Mapping of Marine Key Habitats and Initiation of Monitoring Network

Total Page:16

File Type:pdf, Size:1020Kb

Mapping of Marine Key Habitats and Initiation of Monitoring Network MONTENEGRO MINISTRY OF SUSTAINABLE DEVELOPMENT AND TOURISM PROJECT Montenegro: Platamuni and Ratac areas Mapping of marine key habitats and initiation of monitoring network Financed by: NOTE : The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of UNEP/MAP-RAC/SPA concerning the legal status of any State, Territory, city or area, or of its authorities, or concerning the delimitation of their frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of UNEP/MAP-RAC/SPA. © 2016 United Nations Environment Programme 2015 Mediterranean Action Plan Regional Activity Centre for Specially Protected Areas (RAC/SPA) Boulevard du leader Yasser Arafat B.P. 337 - 1080 Tunis Cedex - TUNISIA E-mail: [email protected] All property rights of texts and content of different types of this publication belong exclusively to RAC/ SPA. Reproduction of these texts and contents, in whole or in part, and in any form, is prohibited without prior written permission from RAC/SPA, except for educational and other non-commercial purposes, provided that the source is fully acknowledged. For bibliographic purposes, this volume may be cited as: UNEP/MAP-RAC/SPA, 2016. Montenegro: Platamuni and Ratac areas. Mapping of marine key habitats and initiation of monitoring network. By Torchia G., Pititto F., Rais C., Trainito E., Badalamenti F., Romano C., Amosso C., Bouafif C., Dragan M., Camisassi S., Tronconi D., Macicˇ ´ V., Sghaier Y.R. & Ouerghi A. Ed. RAC/SPA - MedKeyHabitats Project, Tunis: 77 pp + Annexes. Graphic design: Zine el Abidine MAHJOUB - www.zinetoon.com and Yassine Ramzi SGHAIER. Cover photos credit: © CAR/ASP, Egidio Trainito This document has been edited within the framework of the MedKeyHabitats Project “ Mapping of key marine habitats in the Mediterranean and promoting their conservation through the establishment of Specially Protected Areas of Mediterranean Importance (SPAMI) ” In partnership with : The MedKeyHabitats Project is implemented with the financial support of MAVA Foundation. Available from: www.rac-spa.org Montenegro: Platamuni and Ratac areas Mapping of marine key habitats and initiation of monitoring network Study required and fnanced by: Regional Activity Centre for Specially Protected Areas (RAC/SPA) Boulevard du Leader Yasser Arafat B.P. 337 1080 Tunis Cedex - Tunisia In charge of the study: Atef OUARGHI, MedKeyHabitats Project, RAC/SPA Yassine Ramzi SGHAIER, MedKeyHabitats Project, RAC/SPA Milena BATAKOVIĆ, Environmental Protection Agency of Montenegro Scientifc responsible of the study: Giovanni Torchia (Golder) - Senior Project Manager and Project Director Francesco Pititto (Golder) - Project Manager Chedly Rais (Okianos) - Senior technical review of the work and preparation of the assessment report for SPAMI list Egidio Trainito (Golder consultant) - Marine photographer and expert in marine biology and taxonomy Fabio Badalamenti (IAMC) - Senior consultant Chiara Romano (Scripps Institution of Oceanography) - Senior consultant Cecilia Amosso (Golder) - Bibliographic research and review Cyrine Bouaff (Faculty of Science - University of Tunis) - Preparation of the SDF for the two study areas Massimo Dragan (Golder) - Senior Expert in GIS and cartographic data management Stefano Camisassi (Golder) - Database and WebGIS expert Davide Tronconi (Golder) - GIS Expert Vesna Mačić (Institute of marine biology General biology) - Marine Biology Expert Reference of the study: MedKeyHabitats n° 9/2015 TABLE OF CONTENTS 1.0 FOREWORD .................................................................................................................... 9 2.0 INTRODUCTION .............................................................................................................. 11 2.1 Scope of work ............................................................................................................... 11 3.0 METHODS ....................................................................................................................... 11 3.1 Study areas ................................................................................................................... 12 3.2 Adopted methodology .................................................................................................. 13 3.2.1 Desktop study .......................................................................................................... 13 3.2.2 Qualitative analysis of fishery activities.................................................................... 14 3.2.3 Main adopted parameters ....................................................................................... 14 3.2.4 Geophysical survey ................................................................................................. 15 3.2.4.1 Field work method .............................................................................................. 15 3.2.4.2 Data elaboration method .................................................................................... 16 3.2.5 Biological survey ...................................................................................................... 18 3.2.5.1 Field work methods ............................................................................................ 18 3.2.5.2 Data elaboration methods .................................................................................. 24 3.2.6 GIS and WebGIS ...................................................................................................... 27 3.2.7 Assessment of the conservation interest of the two sites ....................................... 27 4.0 RESULTS ......................................................................................................................... 