D -'-'(OOl-tivlO-MOCOrOCOOOorOCD-' IV) T3 —i wwviu^coowaoo o ^ -p>. o ^J o eo eo (3) en (3) -P>. (3) en (3) -p>. CD ^«A-'OvitnooKDO cd (3) en (3) eoji.iv)cDiv)^jc3)->--P>.eneo->-ooooc3)iv) O —^ CD CD —^ CD ü) -P>. eo ^j to 4^ ^, ^, ^-^ «—H OOO'ôoO'ôo'ôî'cn^ ^,(D(0-i ^^^^^^333^^'én'én'én^'éo^-^ CD 3" -» ^x—' -» eo o^—' o ^ ^ co^^—' CD -î 3 0) T3 0) -î 0) oooooooooooooooooooooooooooooooooooooooooooooooooo 3 iv)iv)iv)^^^^^^^^^^^^öbbiv)^^^iv)^bbb^^^^^^bbbbbbbbbbbbbbbbö CD N)MN)viviinwin^^(Djo)t3)0)ooo)ioo5 CD K)MM(OIO-'-'-'lD(0-'-'-'(OlD(0(D(OOW(OM>JO).MyOU100).MDO. eo^, iv)oc3)oocD->-cDOOiv)iv)en->-oo

CD -J C3) C3)OOCOCOCOCOCO^J^JC3)eneox-'x—' ooooooooooooooooooooooooooooooœœwwwiv>iv>iv>iv>iv>iv>iv>iv>^^^^^^^^^i\j^Fo3: cocococococococorororororororororoiv) N>-iOlD00vlü1^U-iO<000v|0)^UMO IV) -» MMM-'-'OOOCD>OCD>CD>OCD>CD>OCD> oooooooooooooooooooooooooooooooo ro-»--»-oco-»-oooiv)-»--»- OOO-MJOOOXOOIOOMOIA 0(DO)iniooiO)vivivio)ino)0)oiooO)oovi-»oooooooooooooooooo c» ^j en-- tn w vi oo *. N) w ->-c»cDC»^JOoiv)->-cnooc»c»->--P>.-P>.cn-P>.coiv) iv), iv), c» co CT O) en 01 CD^J^J^J-P>.wcnw-P>.-P>.-P>.-P>.-P>.-P>.-P>.-P>.www, en ->->-> o o o o en -P>. 4i-C04i.|V)->-IV)COCOC04i.O->- ^ ^ k) c» en c» —i o O5^J-»-^JO0CO|V)COCOIV)4i.4i. CO CD CD IV) CD 4i. -lOiuiouiyviMooioo) -> CO CD O -> -> g vi vl I I I I I I O I ooo-»-4i.encoco4i.oococoen 0(0 vlOO o o o o o o IIIIIIOIOIIIOIIIIIIIIOI o o' Ö Ö Ö Ö -» Ö ooo-»-oooo rooooooooooooooooo Q. *Oül P>. en -P>. roiv)oiv)-»-oco-»- coooocooo-»--»--»--»-ooco-»-coiv) en' ->. -» CO -P>. o en co en *. WOlOO) -»-^ co ^ ji. co^ ~~i oo ho -g en cd -»-^ co^, en o CO^, IV) -*l, 0) ^'éo^^'co3x-''co ^—"C0^^^ CO^^^^^^^^, a> oo a> co CO CO 4^^—' CO Ji. Ji. co co co co co^—' iv)^^, o ivr CD ~ IV) 3 CD

1 1 1 loi loi o OOIIIIIIIIIIOIOOIIIIII T3 OOI ooooooooooooooo OOOqOOqO 0) ^bPbbwoiLnwwK)^ro^w*-tnb) o oooooooo 4i-0000000000000000000000 —i rocoo(omo)0)03vio)Nio)oowio(oow IV)IV)->-C0C0OIV)->- (D-MOM^O-'OCO-'OO-'OOÜlOO-'OMWO 0) vlvlN30)0)0l4».(DO(0N)-'r0W-iOC0O -g co -^i^, iv) cn^ iv) ^^, uioovicnNjviooi-' -»-^, co ^^, co co iv) c» en -> co Nl(DOÜ100OMOvHDC0ÜlvJW(DWN)-i CD CO -» CD 3 o -g^^^^^^^^^^, 4i-^-v CO^-v^-v^-v^-v^-v CD 00 ^ ^j'ôo'én o^J^^^ ^-'^—" -vlOJvIvlWW-^W-ti 4^^—' J».^-'^—" co CO CO CO |\J^-v^-v (D oooooooooooooooooooooooooooooooo -»000-»--»-0-»-IV)-»-000000000000000-»-0 a> iv) -t>. cd iv) AOOOO ~~i & iv) vlvlO-'W00<0-'00Ül00C5)(DAvl(0C0ülvl^WN)OvlW000) iv) a> 00 cd en en en a> co 4^4^4^4^4^4^4^4^Cncn4^4^4^COCO. oooooooooooooooooo IV) 4i." en o~ 4i.c^4i.co4i.iv)co^iv)iv)enOTOT4i.eniv)coiv) CD ^J ->-CO^jen^J4i.->-CDIV)O0CDIV)C»CDIV)O0COCO 05-»-oococoen-»-iv)o^jcD^j05^jen-»-cD05 lnO)(DO)vlOCO-ivl-i(OCnvlO)N)Ulvlvl

I I o I I I I I I I I I I I I I I I I I I I I I I I I 1 1 1 1 1 P P o oooooooooooooooooooooooo o o o o o o o -^ bbbbbbbbbb^bbbbbbbbbbbbb o o o o o 00 ^J ^J UlO)*.Ul^WO)00*..enlV)->-CDCDCO^JO-P>.COCD -p*. a> co -p». —v^--. co IV) o^-» oox-' O0CDO5-P>.CO-P>.O0CO(35^J O0COCO4i.CO4i.4i.4i.4i.4i.4i.COCOCOCOIV), CO IV) oooooooooooooooooooooooooooooooo oooooooooooooooooo -»-»-»-»-»-»000->-->-->-->-->-->-00000000000000000 ^^^ÜlülOOOO)0)ÜlülU1ö)0)000iv)iv)iv)^^iv)iv)iv)^^iv)iv)iv)^^^^^ OlO^W-'lOÜl-MOOlWrjOl-i(OUl^^W(DOO-->-4i.4i.4i.4i.4i.OOCOCO v|O3vlÜ1^U10000O3(D 4i.ji.4i.4i.4i.enenen4i.4i.4i.4i.4i.COCO, IV) o o~ IV) o~ o o o o o o o o o O O O O O O O O O oooooooooooooooooooooooooooœœœœœœœœ S1 co £> -» iv) en -> IV) IV) co IV) CO CO -» -> IV) -> IV) IV) ^^coMWN)M^^^^ -»-» -P>. -P>. O O O O o IV) en ^J ^J O) O o o s -P>. CO IV) -» |V) à?à?à?à? œ œ œ œ œ ÔÇOMW IIfinfififioooo^00-(D-00v|O)^ü,*w^K)OOOOoooooooo 00 IV) -1 IV) IV) IV) Ni Ni iv) ->: -»-»cocoiv)iv)iv)-»--»--»--»-o £> o iv)en-»--»-iv)iv)iv)to-»--»--»-iv) O O O O -f- O) O) O) O) O) O) en en en en en en IV)IV)IV)O00en-^CD^J-P>.C0 CO OIV)cDen^J-^0005-P>.0 iv) -» en co O i i i i i i i CD > o IV) O O O O O O O O O O O O O CO -± IV) IV) IV) IV) IV) IV) -> O O co CD CD en en ^j oo 00 00 O) O) Ji. CD O 3 CD o "O ^ ^ ...... -» ^j ^j o - o o o o o o IV) o cDCD^c^^iv)en^coiv)^^^^co^^^^^co^^^^^^cx)bobo S CO -P>. 00 00 CO Ji. O) en 00 ^j o o 0)0)0-'0)-'Ü1vlO)OOOÜ1lO(D<»CO -> -> CD ^j co CD co ^j co en O) -P>. ^J 00 co 00 ^J O O^, Nl0)(0^OUW-T00)0)0)U1(DÜlOCDvl«00vlWlD^ON)MCS00N)vl-i 3 o o ro^^^^^^^^^^^^^^^^,.,^^,.,^^^^^^,.,^^^^^ cd en O) O) O) en en -P>. en en en -P>. c» en -P>. en -P>. O) en ^-'_»._»._»._»._»._».O0CDCDCDCD-»-CD-»--»-CDO0-»-CDO0CDO0O0O0-»--»--»--»--»--»-^J-»- CD

