Vreeland's Striped Coralroot
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phylogenetic Placement of the Enigmatic Orchid Genera Thaia and Tangtsinia: Evidence from Molecular and Morphological Characters
TAXON 61 (1) • February 2012: 45–54 Xiang & al. • Phylogenetic placement of Thaia and Tangtsinia Phylogenetic placement of the enigmatic orchid genera Thaia and Tangtsinia: Evidence from molecular and morphological characters Xiao-Guo Xiang,1 De-Zhu Li,2 Wei-Tao Jin,1 Hai-Lang Zhou,1 Jian-Wu Li3 & Xiao-Hua Jin1 1 Herbarium & State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P.R. China 2 Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650204, P.R. China 3 Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun Township, Mengla County, Yunnan province 666303, P.R. China Author for correspondence: Xiao-Hua Jin, [email protected] Abstract The phylogenetic position of two enigmatic Asian orchid genera, Thaia and Tangtsinia, were inferred from molecular data and morphological evidence. An analysis of combined plastid data (rbcL + matK + psaB) using Bayesian and parsimony methods revealed that Thaia is a sister group to the higher epidendroids, and tribe Neottieae is polyphyletic unless Thaia is removed. Morphological evidence, such as plicate leaves and corms, the structure of the gynostemium and the micromorphol- ogy of pollinia, also indicates that Thaia should be excluded from Neottieae. Thaieae, a new tribe, is therefore tentatively established. Using Bayesian and parsimony methods, analyses of combined plastid and nuclear datasets (rbcL, matK, psaB, trnL-F, ITS, Xdh) confirmed that the monotypic genus Tangtsinia was nested within and is synonymous with the genus Cepha- lanthera, in which an apical stigma has evolved independently at least twice. -
Orchids of Lakeland
a field guide to OrchidsLakeland Provincial Park, Provincial Recreation Area and surrounding region Written by: Patsy Cotterill Illustrated by: John Maywood Pub No: I/681 ISBN: 0-7785-0020-9 Printed 1998 Sepal Sepal Petal Petal Seed Sepal Lip (labellum) Ovary Finding an elusive (capsule) orchid nestled away in Sepal the boreal forest is a Scape thrilling experience for amateur and Petal experienced naturalists alike. This type Petal of recreation has become a passion for Column some and, for many others, a wonder- ful way to explore nature and learn Ovary Sepal (capsule) more about the living world around us. Sepal But, we also need to be careful when Lip (labellum) looking at these delicate plants. Be mindful of their fragile nature... keep Spur only memories and take only photo- graphs so that others, too, can enjoy. Corm OrchidsMany people are surprisedin Alberta to learn that orchids grow naturally in Alberta. Orchids are typically associated with tropical rain forests (where indeed, many do grow) or flower-shop purchases for special occasions, exotic, expensive and highly ornamental. Wild orchids in fact are found world-wide (except in Antarctica). They constitute Roots Tuber the second largest family of flowering plants (the Orchidaceae) after the Aster family, with upwards of 15,000 species. In Alberta, there are 26 native species. Like all Roots orchids from north temperate regions, these are terrestrial. They grow in the ground, in contrast to the majority of rain forest species which are epiphytes, that is, they grow attached to trees for support but do not derive nourishment from them. -