28 4.1 Baseline - desktop study .............................................................................................. 28 4.1.1 The southern Adriatic Sea and the Montenegrin coasts ......................................... 28 4.1.2 The Platamuni area .................................................................................................. 29 4.1.3 The Ratac area ......................................................................................................... 30 4.1.4 Gap Analysis ............................................................................................................ 30 4.2 Qualitative analysis of the fishery activities .................................................................. 31 4.2.1 The Montenegrin Area ............................................................................................. 31 4.2.2 The Platamuni Area .................................................................................................. 32 4.2.3 The Ratac Area......................................................................................................... 33 4.3 Bathymetric and geomorphological maps ................................................................... 33 4.3.1 Ratac ........................................................................................................................ 34 4.3.2 Platamuni ................................................................................................................. 35 4.4 Biocenotic maps and benthic assemblages ................................................................ 36 4.4.1 Ratac ........................................................................................................................ 36 4.4.1.1 Distribution of the benthic biocenoses ............................................................... 36 4.4.1.2 Hard bottom communities .................................................................................. 38 4.4.1.3 Soft bottoms communities .................................................................................. 47 4.4.2 Platamuni ................................................................................................................. 48 4.4.2.1 Distribution of the benthic biocenoses ............................................................... 48 4.4.2.2 Hard bottom communities .................................................................................. 50 4.4.2.3 Soft bottoms communities .................................................................................. 50 4.5 Fish assemblages ......................................................................................................... 51 4.5.1 Ratac ........................................................................................................................ 51 4.5.1.1 Qualitative analysis ............................................................................................. 51 4.5.1.2 Quantitative analysis: fish visual census data .................................................... 52 4.5.2 Platamuni ................................................................................................................. 53 4.5.2.1 Qualitative analysis ..............................................................................................54 4.5.2.2 Quantitative analysis: fish visual census data .....................................................55 4.5.3 General comments about the fish assemblages ......................................................57 4.6 Setting of the monitoring networks of key habitats .......................................................58 4.6.1 Posidonia oceanica meadow: Ratac .......................................................................58
Recommended publications
  • Taxonomic Study of the Pagurus Forbesii "Complex" (Crustacea
    Taxonomic study of the Pagurus forbesii "complex" (Crustacea: Decapoda: Paguridae). Description of Pagurus pseudosculptimanus sp. nov. from Alborán Sea (Southern Spain, Western Mediterranean Sea). GARCÍA MUÑOZ J.E.1, CUESTA J.A.2 & GARCÍA RASO J.E.1* 1 Dept. Biología Animal, Fac. Ciencias, Univ. Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain. 2 Inst. Ciencias Marinas de Andalucía (CSIC), Av. República Saharaui, 2, 11519 Puerto Real, Cádiz, Spain. * Corresponding author - e-mail address: [email protected] ABSTRACT The study of hermit crabs from Alboran Sea has allowed recognition of two different morphological forms under what had been understood as Pagurus forbesii. Based on morphological observations with various species of Pagurus, and molecular studies, a new species is defined and described as P. pseudosculptimanus. An overview on species of Pagurus from the eastern Atlantic and Mediterranean Sea is provided. Key words: Pagurus, new species, Mediterranean, eastern Atlantic. 1 Introduction More than 170 species from around the world are currently assigned to the genus Pagurus Fabricius, 1775 (Lemaitre and Cruz Castaño 2004; Mantelatto et al. 2009; McLaughlin 2003, McLaughlin et al. 2010). This genus is complex because of there is high morphological variability and similarity among some species, and has been divided in groups (e.g. Lemaitre and Cruz Castaño 2004 for eastern Pacific species; Ingle, 1985, for European species) with difficulty (Ayón-Parente and Hendrickx 2012). This difficulty has lead to taxonomic problems, although molecular techniques have been recently used to elucidate some species (Mantelatto et al. 2009; Da Silva et al. 2011). Thirteen species are present in eastern Atlantic (European and the adjacent African waters) (Ingle 1993; Udekem d'Acoz 1999; Froglia, 2010, MarBEL Data System - Türkay 2012, García Raso et al., in press) but only nine of these (the first ones mentioned below) have been cited in the Mediterranean Sea, all of them are present in the study area (Alboran Sea, southern Spain).
