Management of Chronic Constipation in Patients with Diabetes Mellitus

Total Page:16

File Type:pdf, Size:1020Kb

Management of Chronic Constipation in Patients with Diabetes Mellitus Indian J Gastroenterol DOI 10.1007/s12664-016-0724-2 REVIEW ARTICLE Management of chronic constipation in patients with diabetes mellitus V. G. M. Prasad1 & Philip Abraham2 Received: 26 July 2016 /Accepted: 27 November 2016 # Indian Society of Gastroenterology 2016 Abstract are indicated if osmotic laxatives are not effective. Newer Aim The aim of this review is to provide an overview of the agents such as chloride-channel activators and 5-HT4 agonist clinical assessment and evidence-based treatment options for can be considered for severe or resistant cases. managing diabetes-associated chronic constipation. Conclusion The primary aim of intervention in diabetic pa- Methods A literature search of published medical reports in tients with chronic constipation is to better manage the diabe- English language was performed using the OVID Portal, from tes along with management of constipation. The physician PUBMED and the Cochrane Database of Systematic should explain the rationale for prescribing laxatives and ed- Reviews, from inception to October 2015. A total of 145 ab- ucate patients about the potential drawbacks of long-term use stracts were identified; duplicate publications were removed of laxatives. They should contact their physician if short-term and 95 relevant full-text articles were retrieved for potential use of prescribed laxative fails to provide relief. inclusion. Results Chronic constipation is one of the most common gas- Keywords Chronic constipation . Diabetes mellitus . trointestinal symptoms in patients with diabetes, and occurs Laxatives more frequently than in healthy individuals. Treatment goals include improving symptoms and restoring bowel function by accelerating colonic transit and facilitating defecation. Based Introduction on guidelines and data from published literature, food and dietary change with exercise and lifestyle change should be The prevalence of diabetes mellitus has reached epidemic pro- the first step in management. For patients recalcitrant to these portions in both developed and developing countries, affect- changes, laxatives should be the next step of treatment. ing more than 366 million people worldwide [1]. This number Treatment should begin with bulking agents such as psyllium, is likely to increase in the coming years as a result of an ageing bran or methylcellulose followed by osmotic laxatives if re- global population, urbanization, rising prevalence of obesity sponse is poor. Lactulose, polyethylene glycol and lactitol are and sedentary lifestyles [2]. Diabetes is on the verge of gaining the most frequently prescribed osmotic agents. Lactulose has a the status of an epidemic in India. As per the 2011 estimate, prebiotic effect and a carry-over effect (continued laxative India is home to 62 million diabetics, with an increase of effect for at least 6 to 7 days, post cessation of treatment). nearly two million each year. India is expected to cross the Stimulants such as bisacodyl, sodium picosulphate and senna 100 million mark by 2030 [3]. Several gastrointestinal (GI) symptoms such as diarrhea, chronic constipation and fecal incontinence are often observed * V. G. M. Prasad in patients with diabetes mellitus [4–6]; among these, chronic [email protected] constipation is the most commonly reported [7]. The preva- lence of chronic constipation in the general population is re- 1 VGM Hospital, 2100, Trichy Road, Coimbatore 641 005, India ported as around 14% [8]. A recent cross-sectional study with 2 P D Hinduja National Hospital and Medical Research Centre, Veer 372 diabetic patients treated at an outpatient clinic reported Savarkar Marg, Mahim, Mumbai 400 016, India that about 31% of patients had chronic constipation. Indian J Gastroenterol Prevalence studies conducted in the US, Europe and Hong Table 1 Rome IV diagnostic criteria for functional constipation Kong report the rate of chronic constipation in diabetic pa- Following criteria should be present for at least 3 months with symptom tients to be 10%, 13% to 22% and 27.5%, respectively, indi- onset at least 6 months prior to diagnosis cating that chronic constipation is a very common GI symp- a tom in diabetics [9–12]. In another cross-sectional study, 1 Presence of ≥2 of the