a> a o o o o oooooooooooooooooooooooooooooooooo -i.-i.-i.fO -iCD-».-».O0CDO5^J-P>.|V)|V)IV)|V)IV)oooooooooooooo WUWUUUtilWMMIOlOMMIOlOIOIOIOMMIOlO-'-'-i-'-'-'-i-'-'-i-' CO J*, co r0N)N)-'-'OOO(0lD000000vlNlWW«-i-i-iOO(0lD<000C0vlNlviro(!)N) ^ o I I I I I I I I I I I I I I I I I I I I I I I O O O O OOfflfflMffloiOOOOO o -».-».iii.i.i.cncncncncn COO)COCOCOCOWWrON)N)N)rorON)N)N)N)N)N)rorON)XXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXX O O lIXjOoencDOOOOO MUJIO-'-'OOOIDIOOOOOCOnInIWWW-i-i-iOOOCD>CD>OCD>CD>OCD>CD>OCD>OCD>CD> tD(OlOCX)CX)vlvlvlO)0)N)OCD>CD>OCD>CD>0 œ o o O O O o en o> & & iv) -» CD en o CO

oooooooooooooooooooooooooooooooooo ^j o o o ^j ^j ^j o o - o CDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCDCD en ^j CD o o o 00 £>. O) en co O) 00 IV) o O) csiO)0)(siO)0)0)(si(siO)0)0)0)0)(siO)0)0)(siO)0)0)0)(siO)0)(siO)(siO)0)0)0)0) -> -> ^j CD o CD co O) O vi Ol ^J -p>. en O) 00 O) CD cooocoooococo-»-oo-»--»-co-»-oocooo-»-ocooocoocoo-»-oo-»-cooocoooococoooooocoooocooooocooocoocoooooo O) ^j en en en en en en O) O) O) O) en O) en en O) en 8. Appendix

C17-C16-SM5 121.1 (9) H21A-C21-H21B 109.5 C19-C18-SM5 116.3 (8) C20-C21-H21C 109.6 C21-C20-SM5 112.8 (9) H21A-C21-H21C 109.5 C25-C24-C5 175.8 (7) H21B-C21-H21C 109.5 C24-C25-Si26 175.6 (6) 022-C23-H23A 109.6 C28-C27-Si26 112.5 (7) 022-C23-H23B 110.2 C30-C29-Si26 112.2 (8) H23A-C23-H23B 109.5 C32-C31-Si26 108.7 (8) 022-C23-H23C 108.7 011-C12-H12A 109.4 H23A-C23-H23C 109.5 011-C12-H12B 109.6 H23B-C23-H23C 109.5 H12A-C12-H12B 109.5 C28-C27-H27A 104.2 011-C12-H12C 109.4 Si26-C27-H27A 107.8 H12A-C12-H12C 109.5 C28-C27-H27B 112.2 H12B-C12-H12C 109.5 Si26-C27-H27B 110.4 C17-C16-H16A 105.9 H27A-C27-H27B 109.5 SM5-C16-H16A 110.6 C27-C28-H28A 109.8 C17-C16-H16B 102.5 C27-C28-H28B 113.3 SM5-C16-H16B 106.7 H28A-C28-H28B 109.5 H16A-C16-H16B 109.5 C27-C28-H28C 105.2 C16-C17-H17A 110.4 H28A-C28-H28C 109.5 C16-C17-H17B 107.3 H28B-C28-H28C 109.5 H17A-C17-H17B 109.5 C30-C29-H29A 107.6 C16-C17-H17C 110.8 Si26-C29-H29A 109.5 H17A-C17-H17C 109.5 C30-C29-H29B 108.4 H17B-C17-H17C 109.5 Si26-C29-H29B 109.7 C19-C18-H18A 106.7 H29A-C29-H29B 109.5 SM5-C18-H18A 109.2 C29-C30-H30A 109.7 C19-C18-H18B 105.4 C29-C30-H30B 109.8 SM5-C18-H18B 109.6 H30A-C30-H30B 109.5 H18A-C18-H18B 109.5 C29-C30-H30C 109.0 C18-C19-H19A 111.3 H30A-C30-H30C 109.5 C18-C19-H19B 107.9 H30B-C30-H30C 109.5 H19A-C19-H19B 109.5 C32-C31-H31A 109.5 C18-C19-H19C 109.2 Si26-C31-H31A 110.3 H19A-C19-H19C 109.5 C32-C31-H31B 109.8 H19B-C19-H19C 109.5 Si26-C31-H31B 109.1 C21-C20-H20A 108.7 H31A-C31-H31B 109.5 SM5-C20-H20A 108.6 C31-C32-H32A 110.8 C21-C20-H20B 107.7 C31-C32-H32B 108.9 SM5-C20-H20B 109.5 H32A-C32-H32B 109.5 H20A-C20-H20B 109.5 C31-C32-H32C 108.6 C20-C21-H21A 110.4 H32A-C32-H32C 109.5 C20-C21-H21B 108.5 H32B-C32-H32C 109.5

C10-C1-C2-C3 37(19) C5-C6-C7-C8 -2(16) C1-C2-C3-C4 -1 (3)x101 C6-C7-C8-C9' 1 (2)x101 C2-C3-C4-C5 -1 (2) x 101 C12-O11-C10-C9 179.5(5) C23-022-C5-C24 -175.8 (5) C12-O11-C10-C13 -59.7(6) C23-022-C5-C4 62.9 (6) C12-O11-C10-C1 62.5(6) C23-022-C5-C6 -56.7 (7) C8'-C9-C10-O11 -107(7) C3-C4-C5-022 -95 (7) C8-C9-C10-C13 132(7) C3-C4-C5-C24 146(7) C8-C9-C10-C1 13(7) C3-C4-C5-C6 28 (7) C2-C1-C10-011 70(6) 022-C5-C6-C7 140(7) C2-C1-C10-C9 -47(6) C24-C5-C6-C7 -102(7) C2-C1-C10-C13 -167(6) C4-C5-C6-C7 18(7) O11-C10-C13-C14 -17(13) 8. Appendix

C9-C10-C13-C14 103(12) C4-C5-C24-C25 -102(9) C1-C10-C13-C14 -139(12) C6-C5-C24-C25 15(9) C10-C13-C14-SM5 39(18) C5-C24-C25-Si26 -19(16) C20-SM5-C14-C13 -14(8) C31-Si26-C25-C24 83(8) C16-SM5-C14-C13 116(7) C27-Si26-C25-C24 -40 (8) C18-SM5-C14-C13 -133(7) C29-Si26-C25-C24 -160(8) C20-Si15-C16-C17 173.3(11) C31-Si26-C27-C28 -54.0(12) C14-SM5-C16-C17 49.9(13) C25-Si26-C27-C28 65.6(12) C18-SM5-C16-C17 -62.2(12) C29-Si26-C27-C28 -175.9(11) C20-Si15-C18-C19 -53.5(10) C31-Si26-C29-C30 -178.4(9) C14-SM5-C18-C19 64.2 (9) C27-Si26-C29-C30 -53.0(10) C16-SM5-C18-C19 176.0(8) C25-Si26-C29-C30 65.0 (8) C14-SM5-C20-C21 63.0(10) C27-Si26-C31-C32 -49.7 (9) C16-SM5-C20-C21 -59.0(11) C25-Si26-C31-C32 -168.9(7) C18-Si15-C20-C21 179.1 (9) C29-Si26-C31-C32 74.3 (9) 022-C5-C24-C25 136(9)

Symmetry codes: (i) 1-x,-y,1-z.

182 8 Appendix

8.3 Crystal Structure Data of 82c

sih3 C53

MeO'

C24 C23 C2fl

C21 01 ,*tl\5?Z. x*&-@}£ SU k>' * Cl C22

C25

cm

C3S

TaWe 8.9. Crystal data and structure refinement for 82c.

Z = 2 C56H7204Si4 F(000) = 992 C56H7204Si4 Dx = 1.062 Mg m3 Mr = 921.532 Density measured by: not measured Triclinic fine-focus sealed tube

P1 Mo Ka radiation X = 0.71073 a = 13.4882 (2)A Cell parameters from 31979 refl.