    [Show full text]
  • Spermatophore Morphology of the Endemic Hermit Crab Loxopagurus Loxochelis (Anomura, Diogenidae) from the Southwestern Atlantic - Brazil and Argentina
    Invertebrate Reproduction and Development, 46:1 (2004) 1- 9 Balaban, Philadelphia/Rehovot 0168-8170/04/$05 .00 © 2004 Balaban Spermatophore morphology of the endemic hermit crab Loxopagurus loxochelis (Anomura, Diogenidae) from the southwestern Atlantic - Brazil and Argentina MARCELO A. SCELZ01*, FERNANDO L. MANTELATT02 and CHRISTOPHER C. TUDGE3 1Departamento de Ciencias Marinas, FCEyN, Universidad Nacional de Mar del Plata/CONICET, Funes 3350, (B7600AYL), Mar del Plata, Argentina Tel. +54 (223) 475-1107; Fax: +54 (223) 475-3150; email: [email protected] 2Departamento de Biologia, Faculdade de Filosojia, Ciencias e Letras de Ribeirao Preto (FFCLRP), Universidade de Sao Paulo (USP), Av. Bandeirantes 3900, Ribeirao Preto, Sao Paulo, Brasil 3Department of Systematic Biology, National Museum ofNatural History, Smithsonian Institution, Washington, DC 20013-7012, USA Received 10 June 2003; Accepted 29 August 2003 Summary The spermatophore morphology of the endemic and monotypic hermit crab Loxopagurus loxochelis from the southwestern Atlantic is described. The spermatophores show similarities with those described for other members of the family Diogenidae (especially the genus Cliba­ narius), and are composed of three major regions: a sperm-filled, circular flat ampulla; a columnar stalk; and a pedestal. The morphology and size of the spermatophore of L. loxochelis, along with a distinguishable constriction or neck that penetrates almost halfway into the base of the ampulla, are characteristic of this species. The size of the spermatophore is related to hermit crab size. Direct relationships were found between the spermatophore ampulla width, total length, and peduncle length with carapace length of the hermit crab. These morphological characteristics and size of the spermatophore ofL.
    [Show full text]
  • New Evidence of Marine Fauna Tropicalization Off the 3 Southwestern Iberian Peninsula
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 February 2019 doi:10.20944/preprints201902.0249.v1 Peer-reviewed version available at Diversity 2019, 11, 48; doi:10.3390/d11040048 1 Communication 2 New evidence of marine fauna tropicalization off the 3 southwestern Iberian Peninsula 4 João Encarnação 1,*, Pedro Morais 2, Vânia Baptista 1, Joana Cruz 1 and Maria Alexandra Teodósio 1 5 6 1 CCMAR – Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 7 Faro, Portugal; [email protected] (J.E); [email protected] (V.B.); [email protected] (J.C.); 8 [email protected] (M.A.T.) 9 2 Department of Environmental Science, Policy, and Management, Mulford Hall, University of 10 California, Berkeley, Berkeley, CA 94720, USA; [email protected] (P.M.) 11 * Correspondence: [email protected] 12 13 14 15 Abstract: Climate change and the overall increase of seawater temperature is causing a poleward 16 shift in species distribution, which includes a phenomenon described as tropicalization of temperate 17 regions. This work aims at reporting the first records of four species off the southwestern Iberian 18 Peninsula, namely oceanic puffer Lagocephalus lagocephalus Linnaeus, 1758, Madeira rockfish 19 Scorpaena maderensis Valenciennes, 1833, ornate wrasse Thalassoma pavo Linnaeus, 1758, and bearded 20 fireworm Hermodice carunculata Pallas, 1766. These last three species, along with other occurrences of 21 aquatic fauna and flora along the Portuguese coast, reveal an ongoing process of poleward expansion 22 of several species for which a comprehensive survey along the entire Iberian Peninsula is urgent. The 23 putative origins of these subtropical and tropical species off continental Portugal are discussed, as 24 well as the urgent need of public awareness due to potential health risks resulting from the toxicity 25 of two of the four species reported in this paper.