113 Udc 581.1 Introduction of Neottia Nidus-Avis (L.)
THE INTRODUCTION INTO CULTURE IN VITRO OF NEOTTIA NIDUS-AVIS (L.) RICH 113 Biol. Stud. 2011: 5(1); 113–118 • DOI: https://doi.org/10.30970/sbi.0501.123 www.http://publications.lnu.edu.ua/journals/index.php/biology UDC 581.1 INTRODUCTION OF NEOTTIA NIDUS-AVIS (L.) RICH INTO CULTURE IN VITRO E. A. Sheyko, L. I. Musatenko M. G. Kholodny Institute Botany NAS of Ukraine, 2, Tereshenkivska St., Kyiv 01601, Ukraine e-mail: [email protected] Callus cultures from ovary and ovule of Neottia nidus-avis (L.) Rich. were obtained. Dependence of callus genesis on growth regulators composition of nutrient medium it was shown. Cytomorphological analysis of callus cultures demonstrat their high mor- phogenetic potential. .Orchidaceae Juss., callus culture, ovary, ovule ׃Key words INTRODUCTION The Orchidaceae Juss family – orchidaceous is one of the largest families of the angiosperms. A specific biological feature of plants representing this family is their low, in comparison with other plant species, competitiveness. Under the influence of adverse natural conditions orchids have acquired adaptation-metamorphous modifications (modified roots, leaves and shoots), specific combination of development rhythms and dormancy periods, specificity of metabolism as well as changes in pollination patterns that have resulted in their structure diversity [1, 5, 7]. Orchids of Ukraine are perennial ground herbs which include a specific group of the saprotrophic species among which there is Neottia nidus-avis (L) Rich. These species exist owing to the symbiosis with fungi [8]. The orchid family includes the greatest number of rare and extinct species [11]. Thus, such bio-ecological characteristics as a low competitiveness and mycosym- biotropism as well as specific pollination, inbreeding processes of small in number populations, decorative and attractive features make orchids the most impressive group of plants. -
Plant Genetics
RESEARCH HIGHLIGHTS Nature Reviews Genetics | AOP, published online 9 October 2014; doi:10.1038/nrg3843 PLANT GENETICS Notably, in accordance with the team’s earlier hypothesis on the specific stepwise progression of gene loss in Following the early root heterotrophic flowering plants (NAD(P)H genes followed by photosynthesis-related genes, of plastome degradation plastid-encoded RNA polymerase genes, ATP synthase genes and Parasitic organisms are often for high-throughput sequencing. housekeeping genes), coralroots genomically and morphologically De novo assembly was then used to are in the early stages of genome reduced. For example, some parasitic piece together the genomes and degradation. This study indicates that coralroots plants contain degraded plastid to define genes and pseudogenes. a specific path does seem to exist for are in the genomes owing to a reduced need In addition, chlorophyll content was plastid genome degradation (with to photosynthesize. A new study measured for several plants from some exceptions) and that coralroots initial steps now shows that coralroot orchids are each species. Some coralroot orchids are in the initial steps towards towards the in the early stages of the transition have green tissues, and it is thought the transition to a highly reduced transition to a to a parasitic lifestyle, and that this that these species are still able to chloroplast genome, which is typical condition has arisen independently at photosynthesize, whereas those of obligate parasites. “This condition highly reduced least twice in the genus. without any green tissues cannot. has arisen independently at least chloroplast Most coralroot orchids do not have The authors report a correlation twice in the genus, making coralroots genome leaves, produce little chlorophyll between the number of functional a powerful system in which to study and depend on fungi to obtain chloroplast genes and chlorophyll the transition to parasitism,” explains nutrients. -
Orchid Historical Biogeography, Diversification, Antarctica and The
Journal of Biogeography (J. Biogeogr.) (2016) ORIGINAL Orchid historical biogeography, ARTICLE diversification, Antarctica and the paradox of orchid dispersal Thomas J. Givnish1*, Daniel Spalink1, Mercedes Ames1, Stephanie P. Lyon1, Steven J. Hunter1, Alejandro Zuluaga1,2, Alfonso Doucette1, Giovanny Giraldo Caro1, James McDaniel1, Mark A. Clements3, Mary T. K. Arroyo4, Lorena Endara5, Ricardo Kriebel1, Norris H. Williams5 and Kenneth M. Cameron1 1Department of Botany, University of ABSTRACT Wisconsin-Madison, Madison, WI 53706, Aim Orchidaceae is the most species-rich angiosperm family and has one of USA, 2Departamento de Biologıa, the broadest distributions. Until now, the lack of a well-resolved phylogeny has Universidad del Valle, Cali, Colombia, 3Centre for Australian National Biodiversity prevented analyses of orchid historical biogeography. In this study, we use such Research, Canberra, ACT 2601, Australia, a phylogeny to estimate the geographical spread of orchids, evaluate the impor- 4Institute of Ecology and Biodiversity, tance of different regions in their diversification and assess the role of long-dis- Facultad de Ciencias, Universidad de Chile, tance dispersal (LDD) in generating orchid diversity. 5 Santiago, Chile, Department of Biology, Location Global. University of Florida, Gainesville, FL 32611, USA Methods Analyses use a phylogeny including species representing all five orchid subfamilies and almost all tribes and subtribes, calibrated against 17 angiosperm fossils. We estimated historical biogeography and assessed the -
The Vascular Flora of Rarău Massif (Eastern Carpathians, Romania). Note Ii