following symptoms : •Lumpyorhardstools(Bristolstoolformscale1–2) in >25% of 13.9% of 224 Indian patients with functional constipation defecations had diabetes [13]. •Straining during >25% of defecations Poor dietary habits, less fluid intake and low physical ac- •Sensation of incomplete evacuation for >25% of defecations tivity are significant factors leading to chronic constipation. •Sensation of anorectal obstruction/blockage for >25% of defecations •Manual maneuvers to facilitate >25% of defecations (digital The prevalence of chronic constipation has been reported to be manipulations, pelvic floor support) higher in women than in men, in older patients (≥50 years), in •<3 spontaneous bowel movements per week those with longer (≥10 years) duration of diabetes mellitus and 2 Loose stools rarely present without the use of laxatives in those who take concomitant medications such as calcium- 3 Insufficient criteria for irritable bowel syndrome channel blockers that promote chronic constipation [14]. The occurrence of chronic constipation is significantly higher in a In research studies, the patients with symptoms of opioid-induced con- diabetic patients with autonomic neuropathy compared to stipation should not be diagnosed as FC, since it is difficult to distinguish between opioid side-effects and other causes of constipation. However, those without neuropathy (22% vs. 9.2%, p <0.04)[15]. clinicians recognize that symptoms of the two conditions might overlap Measures of general health, social functioning and mental health are significantly impaired in patients suffering from chronic constipation and are comparable with those in other the criteria for irritable bowel syndrome, although abdominal conditions such as osteoarthritis, rheumatoid arthritis and pain and/or bloating may be present but are not predominant chronic allergies [16]. Given the growing prevalence of symptoms. Symptom onset should occur at least 6 months diabetes-associated chronic constipation, it is important to fo- before diagnosis, and symptoms should be present during cus attention on early identification and appropriate manage- the last 3 months [21]. ment of these complications for improving both diabetic care Functional constipation is divided into two subtypes: slow- and quality of life of the affected patient. transit constipation or colonic inertia is characterized by a There is no universally accepted definition of constipation. prolonged length of time for stool to pass through the entire In a real-world clinical setting, constipation tends to be a sub- colon [22]; obstructive defecation (also called pelvic floor jective diagnosis. Frequency of bowel movement is an impor- dyssynergia, dyssynergic defecation, anismus, or outlet ob- tant factor in the assessment of constipation, yet there is no struction) is characterized by difficulty in evacuation or a consensus on how often the ‘normal’ bowel opens. There is sense of incomplete evacuation after defecation. wide variation between individuals in ‘normal’ frequency of bowel movements, ranging from three times per day to three times per week, but many patients have expectations of a daily Pathophysiology bowel movement. In addition to frequency of stools, consis- tency of the stool is also important. The Bristol Stool Form The exact pathogenesis of chronic constipation in diabetes Scale is a useful visual aid that was designed to assist in the is not well understood. The autonomic nervous system is evaluation of patients with self-reported constipation who do intimately involved in the control of GI motility and sensi- not have infrequent bowel movements, to establish that hard tivity, and a disturbance of this system may be involved in or lumpy stools are indeed present [17]. the pathophysiology of constipation [15]. Autonomic dys- Based on definition, the prevalence of constipation varies function with a lack of synchronicity between the gut mus- between different populations across the world. The Rome culature and the sphincters is thought to be the major con- classification is widely recognized as a standardized tributing factor [23]. Battle et al. [24]intheirstudyofco- symptom-based classification of functional GI disorders, in- lonic myoelectric and motor activity, demonstrated that di- cluding functional constipation (Table 1)[18]. Other defini- abetic patients with chronic constipation had absent gastro- tions of constipation are