    [Show full text]
  • The Mediterranean Decapod and Stomatopod Crustacea in A
    ANNALES DU MUSEUM D'HISTOIRE NATURELLE DE NICE Tome V, 1977, pp. 37-88. THE MEDITERRANEAN DECAPOD AND STOMATOPOD CRUSTACEA IN A. RISSO'S PUBLISHED WORKS AND MANUSCRIPTS by L. B. HOLTHUIS Rijksmuseum van Natuurlijke Historie, Leiden, Netherlands CONTENTS Risso's 1841 and 1844 guides, which contain a simple unannotated list of Crustacea found near Nice. 1. Introduction 37 Most of Risso's descriptions are quite satisfactory 2. The importance and quality of Risso's carcino- and several species were figured by him. This caused logical work 38 that most of his names were immediately accepted by 3. List of Decapod and Stomatopod species in Risso's his contemporaries and a great number of them is dealt publications and manuscripts 40 with in handbooks like H. Milne Edwards (1834-1840) Penaeidea 40 "Histoire naturelle des Crustaces", and Heller's (1863) Stenopodidea 46 "Die Crustaceen des siidlichen Europa". This made that Caridea 46 Risso's names at present are widely accepted, and that Macrura Reptantia 55 his works are fundamental for a study of Mediterranean Anomura 58 Brachyura 62 Decapods. Stomatopoda 76 Although most of Risso's descriptions are readily 4. New genera proposed by Risso (published and recognizable, there is a number that have caused later unpublished) 76 authors much difficulty. In these cases the descriptions 5. List of Risso's manuscripts dealing with Decapod were not sufficiently complete or partly erroneous, and Stomatopod Crustacea 77 the names given by Risso were either interpreted in 6. Literature 7S different ways and so caused confusion, or were entirely ignored. It is a very fortunate circumstance that many of 1.
    [Show full text]
  • ARQUIPELAGO Life and Marine Sciences
    ARQUIPELAGO Life and Marine Sciences OPEN ACCESS ISSN 0870-4704 / e-ISSN 2182-9799 SCOPE ARQUIPELAGO - Life and Marine Sciences, publishes annually original scientific articles, short communications and reviews on the terrestrial and marine environment of Atlantic oceanic islands and seamounts. PUBLISHER University of the Azores Rua da Mãe de Deus, 58 PT – 9500-321 Ponta Delgada, Azores, Portugal. EDITOR IN CHIEF Helen Rost Martins Department of Oceanography and Fisheries / Faculty of Science and Technology University of the Azores Phone: + 351 292 200 400 / 428 E-mail: [email protected] TECHNICAL EDITOR Paula C.M. Lourinho Phone: + 351 292 200 400 / 454 E-mail: [email protected] INTERNET RESOURCES http://www.okeanos.pt/arquipelago FINANCIAL SUPPORT Okeanos-UAc – Apoio Func. e Gest. de centros I&D: 2019-DRCT-medida 1.1.a; SRMCT/GRA EDITORIAL BOARD José M.N. Azevedo, Faculty of Science and Technology, University of the Azores, Ponta Delgada, Azores; Paulo A.V. Borges, Azorean Biodiversity Group, University of the Azores, Angra do Heroísmo, Azores; João M.A. Gonçalves, Faculty of Science and Technology, University of the Azores, Horta, Azores; Louise Allcock, National University of Ireland, Galway, Ireland; Joël Bried, Cabinet vétérinaire, Biarritz, France; João Canning Clode, MARE - Marine and Environmental Sciences Centre, ARDITI, Madeira; Martin A. Collins, British Antarctic Survey, Cambridge, UK; Charles H.J.M. Fransen, Naturalis Biodiversity Center, Leiden, Netherlands, Suzanne Fredericq, Louisiana University at Lafayette, Louisiana, USA; Tony Pitcher, University of British Colombia Fisheries Center, Vancouver, Canada; Hanno Schaefer, Munich Technical University, Munich, Germany. Indexed in: Web of Science Master Journal List Cover design: Emmanuel Arand Arquipelago - Life and Marine Sciences ISSN: 0873-4704 Bryophytes of Azorean parks and gardens (I): “Reserva Florestal de Recreio do Pinhal da Paz” - São Miguel Island CLARA POLAINO-MARTIN, ROSALINA GABRIEL, PAULO A.V.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Systematics of Scorpaeniformes Species in the Mediterranean Sea Inferred from Mitochondrial 16S Rdna Sequence and Morphological Data