Memoirs of the Scientific Sections of the Romanian Academy Tome XXXVI, 2013 BIOLOGY THE VASCULAR FLORA OF RARĂU MASSIF (EASTERN CARPATHIANS, ROMANIA). NOTE II ADRIAN OPREA1 and CULIŢĂ SÎRBU2 1 “Anastasie Fătu” Botanical Garden, Str. Dumbrava Roşie, nr. 7-9, 700522–Iaşi, Romania 2 University of Agricultural Sciences and Veterinary Medicine Iaşi, Faculty of Agriculture, Str. Mihail Sadoveanu, nr. 3, 700490–Iaşi, Romania Corresponding author: [email protected] This second part of the paper about the vascular flora of Rarău Massif listed approximately half of the whole number of the species registered by the authors in their field trips or already included in literature on the same area. Other taxa have been added to the initial list of plants, so that, the total number of taxa registered by the authors in Rarău Massif amount to 1443 taxa (1133 species and 310 subspecies, varieties and forms). There was signaled out the alien taxa on the surveyed area (18 species) and those dubious presence of some taxa for the same area (17 species). Also, there were listed all the vascular plants, protected by various laws or regulations, both internal or international, existing in Rarău (i.e. 189 taxa). Finally, there has been assessed the degree of wild flora conservation, using several indicators introduced in literature by Nowak, as they are: conservation indicator (C), threat conservation indicator) (CK), sozophytisation indicator (W), and conservation effectiveness indicator (E). Key words: Vascular flora, Rarău Massif, Romania, conservation indicators. 1. INTRODUCTION A comprehensive analysis of Rarău flora, in terms of plant diversity, taxonomic structure, biological, ecological and phytogeographic characteristics, as well as in terms of the richness in endemics, relict or threatened plant species was published in our previous note (see Oprea & Sîrbu 2012). -
Phylogeny, Character Evolution and the Systematics of Psilochilus (Triphoreae)
THE PRIMITIVE EPIDENDROIDEAE (ORCHIDACEAE): PHYLOGENY, CHARACTER EVOLUTION AND THE SYSTEMATICS OF PSILOCHILUS (TRIPHOREAE) A Dissertation Presented in Partial Fulfillment of the Requirements for The Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Erik Paul Rothacker, M.Sc. ***** The Ohio State University 2007 Doctoral Dissertation Committee: Approved by Dr. John V. Freudenstein, Adviser Dr. John Wenzel ________________________________ Dr. Andrea Wolfe Adviser Evolution, Ecology and Organismal Biology Graduate Program COPYRIGHT ERIK PAUL ROTHACKER 2007 ABSTRACT Considering the significance of the basal Epidendroideae in understanding patterns of morphological evolution within the subfamily, it is surprising that no fully resolved hypothesis of historical relationships has been presented for these orchids. This is the first study to improve both taxon and character sampling. The phylogenetic study of the basal Epidendroideae consisted of two components, molecular and morphological. A molecular phylogeny using three loci representing each of the plant genomes including gap characters is presented for the basal Epidendroideae. Here we find Neottieae sister to Palmorchis at the base of the Epidendroideae, followed by Triphoreae. Tropidieae and Sobralieae form a clade, however the relationship between these, Nervilieae and the advanced Epidendroids has not been resolved. A morphological matrix of 40 taxa and 30 characters was constructed and a phylogenetic analysis was performed. The results support many of the traditional views of tribal composition, but do not fully resolve relationships among many of the tribes. A robust hypothesis of relationships is presented based on the results of a total evidence analysis using three molecular loci, gap characters and morphology. Palmorchis is placed at the base of the tree, sister to Neottieae, followed successively by Triphoreae sister to Epipogium, then Sobralieae. -
Second Contribution to the Vascular Flora of the Sevastopol Area
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Wulfenia Jahr/Year: 2015 Band/Volume: 22 Autor(en)/Author(s): Seregin Alexey P., Yevseyenkow Pavel E., Svirin Sergey A., Fateryga Alexander Artikel/Article: Second contribution to the vascular flora of the Sevastopol area (the Crimea) 33-82 © Landesmuseum für Kärnten; download www.landesmuseum.ktn.gv.at/wulfenia; www.zobodat.at Wulfenia 22 (2015): 33 – 82 Mitteilungen des Kärntner Botanikzentrums Klagenfurt Second contribution to the vascular flora of the Sevastopol area (the Crimea) Alexey P. Seregin, Pavel E. Yevseyenkov, Sergey A. Svirin & Alexander V. Fateryga Summary: We report 323 new vascular plant species for the Sevastopol area, an administrative unit in the south-western Crimea. Records of 204 species are confirmed by herbarium specimens, 60 species have been reported recently in literature and 59 species have been either photographed or recorded in field in 2008 –2014. Seventeen species and nothospecies are new records for the Crimea: Bupleurum veronense, Lemna turionifera, Typha austro-orientalis, Tyrimnus leucographus, × Agrotrigia hajastanica, Arctium × ambiguum, A. × mixtum, Potamogeton × angustifolius, P. × salicifolius (natives and archaeophytes); Bupleurum baldense, Campsis radicans, Clematis orientalis, Corispermum hyssopifolium, Halimodendron halodendron, Sagina apetala, Solidago gigantea, Ulmus pumila (aliens). Recently discovered Calystegia soldanella which was considered to be extinct in the Crimea is the most important confirmation of historical records. The Sevastopol area is one of the most floristically diverse areas of Eastern Europe with 1859 currently known species. Keywords: Crimea, checklist, local flora, taxonomy, new records A checklist of vascular plants recorded in the Sevastopol area was published seven years ago (Seregin 2008). -
Striped Coralroot (Corallorhiza Striata) Did You Know?