° b= 15.1246 (3)A 9 = 0.998—26.022

c= = 15.9358 (4)A u. 0.143 mm1

a =103.3303 (8)° T = 223 K ß = 93.6712 (9)° plate y= 112.4562 (9)° 0.3 x0.1 x0.06 mm V = 2881.38(10)A3 wR(ref) = 0.3233 Refinement on F2 wR(gt)= 0.2924 fullmatrix least squares refinement S(ref) = 2.269 R(all) = 0.1334 19627 reflections R(gt) = 0.1081 1127 parameters

183 > > 0 I eo c •^ 0) J. ooooonnoooooooooooooooooooooooooooooowMwmwMWM CD a? 3 3 S- û5 01 —^ —i —i —i. —i —i. —^ —i i i i 1. ro ro IV) IV) IV) IV) IV) IV) IV) IV) CO 00 ^j o> en -p>. eo IV) 00 ^j en O) -p>. IV) eo j>v 00 G) IV) i en ^j eo S en II c 0 CD 00 ^J a> en ji. eo IV) o CD 00 ^j a> en -P>. eo IV) o 5" ÔT3 ni èo 00 CD 3 -4. Q- M CT, cp en c t/i le _C n -» o o o o o o o o o o o o o o o o o o o o o o o 03 0) * k) CD CD b b eo Ko Li Li Li Li Li Li b CO bo ^ o> en en o> o> o> c» ^ bo CO b Li ^ eo en Li b o> Ko ji.eo ji.b ^ Li ^ Li c» a en en a> CD -» —i. —i IV) eo eo —i ^j a> ^j ^j CD CD CD IV) en CO CO 00 c» en eo eo a> ^J ^j IV) eo CO —i CO —i CD CD o o o —i o o o o o ^J IV) ~~i IV) O) 00 IV) en en CD IV) 00 IV) en -P>. 00 00 IV) -p>. -p>. en en -p>. a> ^j CO en 00 o 00 ~~i CO ^j eo 00 en eo IV) IV) IV) o ^j ^J 00 3 CD CD IV) ^J eo ^j c» eo 00 en eo eo -p>. IV) IV) -p>. eo CD IV) -* en -p>. -p>. c» eo ^j ~~i en IV) eo eo ^j ^j a> -p>. -* -* ^j a> -p>. Q> & o o o o 92.

^J -» CD 00 ^j -» -> ^j c» c» en en en en a> a> a> a> en en c» a> c» a> a> ^J ^j ^j c» -p>. -p>. -p>. en -p>. en -p>. -p>. IV) IV) IV) eo IV) IV) eo eo P X 0) o1—H 3 o o o OCD o o o o o o o o o o o o o o o o o o o o o o o oa ho Kj eo en en en 4*. eo Ko Li b CO bo ^ ^ c» o> en en o> ^ bo bo CO b b Li Li Ko CD Li ji. o> ^ b Ko en o> b bo CO ji.Ko eo eo 3' 00 ^j £>. eo 00 -P>. 00 IV) en a> 00 ^j —i ^j eo CO a> en IV) —i 00 ^j -p>. CD -P>. 00 —i eo 00 -p>. ~~i ^j IV) a> IV) en en —i eo ^j ^j -p>. O -» o -» —i —i —i —i —i —i o —i 05- O ^J CD ^j a> en en a> IV) CD ^j a> a> a> o -p>. o a> CD a> IV) O a> en IV) CD -p>. CD -p>. ^j en en o CO IV) IV) eo CD CD ^J 00 00 IV) £> o -* -* IV) 00 ^j o -* en ~~i -* a> IV) IV) IV) IV) eo -^ IV) eo -* IV) IV) a> 00 00 -^ -* a> -p>. a> -^ 00 00 o -^ 00 a> en

a> -» 00 00 ^j -» 00 a> en en en en a> en en en en en en en a> a> a> en a> a> a> a> en -p>. -p>. -p>. -p>. eo -p>. -p>. -p>. IV) IV) eo eo IV) IV) eo eo 0) *-* o ^< 3 Q.

CD

<' -n > m Tl H 0) 03 0) 0 & O 0) CD CT 3 3 l 1 1 1 1 1 7T o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o 3 O (D L». 1—H 0 a -» en en eo 4*. en en eo eo Ko Ko eo eo eo Ko Ko Li b b b o o o b b Li Li Ko Ko en ji.o> ji.o Ko b Ko ji.CO o ji.Li bo o en ho o -P>. iv) eo a> 00 IV) ^j 00 o o —i a> —i a> —i -p>. IV) o b b b o en —i ^J -p>. eo en IV) CO o b —i 00 —i IV) a> eo ^J a> IV) —i T3 m o -» —i —i —i —i 0) <^ r> ^j 00 CD £>. ^j -p>. IV) en o CD a> IV) ^j IV) eo CO eo IV) eo a> o eo a> -P>. a> -p>. o eo eo en 00 00 o ^j ~~i IV) IV) en eo 00 D 3 —^ —^ —^ —^ 0 0) o £> o en CD IV) -p>. en o eo 00 IV) en CD eo ^j IV) -p>. CO 00 -p>. IV) eo IV) IV) & o 00 IV) ^j -p>. -p>. o IV) en a> CO eo o en 00 — ni U_ 0 —^ IV) •""N s~N, s~N s~N •""N s~N, ^^-^ ^^-^ s~N s~N ,,—s s~N ,,—s s~N s~N ,,—s s~N s~«^ s~«^ s~«^ ,^—«^ 00 CD eo s~«^ ,^—«^ s~«^ s~«^ s~«^ s~«^ s~«^ s~«^ s~«^ s~«^ s~«^ s~«^ CD o eo s~«^ s~«^ ,^—«^ O) 0 -p>. O CD -» -» -P>. -p>. -p>. -p>. -p>. -p>. IV) IV) IV) co 3 O a> CD CD 00 00 a> c» en en en en en en en en en en ^ ^ ^ ^ ^ ^ en en en a> en eo eo ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ , ^ N T3 x—' IV) x—' IV) en en en 4^ IV) IV) 00 CD O' H 3' CD S S S 0) en q «—H M o 3i II ÔT CD CD —i ilo (/) U 3 "» IV) -P>. 0 3 03. Ko 0 3 -i —h o o o O o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o O o o o o o o o o o o T3 vPCï c» CD ö -» Ö Ö b -» b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b Li Li 0) 00 00 -» CD 00 ^j en CD en -p>. -P>. -P>. eo eo eo eo eo eo eo eo eo -p>. -p>. -p>. -p>. -p>. -p>. -p>. en eo -p>. -p>. en en -p>. en en -p>. en en ^j CD c» a> IV) o 0) 0) 3 en en -P>. IV) CD -p>. en ^j —i -P>. ^j en 00 ^j CO 00 en ^j eo IV) IV) IV) —i CO c» eo 00 eo eo IV) -p>. en IV) c» eo en CO c» eo en eo -p>. o —^o —^ —^ —^ —^ —^ o —^ —^ —^ > -1 ^—N ^—N ^N ^N ^—N ^—N ^N ^N eo eo a> en eo eo eo 00 eo 00 IV) ^j en en ^^ ^j IV) CD c» en a> 00 a> o IV) en ^j 00 3 eo 0) Q. CD CD C» —i -p>. -p>. ^00 CD c» ^j en a> en c» a> ^j c» en en 00 ^j ^j ^j ^j CD 00 c» IV) IV) en & eo JV) (g Q 00 X 3 1? ^j 0) c» —^ Ji. to 00 00 0) oooooooooooooooooooooooooooooooooooooooooooooooooooooooo v|v|v)v)v)N|^>J^^(!)0)0)0)0)0)0)(!)(!)0)U1^^UlUlUlU1U1U1^^^.|i.|i^-'-'-'-'*.|i^^^UUU-'-'WUUUUWW(DC0>l(])Ül*.»M-'OCD00v)0)U1*UM-'O(0C0vl(])Ül^UIV)-'O(DC0v|*W^JiJiM3)Ul|O-iOI0000)WWv)(ji^uiy-'O c» en iv) -» vitn

oooooooooo o o o o o oooooooooooooooooooo o o o 000)0)0)0)0)vlvl00(0O-'MN)r0-'-'-'O(000vlCD(0-iN)^0)0)Ar0-i*.Olln<»0)*.AvlvlAUl0)Olülvl0)vlvlvlvlOl0vlvl 4*. WfflfflOlvIOOW^MIVJ-'-'-'OOUlOOMMOJOlCDtflWMvICOlO-'ülffllDUl-'ffl^^OJÜI-'MOlDIVJtflWOOOOlDJiOA^IV)œ^oo)4^œiv)iv)ooœiv)cnc»4^ocn^coœw^cnco4^^w^wcncnw^œwoow Ül0)WW(»0)MW0)Ul0)ö)(DWOI0K)(»-'vHDC0C0^00*OvlJiü1-i0) vl^ ö) 00 K) O) O O -^ O) Ul W O (O O O^^,^ >J IO 00 O) Ö)

ooooooooo-»--»- oooooooooooooooooooooooooooooooooo o o o o o wwi.Lnbi^bocDiobb wrorococn*.MW(o«vi -'-'OlD(D00v|0)0)Cncn^C0^ÜlNl0)v|v|vlvl*^UC0N)-'N)IOW-'N)^*JU^0)C00)M]) -»CJ)-»-OOOCOCO-»-IV)Cn^J I^MO)-'N|ü10^0)OJCDOWO).|i^Ov)ü1ü1|v)(DvlHjNHDO.MOWvlül-iMOM(DOÜ1-'IV)CDiyMW^oiv)œowa)ocncnocnwcnwocnwco4^co4^4^^cnc»c»œcnœœiv)^cnww^OT

C0QW(fl(flCnw(fl(flCnuiüicnO)O)CBüiCnO)cncncnuiüi00viviviO000üicnCB -» CD -» CD -» £>. en O) oo .£>. -g _». CD CD CD -» en c» x—' •—' IV) C»^—' IV) OfflAO)1 co^-'^-'^—- o ft a