consistent with the Rome criteria but colonic response to feeding, resulting in mild to moderate are less quantitative and more subjective [19]. The Rome constipation. High blood sugar levels in both types 1 and 2 criteria are however used principally for research purposes diabetes can lead to loss of interstitial cells of cajal (ICC) and are not widely applied in clinical practice [20]. The re- and diabetic neuropathy. Damage to the nerves controlling cently developed Rome IV classification defines functional the digestive tract motility can lead to chronic constipation constipation as a functional bowel disorder in which symp- and sometimes alternating bouts of diarrhea [25–28]. For toms of difficult, infrequent or incomplete defecation predom- many patients, this condition is chronic, with symptoms inate. Patients with functional constipation should not meet persisting 3 months
Recommended publications
  • Chemicals Used for Chemical Manufacturing Page 1 of 2
    Chemicals used for Chemical Manufacturing Page 1 of 2 Acetic Acid (Glacial, 56%) Glycol Ether PMA Acetone Glycol Ether PNB Acrylic Acid Glycol Ether PNP Activated Carbon Glycol Ether TPM Adipic Acid Glycols Aloe Vera Grease Aluminum Stearate Gum Arabic Aluminum Sulfate Heat Transfer Fluids Amino Acid Heptane Ammonium Acetate Hexane Ammonium Bicarbonate Hydrazine Hydrate Ammonium Bifluoride Hydrochloric Acid (Muriatic) Ammonium Chloride Hydrogen Peroxide Ammonium Citrate Hydroquinone Ammonium Hydroxide Hydroxylamine Sulfate Ammonium Laureth Sulfate Ice Melter Ammonium Lauryl Sulfate Imidazole Ammonium Nitrate Isobutyl Acetate Ammonium Persulfate Isobutyl Alcohol Ammonium Silicofluoride Calcium Stearate Dipropylene Glycol Isopropanolamine Ammonium Sulfate Carboxymethylcellulose Disodium Phosphate Isopropyl Acetate Antifoams Caustic Potash D'Limonene Isopropyl Alcohol Antifreeze Caustic Soda (All Grades) Dodecylbenzene Sulfonic Acid Isopropyl Myristate Antimicrobials Caustic Soda (Beads, Prills) (DDBSA) Isopropyl Palmitate Antimony Oxide Cetyl Alcohol Dowfrost Itaconic Acid Aqua Ammonia Cetyl Palmitate Dowfrost HD Jojoba Oil Ascorbic Acid Chlorine, Granular Dowtherm SR-1 Keratin Barium Carbonate Chloroform Dowtherm 4000 Lactic Acid Barium Chloride Chromic Acid EDTA Lanolin Beeswax Citric Acid (Dry and Liquid) EDTA Plus Lauric Acid Bentonite Coal Epsom Salt Lauryl Alcohol Benzaldehyde Cocamide DEA Ethyl Acetate Lecithin Benzoic Acid Copper Nitrate Ethyl Alcohol (Denatured) Lime Benzyl Alcohol Copper Sulfate Ethylene Glycol Linoleic Acid Bicarbonate
    [Show full text]
  • Polyethylene Glycol (PEG) 3350
    Polyethylene Glycol (PEG) 3350 Polyethylene glycol is a laxative sold under the trade names MiraLAX®, ClearLax®, GaviLAX®, GlycoLax® and Purelax®. You do not need a doctor’s prescription to buy PEG 3350. It is available over-the-counter. PEG 3350 is an osmotic laxative, which means it increases the water content of stool and is effective in treating or preventing constipation. The body cannot absorb or digest this laxative. PEG 3350 is typically taken once a day by mouth, but the dose may be adjusted higher. It comes as a powder which you will have to mix with liquid. How do I prepare the medication? The standard dose is 17 grams of powder mixed into 8 ounces of liquid. The bottle has a measuring cap that is marked with a line. 1. Pour the powder into the cap up to the marked line. 2. Add the powder in the cap to a full glass (8 ounces) of water, juice, soda, coffee or tea. o If you are over 65, have kidney disease or have liver disease, please only use water. 3. Mix powder well and drink the solution. How do I take PEG 3350? You can take this medication on a full or empty stomach. PEG 3350 doesn’t have any known drug interactions but you should not take other medications at the same time that you take PEG 3350. Other medications may not be digested and absorbed as well. Always drink plenty of decaffeinated liquids with this medication. Michigan Bowel Control Program -1- What are possible side effects? Call your doctor immediately if you have any of the following side-effects: diarrhea severe bloating difficulty breathing painful swelling of the itching of the skin stomach hives vomiting skin rash Other side-effects that usually do not require immediate medical attention are: bloating cramps lower abdominal (stomach) nausea discomfort passing extra gas Some of these symptoms will decrease over time.