    Folia biologica (Kraków), vol. 57 (2009), No 1-2 doi:10.3409/fb57_1-2.219-226 SystematicsofScorpaeniformesSpecies intheMediterraneanSeaInferred fromMitochondrial16SrDNASequenceandMorphologicalData CemalTURAN,IslamGUNDUZ,MevlütGURLEK,DenizYAGLIOGLU andDenizERGUDEN Accepted September 15, 2008 TURAN C., GUNDUZ I., GURLEK M., YAGLIOGLU D., ERGUDEN D. 2009. Systematics of Scorpaeniformes species in the Mediterranean Sea inferred from mitochondrial 16S rDNA sequence and morphological data. Folia biol. (Kraków) 57: 219-226. Genetic and morphological divergence and phylogenetic relationships of Scorpaeniformes fishincludingtwogeneraandsixspecies, Helicolenus dactylopterus, Scorpaena maderensis, Scorpaena porcus, Scorpaena elongata, Scorpaena scrofa, Scorpaena notata, living in the Mediterranean Sea, were investigated with morphological and mitochondrial 16S rDNA sequence data. The mean nucleotide diversity was found to be 0.0792. Average sequence divergence between species of Sebastidae and Scorpaenidae was 8.4%, and 6.4%. between species of the genus Scorpaena. For congeneric comparisions, the lowest genetic divergence (0.7%) was observed between S. porcus and S. notata, and the highest divergence (10.8%) was detected between S. maderensis and S. notata. High levels of nucleotide divergence were detected between species of two families, and the maximum value was found to be 14.5% between H. dactylopterus and S. elongata. The two phylogenetic methods (NJ and MP)identifiedtwomajorlineages. IntheNJtree S. elongata wasthesistergroupto S. scrofa. S. maderensis was more divergent from these groups. Another lineage contained S. porcus and S. notata. The topology of the MP tree is similar to that of the NJ tree. The pattern and degree of morphological differentiation was not congruent with the genetic differentiation. The Euclidiean distances of morphological data revealed very high morphological divergence between the two families.
    [Show full text]
  • Southeastern Turkey)
    ANOMURA OF THE ISKENDERUN BAY REGION (SOUTHEASTERN TURKEY) BY CENGIZ KOÇAK1), TUNCER KATAGAN and TAHIR OZCAN Department of Hydrobiology, Faculty of Fisheries, Ege University, TR-35100 Bornova-Izmir,˙ Turkey INTRODUCTION The present study was conducted to investigate the Anomura of the coasts of Iskenderun Bay. The study area is located in the northeast of the Levantine Basin, and is 65 km in length and 35 km in width, covering an area of approximately 2275 km2. The bay has an average depth of 70 m (Iyiduvar, 1986). There is a euphotic water column and the amount of nutritional substances is 2-4 times higher than in truly offshore areas nearby. There is neither thermal stratification nor significant eutrophication, because of the dynamic structure of the bay (Yılmaz et al., 1992). Since it has a large area of contact with the open sea, it is not affected by either the wind or by deep currents. The bay has a rocky bottom at the southeast and northeast, and there is much seaweed in the northeastern area, while the rest comprises sandy-muddy bottoms. Studies on the anomuran fauna of Iskenderun Bay are few. The first record is by Monod (1931), who reported one species (Galathea nexa Embleton, 1834). Next, Katagan & Cevik (2003), likewise reported one species of Anomura, i.e., Albunea carabus (L., 1758). Until now, only these two Anomura were known from Iskenderun Bay. MATERIALS AND METHODS Specimens of Anomura were collected at six sampling stations: Sta. 1, Karatas; Sta. 2, Yumurtalık; Sta. 3, Dortyol; Sta. 4, Iskenderun; Sta. 5, Arsuz; Sta.