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOI I I I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ^iv)wwwwwww^^cflcflc^c^c^c^^c^c^ o o o o o o o o o o o o o o o o o o MCn^fflWWMMvlK)NlM00-'WCi)C0OW<»M0)lD*Cn-'C0(0ONlÜi(»MMN)-i-'-i IV) _i __i. __i. —^ o o _i CO CO CO IV) CO £> IV) CO IV) _i Cnvlvlvl-i<0C0N)vl-iÜlHJvl0)vl-iOOC0Cn-'Ü1WC0OCnü1vlO0)-'OCn0300N)Ü1vl N) —i 00 O) 00 00 IV) —i (35 CD 00 CD 00 -» IV) —i IV) en —i MCD^OÜlUCD0)^O-'CD0)-'-'W00^OU1vl01OUü1-i*00M-»O*-'0)^O*O 00 -p>. & a> CD ^J IV) en ^J IV) IV) en O IV) IV) 00 en ^^^-v^-v^-v^-v^-v^-v^-v^-v^-v^-v^-v^-v^-v^-v^-v^-v^-v^-v^-v^-v^-v^-v^-v^-v^-v^-v^-v^-v^-v^-v^-v^-v C35 O 00 CD CD ^J o 00 en ~~^ -p>. co^^ co^ ^J IV) 00 -p>. o lOviw^^cnw^^cncnwcncnüicncncnOlcnCBCncnüicDvicovioocouiüivi^,^^^^ ^-- IV) ^-v IV) -P>-^-- IV) p». en cd vi- en en a> en x—' & IV) C»^—' CD en o

oooooooooooooooooooooooooooooooooooooooooooooooooooooooo oenJ^wwwwwwwwwwj^j^j^j^wj^j^j^j^j^j^o^œ^cD^^bbbbbbbbbbbbbbbbbbbbbbb^bbbbbbbbkj^^^^^^^^^bbb^^w^^^^k)' ro^cocncnocncncno-'^^OOO-»--»-C0-»--»--»--»-IV)OO 0)(D*.vlWvl0)-iN)CnCrH0C0«*.CnO(D0)W0)N)N)AvlC0O«vlC0Ulvl(0(0A cocococococococoocn-»-oo^-vooooococo^j ©rococooroooioioMoiwcorowooouiO)-' -g ^_ ^_ ^_ ^_ ^_ ^_ en -g^. £> O) Js. CO, CO encocococococococoiv), co ^^ ^^^^^^^^^^^^^^^^^^^^^^^^^^CO^ÇO^ÇO^ cr IV) O0CJ)CnCJ)CJ)-P>.-P>.CJ)enCJ)CJ)O0O0O0CJ)CJ)CDO0CD^J^J^J oo c» 8. Appendix

C80 0.8477(17) 0.4211 (12) 0.1015(13) 0.154(7) C81 0.7019(9) 0.1687(7) 0.2097 (7) 0.075 (3) C82 0.7950 (9) 0.1985(8) 0.2812(8) 0.083 (3) C83 0.5891 (9) 0.2343 (8) 0.0731 (8) 0.085 (3) C84 0.4810(10) 0.1745(13) 0.0952(13) 0.135(6) C85 0.4678 (6) 0.4057 (6) 0.3577 (5) 0.0710(19) C86 1.0815(6) 0.7463 (6) 0.7892 (5) 0.0439(17) C87 1.0605 (7) 0.7666 (7) 0.8591 (5) 0.059 (2) C88 0.8662 (7) 0.7788(17) 0.9386 (7) 0.192(10) C89 0.752 (3) 0.715(2) 0.8683(13) 0.33 (2) C90 1.066 (3) 0.762 (3) 1.0579(16) 0.158 C92 1.093 (2) 0.9391 (5) 1.012(2) 0.150 C190 0.953 (3) 0.636 (2) 0.997 (2) 0.150 C192 1.135(3) 0.900 (3) 1.045 (2) 0.150 C91 1.0465(12) 0.6652(11) 1.0266(10) 0.133(4) C93 1.1786(19) 0.9837(12) 0.9957(13) 0.249(14) C94 1.2887 (8) 0.7423 (9) 0.7450 (8) 0.084 (3) C95 1.2106(6) 1.2242 (6) 0.6643 (6) 0.0490(19) C96 1.2073 (6) 1.2816(5) 0.7270 (4) 0.067 (3) C99 1.1331 (9) 1.2994 (7) 0.9006 (6) 0.150 C97 1.3416(5) 1.4572(10) 0.8774 (7) 0.150 C98 1.4256 (6) 1.424 (3) 0.837 (3) 0.150 C100 1.0104(11) 1.239 (3) 0.871 (2) 0.150 C197 1.3265(11) 1.4884 (8) 0.8439(12) 0.150 C198 1.3893(14) 1.5256(14) 0.8001 (19) 0.150 C200 1.2006(16) 1.2485(16) 0.9327(14) 0.150 C101 1.0965(10) 1.4166(9) 0.7811 (6) 0.366(19) C102 1.0921 (11) 1.5058 (9) 0.8468 (9) 0.150 C103 1.3236 (6) 1.2671 (7) 0.5214(6) 0.054 (2) C104 0.6530 (6) 0.9694 (6) 0.3564 (5) 0.0462(19) C105 0.5900 (6) 1.0023 (6) 0.3858 (6) 0.052 (2) C106 0.5701 (8) 1.1718(7) 0.5182(6) 0.062 (2) C107 0.6593(11) 1.2539 (9) 0.4980(10) 0.111 (5) C108 0.4333 (7) 1.0855 (8) 0.3289 (7) 0.069 (3) C109 0.3878 (8) 1.0050 (9) 0.2490 (7) 0.085 (3) C110 0.3837 (8) 0.9643 (7) 0.4594 (7) 0.070 (3) cm 0.4252(10) 0.9399(11) 0.5479 (9) 0.106(4) C112 0.8103(8) 0.9056 (7) 0.1921 (5) 0.061 (2)

186 onooooooooooooooooooonooooooooooooooooooooooowMMMMMtnw4^4^COWWWWWIV)IV)IV)IV)IV)IV)IV)IV)IV)IV)^^^^^^^^^^COœ^(3)C^ s1 WOlD00WM-'O(D00vl0)U1*WIO-'OC0C0v|0)Ui*.UM-iO *- «* w/ iv; v, ^ w s 5" ooooooooooooooooooooooooooooooooooooooooooooooooooooo 00 vl0)0l0)OlOA^00-H00)^O-»oooo-»-ooo-»-ooo-»- IV)C»CnCOWWIV)WW4^W4^WWW4^4^4^4^(3)Cn^4^4^C04^C^-»oooooooooooooooooooooooooooooooooooo-»--»- (DWO)-'U1(»00O1W00t!)U1(OO1 4^IV)^^WCOCO^(3)œcn^C04^(3)WIV)^(3)IV)4^^IV)4^(3)(3)CncOC»^^4^4^ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^, -g en c»^, iv) -»-^^, en -P>. en WCO^W4^^CO(^4^WWWWW4^4^4^4^WW4^4^4^4^4^ CO^^^, IV) CO CO —- ox-'x-' ^ ^ en x—' -> IV) CD ^J en o o-î

OOOOOOOOOOOOO I ooooooooooooooooooooooooooooooooooooo O O g ^bbbb^bbbbbbbPbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb o -» o' owiv)4^4^cniv)oiv)cnc»wiv)ocniv)^^^^^^^iv)^^o^^iv)iv)^^w-^iv)^w^^w ai o Q. N)UvlCOv|0)WCOv|-iOO-'OIOOI)ffl*M(OÜ1(DroO)(»W(OW(D-'WIOOO-'(DO)0-'v|OWÖ)v|0)CnCOÖ)v|0)Offl CO CO : en' CO~~~~~~~~~~~~~~~~~~~~~~~~~~~.-..-..-..-. 05 ^J CO .-. IV) -» o CD Ji. co en en 4*. co 4*. ^j c» en j*., C»4^tOtOtOtOtOtOtOtOtOtOCOCOCOCOCOCOCOJi.COJi.COIV)IV)IV)COIV)COCOIV), N3 o05 o o OD CO CO CD 3 CD I Ol I OOOI OOOI OOI I I OOOOOOOOO I OOOOOOO I OOOOO I oooooooooo oI oI PbPPbbbPbbbPbbPPPbbbbbbbbbPbbbbbbbPbbbbbPbbbbbbbbbb o MlOOOONlOOCOœiOO-'IOlOOOvIOUMCOM-'vl-iOul-iffllOJi^-iOtDHOW^OOUCO^rocDCOIO-'OO-'OOOO-»-C0-»-O-P>.C0C»OC0IV)OOOO-»--»-OOO-»-OOOO-»-OOOOIV)OOOO-»--»-OOOOO-»--»--»-IV)-»--»- ob ob ^4^^^4^cow^wco^^wco^^^wwwwwwwww^ww^J^-v -» oo^^^, -g^^^, iv)^^, cd iv) -g^^^^^^^^^, -»-^^^^^^^ -g^^^^^, -p».^^^^, oo co o en co co -» oo -3 o^—' co enx-'x-'x-' cox-'x-'x-' o^^—' a> $> wv_^s_^s_^s_^s_^s_^s_^ ^ ^ ^ ^ ^ ^ ^ ^ ^ _». _». _». _». _». _». 3 4^^^^^^^^^^ w w CD ^ v_^s_^ ^ ^ v_^s_^s_^ ^ ^ ^ ->. ->. co en 4*. co (D ooooooooooooooooooooooooooooooooooooooooooooooooooooo 3 -» b b b -» 4*- b b b b b b b ^ b b bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb^^bbj^ ^J IV) -P>. CO Cn^, O(D*0)00Ji.OCi)0)OMD