Striped Coralroot (Corallorhiza striata) Did you Know? The striped Coralroot is the largest of all the Coralroots and is shared with the family of orchids. 44 of the 65 orchids in Canada call Ontario home, and can be seen on the Escarpment. This plant has no leaves. It is classified as a saprophytic plant, meaning it has no chlorophyll and relies on fungi for nutrients and energy. Habitat – Flourishes in coniferous and deciduous forests, especially open woods and very shade tolerant. Size – Can grow up to 60 cm (24 in) high, with flowers of about 1.5 cm in size. Range – Canada (excluding northern provinces), and can be found in almost all of the United States. Status – Ontario Status: S4,Secure. Canadian Status: Secure. The Bruce Trail Conservancy | PO Box 857 Hamilton, ON L8N 3N9 | 1.800.665.4453 | [email protected] Identification: These orchids are the largest of the coralroots. The striped coralroot can be noted by the pale pinkish- white sepals and petals, or ruby red lips that grow along its red herbaceous stem with maroon thin stripes. There are red or purple spots inside each flower, marking the male and female parts. Typically it grows in clumps, rarely exceeding 40 cm in height in Ontario. Interesting Facts This plant does not contain chlorophyll, therefore photosynthesis cannot occur. Instead, the Striped Coralroot is dependent on getting its energy and nutrients from mycorrhizal fungi. The fungus infects its roots and gathers nutrients from surrounding organic matter. This is also the reason why this plant is not green. This species got its name because the roots resemble coral, and Corallorhiza translates into “coral root” in Greek, and Striata meaning “striped”. -
Flora Mediterranea 26
FLORA MEDITERRANEA 26 Published under the auspices of OPTIMA by the Herbarium Mediterraneum Panormitanum Palermo – 2016 FLORA MEDITERRANEA Edited on behalf of the International Foundation pro Herbario Mediterraneo by Francesco M. Raimondo, Werner Greuter & Gianniantonio Domina Editorial board G. Domina (Palermo), F. Garbari (Pisa), W. Greuter (Berlin), S. L. Jury (Reading), G. Kamari (Patras), P. Mazzola (Palermo), S. Pignatti (Roma), F. M. Raimondo (Palermo), C. Salmeri (Palermo), B. Valdés (Sevilla), G. Venturella (Palermo). Advisory Committee P. V. Arrigoni (Firenze) P. Küpfer (Neuchatel) H. M. Burdet (Genève) J. Mathez (Montpellier) A. Carapezza (Palermo) G. Moggi (Firenze) C. D. K. Cook (Zurich) E. Nardi (Firenze) R. Courtecuisse (Lille) P. L. Nimis (Trieste) V. Demoulin (Liège) D. Phitos (Patras) F. Ehrendorfer (Wien) L. Poldini (Trieste) M. Erben (Munchen) R. M. Ros Espín (Murcia) G. Giaccone (Catania) A. Strid (Copenhagen) V. H. Heywood (Reading) B. Zimmer (Berlin) Editorial Office Editorial assistance: A. M. Mannino Editorial secretariat: V. Spadaro & P. Campisi Layout & Tecnical editing: E. Di Gristina & F. La Sorte Design: V. Magro & L. C. Raimondo Redazione di "Flora Mediterranea" Herbarium Mediterraneum Panormitanum, Università di Palermo Via Lincoln, 2 I-90133 Palermo, Italy [email protected] Printed by Luxograph s.r.l., Piazza Bartolomeo da Messina, 2/E - Palermo Registration at Tribunale di Palermo, no. 27 of 12 July 1991 ISSN: 1120-4052 printed, 2240-4538 online DOI: 10.7320/FlMedit26.001 Copyright © by International Foundation pro Herbario Mediterraneo, Palermo Contents V. Hugonnot & L. Chavoutier: A modern record of one of the rarest European mosses, Ptychomitrium incurvum (Ptychomitriaceae), in Eastern Pyrenees, France . 5 P. Chène, M. -
Phylogenetic Analysis of Neottia Japonica (Orchidaceae) Based on ITS and Matk Regions Ji-Hyeon SO and Nam-Sook LEE1*