    [Show full text]
  • Jbscreen Membrane 1 (PEG 400 to PEG 2000 MME Based) Cat.-No.: CS-301L
    JBScreen Membrane 1 (PEG 400 to PEG 2000 MME based) Cat.-No.: CS-301L No. Precipitant Precipitant 2 Buffer Additive A1 15 % w/v Polyethylene glycol 400 15 % w/v Glycerol 100 mM HEPES; pH 7.5 200 mM Calcium chloride A2 20 % w/v Polyethylene glycol 400 100 mM Sodium chloride 100 mM tri-Sodium citrate; pH 5.6 20 mM Magnesium chloride A3 25 % w/v Polyethylene glycol 400 none 50 mM Sodium acetate; pH 4.6 50 mM Magnesium acetate A4 30 % w/v Polyethylene glycol 400 50 mM Sodium sulfate 50 mM TRIS; pH 8.5 50 mM Lithium sulfate A5 48 % w/v Polyethylene glycol 400 none 100 mM HEPES; pH 7.5 200 mM Calcium chloride A6 20 % w/v Polyethylene glycol monomethyl ether 550 none 10 mM TRIS; pH 7.5 none A7 30 % w/v Polyethylene glycol monomethyl ether 550 none 50 mM TRIS; pH 8.5 100 mM Magnesium chloride A8 35 % w/v Polyethylene glycol 600 none none none A9 28 % w/v Polyethylene glycol 1,000 10 % w/v Glycerol 100 mM TRICINE; pH 8.0 350 mM Sodium chloride A10 10 % w/v Polyethylene glycol 1,500 5 % w/v Ethanol none 100 mM Magnesium chloride, 100 mM Sodium chloride A11 30 % w/v Polyethylene glycol 1,500 none none none A12 5 % w/v Polyethylene glycol 2,000 none none none B1 10 % w/v Polyethylene glycol 2,000 none 100 mM TRIS; pH 8.5 500 mM Magnesium chloride B2 15 % w/v Polyethylene glycol 2,000 none none none B3 15 % w/v Polyethylene glycol 2,000 none none 100 mM Lithium chloride B4 15 % w/v Polyethylene glycol 2,000 none 100 mM Sodium Phosphate; pH 6.2 20 mM tri-Sodium citrate B5 15 % w/v Polyethylene glycol 2,000 none 100 mM Sodium Phosphate; pH 6.8 500 mM
    [Show full text]
  • Crest ® Pro-Health™ Advanced Sensitive & Enamel Shield
    CREST PRO-HEALTH ADVANCED SENSITIVE AND ENAMEL SHIELD- stannous fluoride paste, dentifrice The Procter & Gamble Manufacturing Company Disclaimer: Most OTC drugs are not reviewed and approved by FDA, however they may be marketed if they comply with applicable regulations and policies. FDA has not evaluated whether this product complies. ---------- Crest ® Pro-Health™ Advanced Sensitive & Enamel Shield Drug Facts Active ingredient Stannous fluoride 0.454% (0.16% w/v fluoride ion) Purposes Anticavity, antigingivitis, antisensitivity toothpaste Uses aids in the prevention of cavities helps prevent gingivitis helps interfere with the harmful effects of plaque associated with gingivitis helps control plaque bacteria that contribute to the development of gingivitis builds increasing protection against painful sensitivity of the teeth to cold, heat, acids, sweets or contact Warnings When using this product do not use for sensitivity longer than four weeks unless recommended by a dentist. Stop use and ask a dentist if the sensitivity problem persists or worsens. Sensitive teeth may indicate a serious problem that may need prompt care. Keep out of reach of children. If more than used for brushing is accidentally swallowed, get medical help or contact a Poison Control Center right away. Directions adults and children 12 yrs. & older: apply at least a 1-inch strip of the product onto a soft bristle toothbrush. Brush teeth thoroughly for at least 1 minute twice a day (morning and evening) or as recommended by a dentist. Make sure to brush all sensitive
    [Show full text]
  • Polyethylene Glycols: Carefully the Calibration Table of the Molecular Weight Distribution Introduce 25.0 Ml of the Phthalic Anhydride Solution Into a Software
    Accessed from 128.83.63.20 by nEwp0rt1 on Tue Nov 29 23:26:06 EST 2011 NF 30 Official Monographs / Polyethylene 1901 pump Mobile phase through the column at this flow rate NMT 112.5% of the labeled nominal value if the labeled for at least 1 h before the first injection. Check the flow nominal value is more than 7000. It may contain a suitable gravimetrically, and adjust it if necessary. Reduce the flow antioxidant. rate to about 0.1 mL/min when the system is not in use.] Injection size: 50 µL ASSAY System suitability • AVERAGE MOLECULAR WEIGHT Sample: Standard solution Phthalic anhydride solution: Place 49.0 g of phthalic anhy- Chromatograph five replicate injections of the Standard dride into an amber bottle, and dissolve in 300 mL of pyri- solution, allowing 15 min between injections, and record dine from a freshly opened bottle or pyridine that has been the retention times of the components of the Standard freshly distilled over phthalic anhydride. Shake vigorously solution. until completely dissolved. Add 7 g of imidazole, swirl care- Insert the average retention time along with the molecular fully to dissolve, and allow to stand for 16 h before using. weight of each component in the Standard solution into Sample solution for liquid Polyethylene Glycols: Carefully the calibration table of the molecular weight distribution introduce 25.0 mL of the Phthalic anhydride solution into a software. Check the regression results for a cubic fit of the dry, heat-resistant pressure bottle. Add an amount of the calibration points, and obtain a correlation coefficient, R, specimen equivalent to its expected average molecular for the line.