PbPbP^-bbbbbbbbPbbbbbbbPbbbbbbbbbbbbbbbbbbbbbbbbbbbbPPI Ol Ol OOOOOOOOO I OOOOOOO I OOOOOOOOOOOOOOOOOOOOOOOOOOOO! I M^OAOvlOOA^^MMCBA^^WWvlAO)0000)CB^^vlCBvlWO)rjN)^CflN)0)rj^Mvlö)Cnvl^WWOAN)N)^OOOMOO-i-iMai->IM0-»OO-»-»O-»OOO-»OOO-»-»-»-»O-»M-»-»-»OMMO-i-iM-i-iOM-iOOOO ^4^^(3)^^4^W4^CO^(3)(^^^4^WWWWWW^WWWWCO^, -^1^, CO^^^^^^^^^, O)^^,^^^^^ -»-^^^^^^^^^^^^^^^^^^^^^^ 4*. 4*. O) -~4 IV) CO O) 00 bbb^b^bbb^^^^^bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbooooooooooooooooooooooooooooooooooooooooooooooooooooo *00OMK)0)*C0lD0)fflOO(DvlOvlCnvlOO^O0)OM-i0)W(D>JI000(D-'W^*0)00(0W*K)UlMOM0C00l)vl-i ^^^^^^^^^^^^^^^^^^^^^^^^-v^-v^-v^-v^-v^-v^-v^-v^-v^-v^-v^-v^-v^-v^-v^-v^-v^-v^-v^-v^-v^-v O CD -P>- O O CO Cn^ JJJJJJ^^(D(D(OCO0000(»0000(»00C0C0C0sIv|v|v|n|n|n|n|s|vIÖ)O)O)O)O)O)O)O)O)O)Ü1ü1ü1ü1ü1ü1ü1ü1U1U1***Aoooooooooooooooooooooooooooooooooooooooooooooooooooooooo OCDOOvIOülAW-'OOOOOOO0)ül*W10CI)^0)ü1*WN)-'Ol£)CI)sl0)ü1.M))N)-'OlDCI)^0)tfl*WN)-'O(D00^ö)ü1^WN)-iO(D(llvHi oooooooooooooooooooooooooooooooooooooooooooooooooooooooo (3)^^o(3)www^wcnœ4i.^^cncn^œcoo4i.wcn4i.4i.4i.iv)wwww4^000-»-OOOOOOOIV)(3)-»-000000-»-IV)-»-00000000000000000000000 0)ÜiO)MüiAO)00ooo-»-ooo-»-co -> -» (3)IV)IV)COOOOOOOCOIV)4i. ^, ^, CD O (3) -P>- (3) O IV) ^-^ UI-'UlOOOOW-'OOWMCD^Ul^NlOO^OMvIJi.^ö) O 4i- IV) CO (3) CO (3) (3)^, ro en^,^^--^--^--^--^--^-. iv), co cnc3)cncocn4i.4i.co(3)cocn' cn ji. co ^j a> ~-i vi- Cn4i-W4i.WWWWW4i.4i.W4i.4i.4i.4i.4i.Cn4i.4i.W4i.4i.COCnCnCnœCn4^

o o O O o o o o o o o 1 o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o 1 o o o o o o o o 1 o o O o o o o o o o o o ^ _i o o o o o o o _i o o o o o o o o o o o o o o o o o o o o o o o o <_) o o o o o o o o <_) —i —i ^J IV) co IV) IV) IV) co o co O ^J IV) IV) IV) —i cn 4i. CO 4i. —i IV) IV) IV) —i IV) —i —i —i IV) —i IV) IV) —i —i —i —i IV) IV) IV) —i IV) —i IV) IV) o —i CO IV) IV) 4i- IV) —i CO o 4i. CD O co ^J o o o ~^ CD IV) 00 ^-v IV) CD 00 00 cn 00 00 ^J ü) ^J CD CO ^J ~^ CO 00 CO o CO ~^ o cn CO IV) CD o cn -g ü) o 4i. IV) 4i. cn CO 00 o 00 4i- IV) o ü)

-P>.cncn(3)-P>.COCOCOCncocn, cn .p». co oo cn cn cn (3)4i-COCOCOCOCOCOCOCOCOCOCOCOC04i.COC04i.COCOCOCOCO, 4i.ji.4i.Cncncoco4i.lv) IV)"

Ol OOOOOOI I I OOOOOOOOOOOOOOI OOOOOOOOOI I OOOOI Ol OOOOOOOOOOOI O ,—. ,—. ,—. ,—. ,—. ,—. O O O ,—. . ,—.oooooooooooo^ooooooooo^^oooo^o^ooooooooooo,—. ,—. ,—. ,—. ,—. ,—. ,—. ,—. ,—. ,—. ,—. O ,—. ,—. ,—. ,—. ,—. ,—. ,—. ,—. ,—. O O ,—. ,—. ,—. ,—. O ,—. O ,—. ,—. ,—. ,—. ,—. ,—. ,—. ,—. ,—. ,—. ,—. o -»o-»-cno-»-o-»-oooco^jo^oooooo^^^o-»- IV)O->-OOC04i.|V)^JCnOOOOOOOOOOOOOOOOO->-OOOO->-OIV)C0->-CnCnOOC0O 4>.-iW(OviooN)jiOoro ^J^-v v|(0^^-'UI0MvlC0UlMO*-'vlü1(0WW00ÜlOO(»0)WM-'00OU1WM.|i-'O*U1Wiy-'M ^~- -t^^-v^-v^-v^-v^-v^-v 00 4i. -»-^ CO -P>-^-. 4i. 00 4i. 4i. CO -i.^—" x—' x—' x—' x—' x—' CO^^^, cn x—'x—' 4i. co cn (3) oooooooooooooooooooooooooooooooooooooooooooooooooooooooo b^bbbbbbbbb^ioMbbb^bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbiv)ÜlO(D(»Ül^Amvl(flCDO*0)vlW(»Ül(OfflW(DO)*UWUWMUUWWUW**^W^^MMIOW**0)v|v)Nl(0^|yWÜ1 CnlV)CnO0CDO04i.O0CnlV)O0 IV)OIV)COOCOIV)CO^COCOCOIV)œ^W4i.^CncO(3)IV)IV)^COIV)OœcOC0^4i.COIV)IV)W 00 ^^3^^^^^3^^^^^3^^^^3^^^^^^^^^^^^^^^^^^^^^^^^^^^^33^^^'co^x-'-g^^, ^-v

bbbbbbbbPbbPbPbbbbbbbbbbbPbbbbbPbbbbbbbbbPbbbbbPbbbbbbbbOOOOOOOOI OOI Ol OOOOOOOOOOOI OOOOOI OOOOOOOOOI OOOOOI oooooooo IOMvl^4»O^O-'N|vJWUi410)0)-'WÜ100vl0)M0)OOOÜl^OWO0)Or0-'0)(0^WMO0)-'©W4>.-'OU1IO00vlvl-iOowiv)-»-ooo4i.o-»-oo(3)o-»--»-iv)iv)owocn-»-ooo-»-oo-»--»-oo-»--»-oooo-»--»-oooo-»-oo-»-owcn-»-ow^j O), 00- 4i. cn cn ^j (3), 4i. CO 4i. cn O) Ol cococococococococo, co co co co cn, cn cn cn (3) 4i. co 4i. s x-'x-'x-' «r> www« «^ ^^^^^^ IV) co^^^^^^^^^^ CO oooooooooooooooooooooooooooooooooooooooooooooooooooooooo o o O -» O O O O O O O Lj. Lj. o o o o -> o -> o _i _i o o o o o o o o o o o o o o o o o o o o o o o o o -> o o -> o o o o ^J (3) ^J -> (3) (3) Cn (3) CO cn CD (3) IV) ^J CO CO vIOlCOO 00 00 o ^J 4i. IV) CO 4i. cn CO CO CO CO 4i. 4i. 4i. CO 4i. CO 4i. 4i. (O cn 4i. 4i. 4i. CD 00 -> ^J cd -> cn 4i. ^J CD IV) (3) 4i. ^J O ^J 4i. (3) cn CO -> 00 IV) ~^ ü) cn O CO CO (3) ^ o o CD oo oo cn CO o IV) -^ cn IV) CO CO 4i. 00 IV) CO O 00 CD CO (3) 00 CD CO (3) cn cn O 00 (3) (3) CO 00

(3) (3) Cn cncncncn4i.cn ^j _». _». ^j 4i.4i.4i. CO(3)4i.W4i.4i.4i.WW4i.4i.4i.4i.4i.4i.4i.4i.4i.Cn4i.Cn4i.4i.4i.œ^œ(3)^œcn4i.(3) (3) cn (3)s 8. Appendix

C111 0.103(8) 0.098(8) 0.051(7) 0.170(12) 0.062(8) 0.103(9) C112 0.069(5) 0.042(5) 0.014(4) 0.086(6) 0.011(4) 0.035(4)

Table 8.12. Geometrie parameters (Â, °).