Korean J. Pl. Taxon. 50(4): 385−394 (2020) pISSN 1225-8318 eISSN 2466-1546 https://doi.org/10.11110/kjpt.2020.50.4.385 Korean Journal of RESEARCH ARTICLE Plant Taxonomy Phylogenetic analysis of Neottia japonica (Orchidaceae) based on ITS and matK regions Ji-Hyeon SO and Nam-Sook LEE1* Interdisciplinary Program of EcoCreative, Ewha Womans University, Seoul 03760, Korea 1Department of Life Science, College of Natural Science, Ewha Womans University, Seoul 03760, Korea (Received 7 September 2020; Revised 25 November 2020; Accepted 22 December 2020) ABSTRACT: To elucidate the molecular phylogeny of Neottia japonica, which is a terrestrial orchid distributed in East Asia, the internal transcribed spacer (ITS) of nuclear DNA and the matK of chloroplast DNA were used. A total 22 species of 69 accessions for ITS and 21 species of 114 accessions for matK phylogeny were analyzed with the max- imum parsimony and Bayesian methods. In addition, we sought to establish a correlation between the distribution, morphology of the auricles and genetic association of N. japonica with phylogenetic data. The phylogenetic results suggest that N. japonica is monophyletic and a sister to N. suzukii in terms of the ITS phylogeny, while it is para- phyletic with N. suzukii in terms of the matK phylogeny. N. japonica and N. suzukii show similar morphologies of the lip and column, they both flower in April, and they are both distributed sympatrically in Taiwan. Therefore, it appears to be clear that N. japonica and N. suzukii are close taxa within Neottia, although there is incongruence between the nrDNA and cpDNA phylogenies of N. -
Orchid Observers
Phenology of UK Plants Orchids and Zooniverse Mark Spencer & Kath Castillo Department of Life Sciences Natural History Museum Agrimonia eupatoria Robbirt & al. 2011 and UK specimens of Ophrys sphegodes Mill NHM Origins and Evolution Initiative: UK Phenology Project • 20,000 herbarium sheets imaged and transcribed • Volunteer contributed taxonomic revision, morphometric and plant/insect pollinator data compiled • Extension of volunteer work to extract additional phenology data from other UK museums and botanic gardens • 7,000 herbarium sheets curated and mounted • Collaboration with BSBI/Herbaria@Home • Preliminary analyses of orchid phenology underway Robbirt & al. (2011) . Validation of biological collections as a source of phenological data for use in climate change studies: a case study with the orchid Ophrys sphegodes. J. Ecol. Brooks, Self, Toloni & Sparks (2014). Natural history museum collections provide information on phenological change in British butterflies since the late-nineteenth century. Int. J. Biometeorol. Johnson & al. (2011) Climate Change and Biosphere Response: Unlocking the Collections Vault. Bioscience. Specimens of Gymnadenia conopsea (L.) R.Br Orchid Observers Phenology of UK Plants Orchids and Zooniverse Mark Spencer & Kath Castillo Department of Life Sciences Natural History Museum 56 species of wild orchid in the UK 29 taxa selected for this study Anacamptis morio Anacamptis pyramidalis Cephalanthera damasonium Coeloglossum viride Corallorhiza trifida Dactylorhiza fuchsii Dactylorhiza incarnata Dactylorhiza maculata Dactylorhiza praetermissa Dactylorhiza purpurella Epipactis palustris Goodyera repens Gymnadenia borealis Gymnadenia conopsea Gymnadenia densiflora Hammarbya paludosa Herminium monorchis Neotinea ustulata Neottia cordata Neottia nidus-avis Neottia ovata Ophrys apifera Ophrys insectifera Orchis anthropophora Orchis mascula Platanthera bifolia Platanthera chlorantha Pseudorchis albida Spiranthes spiralis Fly orchid (Ophrys insectifera) Participants: 1.