    [Show full text]
  • Towards an Integrated Marine Good Environmental Status (GES)
    Towards an Integrated Marine Good Environmental Status (GES) Assessment for Montenegro Assessment of the MarineLogos Environment en anglais, avec versions courtes des and the Sustainabilitylogos ONU Environnem ent et PAM of Ecosystem Values La version longue des logos ONU Environnem ent et PAM doit être utilisée dans les docum ents ou juridiques. L a v ersion cour te des logos est destin e tous les produits de com m unication tourn s vers le public. Compiled and edited: Ana Štrbenac (lead) Marina Marković, Carlos Guitart, Anis Zarrouk, Ivan Sekovski Authors: EO1 and EO2: Ana Štrbenac – lead author Vesna Mačić, Slavica Petović; Mirko Đurović, Dragana Drakulović, Branka Pestorić, Darko Saveljić, Ivana Stojanović, Milena Bataković, Anis Zarrouk EO5: Robert Precali – lead author Danijela Šuković EO7: Branka Grbec EO8: Željka Čurović EO9: Carlos Guitart – lead author Danijela Šuković, Aleksandra Ivanović, Darinka Joksimović, Ivana Stojanović, Ivan Sekovski, Marina Marković EO10: Milica Mandić – lead expert Editing: Cover design: swim2birds.co.uk Graphic design: Old School S.P. Proofreading: N. Yonow Cover photograph: Ghost nets in Montenegro; M. Mandić The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area or its authorities, or concerning the delimitation of its frontiers or boundaries. This study was prepared by PAP/RAC, SPA/RAC, UNEP/MAP, and the Ministry of Ecology, Spatial Planning and Urbanism of Montenegro within the GEF Adriatic Project and supported by the Global Environment Facility (GEF).
    [Show full text]
  • Mollusc Fauna of Iskenderun Bay with a Checklist of the Region
    www.trjfas.org ISSN 1303-2712 Turkish Journal of Fisheries and Aquatic Sciences 12: 171-184 (2012) DOI: 10.4194/1303-2712-v12_1_20 SHORT PAPER Mollusc Fauna of Iskenderun Bay with a Checklist of the Region Banu Bitlis Bakır1, Bilal Öztürk1*, Alper Doğan1, Mesut Önen1 1 Ege University, Faculty of Fisheries, Department of Hydrobiology Bornova, Izmir. * Corresponding Author: Tel.: +90. 232 3115215; Fax: +90. 232 3883685 Received 27 June 2011 E-mail: [email protected] Accepted 13 December 2011 Abstract This study was performed to determine the molluscs distributed in Iskenderun Bay (Levantine Sea). For this purpose, the material collected from the area between the years 2005 and 2009, within the framework of different projects, was investigated. The investigation of the material taken from various biotopes ranging at depths between 0 and 100 m resulted in identification of 286 mollusc species and 27542 specimens belonging to them. Among the encountered species, Vitreolina cf. perminima (Jeffreys, 1883) is new record for the Turkish molluscan fauna and 18 species are being new records for the Turkish Levantine coast. A checklist of Iskenderun mollusc fauna is given based on the present study and the studies carried out beforehand, and a total of 424 moluscan species are known to be distributed in Iskenderun Bay. Keywords: Levantine Sea, Iskenderun Bay, Turkish coast, Mollusca, Checklist İskenderun Körfezi’nin Mollusca Faunası ve Bölgenin Tür Listesi Özet Bu çalışma İskenderun Körfezi (Levanten Denizi)’nde dağılım gösteren Mollusca türlerini tespit etmek için gerçekleştirilmiştir. Bu amaçla, 2005 ve 2009 yılları arasında sürdürülen değişik proje çalışmaları kapsamında bölgeden elde edilen materyal incelenmiştir.