Si3-C40 1.815(6) 08-C72 1.426 (8) Si3-C45 1.878 (2) 08-C112 1.464 (9) Si3-C41 1.878 (2) C1-C2 1.400(11) SÎ3-C141 1.879 (2) C1-C21 1.458(11) Si3-C145 1.883 (2) C1-C20 1.506(10) Si3-C43 1.901 (9) C2-C3 1.278(11) Si7-C96 1.861 (5) C3-C4 1.343(11) Si7-C99 1.876 (2) C4-C5 1.215(11) Si7-C97 1.878 (2) C5-C6 1.496(10) Si7-C197 1.880 (2) C6-C7 1.463(11) SÎ7-C101 1.881 (2) C6-C30 1.505(11) Si5-C81 1.850(11) C7-C8 1.185(11) Si5-C79 1.872(12) C8-C9 1.357(11) Si5-C78 1.882 (9) C9-C10 1.198(10) Si5-C83 1.908(13) C10-C11 1.429(10) SM-C23 1.843(11) C11-C12 1.460 (9) SM-C22 1.856 (8) C11-C39 1.509 (8) SM-C27 1.863(11) C12-C13 1.216(9) SM-C25 1.882(11) C13-C14 1.380(10) Si2-C31 1.773 (6) C14-C15 1.178(10) Si2-C32 1.877 (2) C15-C16 1.500 (9) Si2-C34 1.877 (2) C16-C48 1.485 (9) Si2-C36 1.878 (2) C16-C17 1.492(10) Si6-C92 1.87 (3) C17-C18 1.179(10) Si6-C88 1.877 (2) C18-C19 1.389(10) Si6-C90 1.880 (2) C19-C20 1.165(10) Si6-C192 1.881 (2) C21-C22 1.225(11) Si6-C87 1.915(8) C23-C24 1.50 (2) SÎ8-C110 1.792(10) C25-C26 1.535(15) Si8-C105 1.868 (7) C27-C28 1.528(14) Si8-C106 1.873 (9) C30-C31 1.236(10) Si8-C108 1.932(10) C32-C33 1.528 (2) Si4-C52 1.824(12) C34-C35 1.531 (2) Si4-C49 1.840 (7) C34-C135 1.533 (7) Si4-C54 1.875 (9) C37-C36 1.529 (2) Si4-C50 1.937(10) C137-C36 1.529 (2) 03-C11 1.469 (8) C39-C40 1.213(8) 03-C47 1.472(10) C41-C42 1.54 (2) 01-C29 1.314(10) C45-C46 1.78 (2) 01-C1 1.424 (9) C141-C142 1.54 (2) 02-C38 1.419(11) C145-C146 1.531 (2) 02-C6 1.453 (8) C43-C44 1.386(16) 04-C16 1.409 (9) C48-C49 1.205 (9) 04-C56 1.453 (8) C50-C51 1.482(17) 06-C62 1.399 (8) C52-C53 1.564(14) 06-C94 1.470(10) C54-C55 1.621 (16) 05-C57 1.421 (9) C57-C76 1.446(10) 05-C85 1.463 (9) C57-C58 1.514(10) 07-C67 1.380 (8) C57-C77 1.514(9) O7-C103 1.420 (9) C58-C59 1.141 (10) ooooooooooooooooooooooooooooooooooo—^ —i —i —i ro ro ro ro ^j ^j 00 ^J 00 00 CD CD CD CD CD CD CD CD CD -p- -p- -p- -p- -P- -p- -p- -p- & -p>. -p>. -p>. oooooooooooooooooooo co ro CO CO 00 CD —» CD —» —» CD ^J CD ü) ^J CD Ü) CD ü) Ü) -p- -p- —» cn o -p- —» cn o —» cn o cn o o ^J^J^J^J^J^J^J0505050505C35C35C35C35C35C35C35Cn

C/)C/)C/)C/)C/)C/)C/)C/)C/)C/) C/)C/)C/)C/)C/)C/)C/)C/)C/) 1 1 (/)(/)(/) C/)C/)C/)C/)C/)C/)C/)C/)C/) CnJi.C0IV)IV)->-OCD00^J^JC»Cnj!>.C0IV)IV)->-OCDI I I I I I I I I I I I I I I I I I I I -» -» -» -» cn cn cn cn cn cn œ ^J ^j ^j ^J ^J ^J ^J ^j ^J (/) . -p>. -p>. en ^J ^J ro CO CO CO 00 00 CD o o o CD CD CD ^J ^J CD -p- -p- CO CO CO -P- -P- -p- -p- -P- -p>. cn o CO CO -p- cn cn cn cn Mn|OnI0)n|O0)00O00(DO00OC0vIÜ1(»ON)WIV>-!i.-!i.-!i.|V>W-»-Cn4i.4i.|vjWIV>-P>.-P>.-P>.-»--P>. 05-P>.|V)CnCD^J00IV)O-P>.->-00C0CDC»IV)C0C0->-^J O O o o o o N) ^J (7> -P- -p- -p- 00 CD 00 ü) CD ro o cn _^ o N) o o (7> CO O O o o -p- ^J _^ _^ o o o -P- o CO o o o o CD CD CD CD CD CD ro -p- a> cn a> ^J cn a> -p- O) -p- a> -» ^j a> ^J ro ^J ^j _i cn ^J 00 o> O cn -p- CO o N) O ^J 00 o CO —^ ^—^ ^—^ ^—^ s-N ^—^ ^—^ ^—^ ^—^ CD ro o CD ^N O o CO CD CO 00 ^N 00 cn -4 ro ^N ^N o _ -p>. CD 00 CD 00 en cn ^J -t- -P- Ü) cn -p- cn ^^ ^»^ CD 00 ^^ CD 00 ^-^ —i ^^ ------^^ ^^ ^^ —' ^^ ^^ ^^ ^^ ^^ ^^ —' ^^ ^^ ^^ —' —' ^^ ^^ ^^ ^^ ü) CD Ü) ro CO ~-i CO ro CO CO cn 00 00 CO 00 CO o ~-i CO —^ CO CO

a> a

ooooooooooooooooooooooooooooooooooo (7> —^ CO ro -^ cn -p- en -p- en en —^ —^ —^ —^ —^ —^ —^ CO 00 CO CO 00 CO 00 CO CO CO CO CO CO CO CO N) N) OOOOOOOOOOOOOOOOOOOO ro a> 00 CD -> -p>. CD ro CD ro ro o o —» o —» —» CD o 00 ro o 00 ro 00 ro ro -p>. ro —» ro —» —» ^j ro -»-»-'-'-'-i(D©(OlO-i-i(_> rvj -'OOOO(0vl(D(DU1(0(DN)O0l)0)W-'lDvl C35-I^hO—^ U ^ A A Ji ^ A CO CO CO CO CO CO CO cricricricricricricricricriivJivJrororoiv)-^-!: SaaaaaOooo^Voooooooo 00 CO CO CO CO CO OOOOOOcdiv)-»-cdOOcdcdoooooooooo^j O O O O O O O O O O O 1 1 1 1 1 1 i OOOOOOOOOOOOOOOOO -'-'-'-'-'-'(»OOOllOfflW-'COvlAHooCO CD cn e» -» -p>. —i —i —i cn en en en en -p>. O o o o o o o 00 00 00 CO CO 00 CO CO CO CO CO CO N) N) -»ooooco oo w->- -tt OJ ^j -> iv) o o o -p>. -p>. CD o o o o o o 00 ^j ^J ^J CD CD CD o o 00 a> a> a> -p>. -p>. ro cn cn cd ^j cn oo 00 00 00 cn Ol^vIOMCOWWWCOMfflOOAüiölOlDCnNlOT^^k)Cn^cncncn^cn^^coc»^-cnji.ji.Lj. _>._>._>._>._>._>._>._>._>._>._>._>._>._>._>._>._>._>._>._>._>.(o->.oo->.a>->.->.->.->.->.->.->.->.->. -P>.^J00C35CDCDO-»-OO^-v^-v^-v^-v^-v^JCDIV)00C35 ->-->-->-->-->-->-ooo->-->-->-ooo->-oo->-ooooocniv)j!>.co->-o->-ooooo ^-^ ^-^ ^-^ ^ ^-^ ^-^ ^-^ ^-^ ^ ^-^ Ji. CO CO CO CO^^^^^ —>—>—>—>-ro—»-iv>iv>iv> OOOC35CD-»- b)b«wMb)wu^wk)^cjoüiwM^*.biy ^ to ^~, o> ^ Korocniocn^cncD^ vlAOlO^OO^^^^ 3^333'cîi^'ôi^'ôi^^^'ôi^^^^^^^ ^j^ w^ ot^'S'öo'co^j'co'w^'oi CO0OSi-O)T-(OO)NSSSNtOS(D(DSodi^c\i^odcoöi^i^öi^^coi^coi^