    [Show full text]
  • Immediate Hypersensitivity Reactions Caused by Drug Excipients: a Literature Review Caballero ML, Quirce S
    REVIEWS Immediate Hypersensitivity Reactions Caused by Drug Excipients: A Literature Review Caballero ML, Quirce S Department of Allergy, La Paz University Hospital, IdiPAZ, Madrid, Spain J Investig Allergol Clin Immunol 2020; Vol. 30(2): 86-100 doi: 10.18176/jiaci.0476 Abstract The European Medicines Agency defines excipients as the constituents of a pharmaceutical form apart from the active substance. Immediate hypersensitivity reactions (IHRs) caused by excipients contained in the formulation of medications have been described. However, there are no data on the prevalence of IHRs due to drug excipients. Clinical manifestations of allergy to excipients can range from skin disorders to life-threatening systemic reactions. The aim of this study was to review the literature on allergy to pharmaceutical excipients and to record the IHRs described with various types of medications, specifically reactions due to the excipients contained in their formulations. The cases reported were sorted alphabetically by type of medication and excipient in order to obtain a list of the excipients most frequently involved for each type of medication. Key words: Allergy. Drug immediate hypersensitivity reaction. Excipient. Pharmaceutical excipients. Resumen La Agencia Europea de Medicamentos define los excipientes como los componentes de una forma farmacéutica diferenciados del principio activo. Se han descrito reacciones de hipersensibilidad inmediata causadas por los excipientes contenidos en la formulación de medicamentos. Sin embargo, no hay datos sobre la prevalencia de dichas reacciones. Las manifestaciones clínicas de la alergia a los excipientes pueden ir desde trastornos de la piel hasta reacciones sistémicas que ponen en peligro la vida. El objetivo de este estudio fue realizar una revisión de la literatura sobre la alergia a los excipientes farmacéuticos y recopilar las reacciones inmediatas descritas con diferentes tipos de medicamento, debido solo a excipientes contenidos en sus formulaciones.
    [Show full text]
  • Amended Safety Assessment of PEG Propylene Glycol Derivatives As Used in Cosmetics
    Amended Safety Assessment of PEG Propylene Glycol Derivatives as Used in Cosmetics Status: Final Amended Report Release Date: January 18, 2017 Panel Meeting Date: December 5-6, 2016 The 2016 Cosmetic Ingredient Review Expert Panel members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Director is Lillian J. Gill, D.P.A. This report was prepared by Lillian C. Becker, Scientific Analyst/Writer. © Cosmetic Ingredient Review 1620 L Street, NW, Suite 1200 Washington, DC 20036-4702 ph 202.331.0651 fax 202.331.0088 [email protected] ABSTRACT This is an amended safety assessment of PEG propylene glycol derivatives as used in cosmetics. These seven ingredients mostly function as surfactants and skin-conditioning agents. The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) reviewed relevant data related to these ingredients. Because there were little data on these ingredients, the Panel relied on other CIR reports on related ingredients, the moieties, and component parts of these ingredients for read across and informational purposes. The Panel agreed that the caveat from the previous safety assessment, i.e., that ingredients containing PEGs should not be used on damaged skin, should be removed. The Panel concluded that these PEG propylene glycol derivatives are safe in cosmetics in the present practices of use and concentration described in this safety assessment.