    [Show full text]
  • Municipal Assembly, Budget, General Information, Public Procurement, Public Discussions and Public Competitions
    1 TRANSPARENCY INDEX OF MONTENEGRIN MUNICIPALITIES Podgorica, 2020 TRANSPARENCY INDEX OF MONTENEGRIN MUNICIPALITIES Publisher: Centar za građansko obrazovanje (CGO) Editor: Daliborka Uljarević Lead author: Mira Popović Co-authors: Maja Marinović Ana Nenezić Research Associate: Vasilije Radulović Design and Production: Centar za građansko obrazovanje (CGO) Print: 170 primjeraka The report is part of the project “Let’s put corruption in the museum!” implemented by the Centre for Civic Education (CCE) in partnership with NGO Centre for Monitoring and Research (CeMI), NGO Bonum from Pljevlja, NGO UL-Info from Ulcinj and NGO Za Druga from Petrovac, in cooperation with the Ministry of Public Administration and the Agency for Prevention Corruption (APC), funded by the European Union with co-financing from the Ministry of Public Administration. The content of this publication is the sole responsibility of the CCE and CEMI and in no manner can it be interpreted as an official position of the European Union or the Ministry of Public Administration. SADRŽAJ Introduction 6 Methodology 7 General assessment of the state of transparency of municipalities in Montenegro 11 How transparent are Montenegrin municipalities? 16 • Andrijevica 17 • Bar 20 • Berane 23 • Bijelo Polje 26 • Budva 29 • Cetinje 32 • Danilovgrad 35 • Golubovci 38 • Gusinje 41 • Herceg Novi 44 • Kolašin 47 • Kotor 50 • Mojkovac 53 • Nikšić 56 • Petnjica 59 • Plav 62 • Pljevlja 65 • Plužine 68 • Podgorica 71 • Rožaje 74 • Šavnik 77 • Tivat 80 • Tuzi 83 • Ulcinj 86 • Žabljak 89 Research 92 Final remarks 101 6 INTRODUCTION Fight against corruption requires a multidisciplinary, continuous and multifaceted approach, and one of the preconditions is a high degree of transparency in the work of public sector bodies.
    [Show full text]
  • Gastropoda) Living in Deep-Water Coral Habitats in the North-Eastern Atlantic
    Zootaxa 4613 (1): 093–110 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2019 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4613.1.4 http://zoobank.org/urn:lsid:zoobank.org:pub:6F2B312F-9D78-4877-9365-0D2DB60262F8 Last snails standing since the Early Pleistocene, a tale of Calliostomatidae (Gastropoda) living in deep-water coral habitats in the north-eastern Atlantic LEON HOFFMAN1,4, LYDIA BEUCK1, BART VAN HEUGTEN1, MARC LAVALEYE2 & ANDRÉ FREIWALD1,3 1Marine Research Department, Senckenberg am Meer, Südstrand 40, Wilhelmshaven, Germany 2NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, Texel, Netherlands 3MARUM, Bremen University, Leobener Strasse 8, Bremen, Germany 4Corresponding author. E-mail: [email protected] Abstract Three species in the gastropod genus Calliostoma are confirmed as living in Deep-Water Coral (DWC) habitats in the NE Atlantic Ocean: Calliostoma bullatum (Philippi, 1844), C. maurolici (Seguenza, 1876) and C. leptophyma Dautzenberg & Fischer, 1896. Up to now, C. bullatum was only known as fossil from Early to Mid-Pleistocene outcrops in DWC-related habitats in southern Italy; our study confirmed its living presence in DWC off Mauritania. A discussion is provided on the distribution of DWC-related calliostomatids in the NE Atlantic and the Mediterranean Sea from the Pleistocene to the present. Key words: Mollusca, Calliostoma, deep-water coral associations, NE Atlantic Ocean, Mediterranean Sea, systematics Introduction The Senckenberg Institute and the Royal Netherlands Institute for Sea Research (NIOZ) investigate the geophysi- cal, geological and biological characteristics of scleractinian-dominated Deep-Water Coral (DWC) habitats in the world.
    [Show full text]