CO CO co ç— *- W W CD 00 r^ r^ r^ o CT) CN co CO co CN uo * r^ co 00 00 r^ o CT) CN * r^ r^ ^— CN m t r^ r^ CM CO CO CO CO t t t tf co oo m r^ r^ r^ m co m co T— CD 00 co CD co co co co co uo CD co 00 CD co co r^ co r^ o co n T- n r^ r^ r^ r^ uo uo UJ UJ CT) i w o w w w lO W O W w w w uo O r^ O O O O O O CD 00 o CD O O O O O O CD O CD O O O O O O T- r» l ÜÜÜÜÜÜWW O < ) < ) 1 O cj 1 < ) 1 l 1 1 l O cj < ) O co CT) O ,— uo CO oo CT) o CN t 1 r^ r^ r^ 00 CT) o ^— 1 CM 1 CM CM co tf uo co r^ r^ r^ 00 CT) o ^_ 1 r^ i r^ CN co t m co r^ 00 CT) CO CO tf -

"H

CD UO UO r^ CD CD CD CD r^ CT) 00 CT) 00 CD CD co r» CD CD 00 00 r^ r^ CD uo CD CD uo uo 00 00 00 00 CD uo CD CD uo uo r^ 00 r^ 00 CT) 00 T- r^ r^ 00 r^ uo co CO t- CO CT) CT) O ,- CD r^ CT) CN co ,- uo 00 r^ CN r^ CD 00 r^ uo CT) uo r^ r^ CD uo o CO t o oo r^ t uo CD uo ,- tf tf o o t 00 ,- CN uo CN CD CN uo ^ uo ^oo CT) UO CO UO CN CO co CT) CD CT) o o CD uo co CN uo UO CN o CT) uo co uo co CT) T— T— 00 CT) CN UO 00 co CD CN CN T— CT) uo uo oo r^ CT) t CN CD r^ N(N CN uo co o o o O o O T- o o o o o o o o O

CN

C82-C81-Si5 112.6(7) C100-C99-C200 118.3(18) C84-C83-Si5 112.6(10) C100-C99-Si7 112.9(3) C87-C86-C62 176.7(9) C200-C99-Si7 113.1 (3) C86-C87-Si6 173.7(8) C98-C97-Si7 113.1 (3) C89-C88-Si6 146.9(13) C198-C197-Si7 135.4(17) C91-C90-Si6 107.5(17) C102-C101-Si7 113.1 (3) C93-C92-Si6 125(2) C105-C104-C72 178.3(8) C93-C192-Si6 104.1 (19) C104-C105-Si8 177.5(9) C190-C91-C90 98(2) C107-C106-Si8 117.8(8) C96-C95-C67 177.9(9) C109-C108-Si8 116.3(7) C95-C96-Si7 177.7(7) C111-C110-Si8 112.0(7)

C29-01-C1-C2 -56.7 (9) C18-C19-C20-C1 -4(3)x101 C29-01-C1-C21 179.6(7) C2-C1-C20-C19 -5(8) C29-O1-C1-C20 58.6 (9) O1-C1-C20-C19 -120(8) 01-C1-C2-C3 164(4) C21-C1-C20-C19 119(8) C21-C1-C2-C3 -74 (5) C2-C1-C21-C22 -8 (3) x 101 C20-C1-C2-C3 47(5) 01-C1-C21-C22 4(3)x101 C1-C2-C3-C4 -87(16) C20-C1-C21-C22 16(3)x101 C2-C3-C4-C5 92 (19) C1-C21-C22-SM 2(4)x101 C3-C4-C5-C6 -62(14) C23-SM-C22-C21 -128(18) C38-02-C6-C7 -65.4 (9) C27-SM-C22-C21 113(18) C38-02-C6-C5 180.0(7) C25-SM-C22-C21 -5(18) C38-O2-C6-C30 60.4 (9) C22-SM-C23-C24 66.3(11) C4-C5-C6-02 148(7) C27-SM-C23-C24 -175.1 (10) C4-C5-C6-C7 29(7) C25-SM-C23-C24 -52.7(11) C4-C5-C6-C30 -90 (7) C23-SM-C25-C26 -178.7(8) 02-C6-C7-C8 18(10)x101 C22-SM-C25-C26 61.1 (8) C5-C6-C7-C8 -67(11) C27-SM-C25-C26 -55.8 (9) C30-C6-C7-C8 52(12) C23-SM-C27-C28 -67.8(11) C6-C7-C8-C9 18 (17) C22-SM-C27-C28 50.9(11) C7-C8-C9-C10 12(16) C25-SM-C27-C28 166.7(10) C8-C9-C10-C11 -1 (16) O2-C6-C30-C31 -168(13) C9-C10-C11-C12 30(7) C7-C6-C30-C31 -41 (13) C9-C10-C11-O3 151 (7) C5-C6-C30-C31 75(13) C9-C10-C11-C39 -90 (7) C6-C30-C31-Si2 -10(18) C47-O3-C11-C10 -175.6(6) C32-Si2-C31-C30 -59 (6) C47-03-C11-C12 -55.7 (8) C34-Si2-C31-C30 -178(6) C47-03-C11-C39 63.6 (8) C36-Si2-C31-C30 55(7) C10-C11-C12-C13 -18(6) C31-Si2-C32-C33 27.7(16) 03-C11-C12-C13 -136(5) C34-Si2-C32-C33 147.5(12) C39-C11-C12-C13 104(5) C36-Si2-C32-C33 -89.6(14) C11-C12-C13-C14 7(14) C31-Si2-C34-C35 65(2) C12-C13-C14-C15 -1 (3) x 101 C32-Si2-C34-C35 -55 (3) C13-C14-C15-C16 1 (3)x101 C36-Si2-C34-C35 -170(2) C56-04-C16-C48 -175.7(5) C31-Si2-C34-C135 61 (5) C56-04-C16-C17 61.1 (7) C32-Si2-C34-C135 -59 (5) C56-04-C16-C15 -56.4 (7) C36-Si2-C34-C135 -175(5) C14-C15-C16-04 135(6) C31-Si2-C36-C137 72.4(16) C14-C15-C16-C48 -107(6) C32-Si2-C36-C137 -170.6(16) C14-C15-C16-C17 13(6) C34-Si2-C36-C137 -52.2(18) 04-C16-C17-C18 -128(14) C31-Si2-C36-C37 -47.9(15) C48-C16-C17-C18 112(14) C32-Si2-C36-C37 69.2(15) C15-C16-C17-C18 -6(14) C34-Si2-C36-C37 -172.4(15) C16-C17-C18-C19 -1 (2) x 101 C10-C11-C39-C40 66(7) C17-C18-C19-C20 4(3)x101 C12-C11-C39-C40 -54 (7)

192 8. Appendix

O3-C11-C39-C40 -175(6) C59-C60-C61-C62 2 (3) x 101 C11-C39-C40-Si3 -98(10) C94-06-C62-C61 172.6(8) C45-Si3-C40-C39 133(9) C94-06-C62-C86 -66.8(10) C41-Si3-C40-C39 -116(9) C94-06-C62-C63 52.2 (9) C141-Si3-C40-C39 -72 (9) C60-C61-C62-O6 -141 (7) C145-Si3-C40-C39 18 (10) x 101 C60-C61-C62-C86 98(7) C43-Si3-C40-C39 10(9) C60-C61-C62-C63 -19(7) C40-Si3-C41-C42 55.3(19) 06-C62-C63-C64 150(5) C45-Si3-C41-C42 169.0(18) C61-C62-C63-C64 31 (5) C141-Si3-C41-C42 -41.8(19) C86-C62-C63-C64 -88 (5) C145-Si3-C41-C42 155.1 (19) C62-C63-C64-C65 1 (18) C43-Si3-C41-C42 -64.8(18) C63-C64-C65-C66 2 (2) x 101 C40-Si3-C45-C46 79.6(11) C64-C65-C66-C67 -13(15) C41-Si3-C45-C46 -34.2(11) C103-O7-C67-C95 -59.2 (9) C141-Si3-C45-C46 -63.9(15) C103-O7-C67-C66 -178.6(6) C145-Si3-C45-C46 -16.8(10) C103-O7-C67-C68 66.4 (7) C43-Si3-C45-C46 -162.0(10) C65-C66-C67-07 -148(6) C40-Si3-C141-C142 -72.7(14) C65-C66-C67-C95 88(6) C45-Si3-C141-C142 70.7(17) C65-C66-C67-C68 -28 (6) C41-Si3-C141-C142 24.4(14) 07-C67-C68-C69 149(10) C145-Si3-C141-C142 39.4(14) C95-C67-C68-C69 -82(10) C43-Si3-C141-C142 -176.5(14) C66-C67-C68-C69 35(11) C40-Si3-C145-C146 -68.6(13) C67-C68-C69-C70 -2(3)x101 C45-Si3-C145-C146 29.6(13) C68-C69-C70-C71 1 (3) x 101 C41-Si3-C145-C146 -169.9(14) C69-C70-C71-C72 -58(12) C141-Si3-C145-C146 178.6(13) C112-O8-C72-C104 176.7(6) C43-Si3-C145-C146 94.0(16) C112-08-C72-C73 -63.5 (7) C40-Si3-C43-C44 54.0(17) C112-08-C72-C71 56.4 (8) C45-Si3-C43-C44 -65.1 (17) C70-C71-C72-O8 -95 (8) C41-Si3-C43-C44 174.8(16) C70-C71-C72-C104 146(8) C141-Si3-C43-C44 159.3(17) C70-C71-C72-C73 27(8) C145-Si3-C43-C44 -108.6(18) 08-C72-C73-C74 119(6) 04-C16-C48-C49 8(3)x101 C104-C72-C73-C74 -123(6) C17-C16-C48-C49 -15(3)x101 C71-C72-C73-C74 -5 (6) C15-C16-C48-C49 -4 (3) x 101 C72-C73-C74-C75 -2(5)x101 C16-C48-C49-Si4 -13(3)x101 C73-C74-C75-C76 5 (6) x 101 C52-Si4-C49-C48 44(16) C74-C75-C76-C57 -13(17) C54-Si4-C49-C48 167(16) 05-C57-C76-C75 117(7) C50-Si4-C49-C48 -73(16) C58-C57-C76-C75 -6(7) C52-Si4-C50-C51 175.2(8) C77-C57-C76-C75 -123(7) C49-Si4-C50-C51 -65.9 (8) 05-C57-C77-C78 12(4)x101 C54-Si4-C50-C51 51.1 (9) C76-C57-C77-C78 -0(4)x101 C49-Si4-C52-C53 -49.6 (8) C58-C57-C77-C78 -12 (4) x 10 C54-Si4-C52-C53 -168.9(6) C57-C77-C78-Si5 -16 (3) x 10 C50-Si4-C52-C53 67.4 (8) C81-Si5-C78-C77 -14(19) C52-Si4-C54-C55 52.5 (9) C79-Si5-C78-C77 -136(19) C49-Si4-C54-C55 -68.7 (9) C83-Si5-C78-C77 105(19) C50-Si4-C54-C55 174.2(8) C81-Si5-C79-C80 -172.1 (11) C85-05-C57-C76 58.0 (8) C78-Si5-C79-C80 -54.6(12) C85-05-C57-C58 178.7(6) C83-Si5-C79-C80 62.1 (12) C85-05-C57-C77 -64.1 (8) C79-Si5-C81-C82 55.8 (8) 05-C57-C58-C59 -99 (9) C78-Si5-C81-C82 -64.7 (7) C76-C57-C58-C59 25(9) C83-Si5-C81-C82 179.7(6) C77-C57-C58-C59 144(9) C81-Si5-C83-C84 46.4 (9) C57-C58-C59-C60 -64(13) C79-Si5-C83-C84 172.4(9) C58-C59-C60-C61 3(3)x101 C78-Si5-C83-C84 -68.5(10) 8. Appendix

06-C62-C86-C87 145(15) C101-Si7-C99-C100 36(2) C61-C62-C86-C87 -96(16) C96-Si7-C99-C200 61.6(13) C63-C62-C86-C87 23(16) C97-Si7-C99-C200 -51.4(15) C62-C86-C87-Si6 6(2)x101 C197-Si7-C99-C200 -66.7(15) C92-Si6-C87-C86 -134(8) C101-Si7-C99-C200 173.5(13) C88-Si6-C87-C86 16(8) C96-Si7-C97-C98 -7(3) C90-Si6-C87-C86 157(8) C99-Si7-C97-C98 107(2) C192-Si6-C87-C86 -97 (8) C197-Si7-C97-C98 -101 (3) C92-Si6-C88-C89 164(3) C101-Si7-C97-C98 -128(3) C90-Si6-C88-C89 -108(3) C96-Si7-C197-C198 27(3) C192-Si6-C88-C89 139(3) C99-Si7-C197-C198 156(3) C87-Si6-C88-C89 28(3) C97-Si7-C197-C198 121 (3) C92-Si6-C90-C91 -148(3) C101-Si7-C197-C198 -82 (3) C88-Si6-C90-C91 82(3) C96-Si7-C101-C102 -169.8(11) C192-Si6-C90-C91 -160(2) C99-Si7-C101-C102 77.6(12) C87-Si6-C90-C91 -51 (3) C97-Si7-C101-C102 -48.0(12) C88-Si6-C92-C93 -139(3) C197-Si7-C101-C102 -59.9(12) C90-Si6-C92-C93 91 (4) O8-C72-C104-C105 -12 (3) x 10 C87-Si6-C92-C93 -27 (4) C73-C72-C104-C105 12(3)x101 C88-Si6-C192-C93 -80 (2) C71-C72-C104-C105 0 (4) x 101 C90-Si6-C192-C93 165(3) C72-C104-C105-Si8 10(4)x101 C87-Si6-C192-C93 56(2) C110-Si8-C105-C104 135(16) Si6-C90-C91-C190 -50 (3) C106-Si8-C105-C104 -101 (16) 07-C67-C95-C96 -10(2)x101 C108-Si8-C105-C104 18(16) C66-C67-C95-C96 2(2)x101 C110-Si8-C106-C107 -177.8(9) C68-C67-C95-C96 13(2)x101 C105-Si8-C106-C107 60.3(10) C67-C95-C96-Si7 -148(16) C108-Si8-C106-C107 -55.4(10) C99-Si7-C96-C95 11 (2) x 101 C110-Si8-C108-C109 -65.2 (8) C97-Si7-C96-C95 -14(2)x101 C105-Si8-C108-C109 52.5 (9) C197-Si7-C96-C95 -11 (2) x 101 C106-Si8-C108-C109 169.8(8) C101-Si7-C96-C95 -1 (2)x101 C105-Si8-C110-C111 69.0 (7) C96-Si7-C99-C100 -76 (2) C106-Si8-C110-C111 -52.1 (8) C97-Si7-C99-C100 171 (2) C108-Si8-C110-C111 -175.9(6) C197-Si7-C99-C100 156(2)

References

Mackay, S., Gilmore, C. J.,Edwards, C, Stewart, N. & Shankland, K. (1999). maXus Computer Program for the Solution and Refinement of Crystal Structures. Bruker Nonius, The Netherlands, MacScience, Japan & The University of Glasgow.

Johnson, C. K. (1976). ORTEP-W. A Fortran Thermal-Ellipsoid Plot Program. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.

Otwinowski, Z. and Minor, W, (1997). In Methods in Enzymology, 276, edited by C. W. Carter, Jr. & R. M. Sweet pp. 307-326, New York: Academic Press.

Altomare, A., Burla, M. C, Camalli, M., Cascarano, G. L, Giacovazzo, C, Guagliardi, A., Moliterni, A. G. G & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.

Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

194 Curriculum Vitae

Date of Birth: December 29, 1978 in Grottaglie (TA), Italy

1984 - 1989 Primary School, Montemesola, Italy

1989 - 1992 Middle School, Montemesola, Italy

1992 - 1994 Secondary School (Gymnasium), Liceo Scientifico Statale "G. Battaglini",

Taranto, Italy

1994- 1997 Secondary School (Gymnasium), Liceo Scientifico Statale "A.B. Sabin",

Bologna, Italy.

1997 - 2002 Undergraduate studies in Chemistry at the Faculty of Industrial Chemistry,

University of Bologna, Italy.

1999 - 2000 Socrates/Erasmus exchange programme at the Faculty of Chemistry, Ruhr

Universität, Bochum, Germany

2002 Qualifying examination to the profession of chemist, University of

Camerino, Italy

2003 - 2007 Graduate studies under the supervision of Prof. Dr. F. Diederich at the

Laboratory of Organic Chemistry, ETH Zürich, Switzerland. Teaching

assistant in several laboratory courses. Supervisor of a M. Sc. thesis.

Zürich, September 2007

Vito Convertino