    [Show full text]
  • In Vitro Effect of Polyethylene Glycol and Sorbitol on Two Banana Varieties Viz
    Published online: May 9. 2021 ISSN : 0974-9411 (Print), 2231-5209 (Online) journals.ansfoundation.org Research Article In vitro effect of polyethylene glycol and sorbitol on two banana varieties viz. Grand naine and Nalla bontha to study drought stress Ashu Singh Department of Agricultural Biotechnology, College of Agriculture, Sardar Vallabhbhai Patel Article Info University of Agriculture and Technology, Meerut-250110 (U.P.), India https://doi.org/10.31018/ Pradeep Kumar Shukla jans.v13i2.2579 Department of Biological Sciences, Faculty of Basic Sciences, Sam Higginbottom University Received: February 19, 2021 of Agriculture, Technology and Sciences, Prayagraj-211007 (U.P.), India Revised: April 30, 2021 Accepted: May 7, 2021 R. S. Sengar Department of Agricultural Biotechnology, College of Agriculture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut-250110 (U.P.), India Pragati Mishra* Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj-211007 (U.P.), India *Corresponding author. Email: [email protected] How to Cite Singh, A. et al. (2021). In vitro effect of polyethylene glycol and sorbitol on two banana varieties viz. Grand naine and Nalla bontha to study drought stress. Journal of Applied and Natural Science, 13(2), 482 - 490. https://doi.org/10.31018/jans.v13i2.2579 Abstract Water stress is one of the foremost categories of stress damaging plants’ overall growth and development. The aim of the present study was to explore and demonstrate stress-induced drought to calibrate changes in stress parameters of two banana plant varieties viz. Grand naine (G9) and Nalla bontha were cultured in Murashige and Skoog medium (MS) media supple- mented with stress inducers -Poly ethylene glycol (PEG) and sorbitol.
    [Show full text]
  • Estonian Statistics on Medicines 2016 1/41
    Estonian Statistics on Medicines 2016 ATC code ATC group / Active substance (rout of admin.) Quantity sold Unit DDD Unit DDD/1000/ day A ALIMENTARY TRACT AND METABOLISM 167,8985 A01 STOMATOLOGICAL PREPARATIONS 0,0738 A01A STOMATOLOGICAL PREPARATIONS 0,0738 A01AB Antiinfectives and antiseptics for local oral treatment 0,0738 A01AB09 Miconazole (O) 7088 g 0,2 g 0,0738 A01AB12 Hexetidine (O) 1951200 ml A01AB81 Neomycin+ Benzocaine (dental) 30200 pieces A01AB82 Demeclocycline+ Triamcinolone (dental) 680 g A01AC Corticosteroids for local oral treatment A01AC81 Dexamethasone+ Thymol (dental) 3094 ml A01AD Other agents for local oral treatment A01AD80 Lidocaine+ Cetylpyridinium chloride (gingival) 227150 g A01AD81 Lidocaine+ Cetrimide (O) 30900 g A01AD82 Choline salicylate (O) 864720 pieces A01AD83 Lidocaine+ Chamomille extract (O) 370080 g A01AD90 Lidocaine+ Paraformaldehyde (dental) 405 g A02 DRUGS FOR ACID RELATED DISORDERS 47,1312 A02A ANTACIDS 1,0133 Combinations and complexes of aluminium, calcium and A02AD 1,0133 magnesium compounds A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 811120 pieces 10 pieces 0,1689 A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 3101974 ml 50 ml 0,1292 A02AD83 Calcium carbonate+ Magnesium carbonate (O) 3434232 pieces 10 pieces 0,7152 DRUGS FOR PEPTIC ULCER AND GASTRO- A02B 46,1179 OESOPHAGEAL REFLUX DISEASE (GORD) A02BA H2-receptor antagonists 2,3855 A02BA02 Ranitidine (O) 340327,5 g 0,3 g 2,3624 A02BA02 Ranitidine (P) 3318,25 g 0,3 g 0,0230 A02BC Proton pump inhibitors 43,7324 A02BC01 Omeprazole
    [Show full text]
  • Material Safety Data Sheet Product
    Initial Preparation Date: 06/08/2011 Last Revision Date: 09/29/2011 Effective Date: 01/28/2013 MATERIAL SAFETY DATA SHEET PRODUCT IDENTITY: PEAK DOT 3 BRAKE FLUID 1. CHEMICAL PRODUCT & COMPANY INFORMATION Product Code: PBF012D3, PBF032D3 OLD WORLD INDUSTRIES, LLC 4065 COMMERCIAL AVENUE NORTHBROOK, ILLINOIS 60062 Phone: (847) 559-2000 Emergency Phone: 1-800-424-9300 (CHEMTREC) 2. COMPOSITION/INFORMATION ON INGREDIENTS Material CAS # % by Wt PEL (OSHA) TLV (ACGIH) Ethanol, 2-(2-(2-ethoxyethoxy)ethoxy)- 112-50-5 10 - 30 No PEL No TLV Polyethylene glycol methyl ether 9004-74-4 10 - 30 No PEL No TLV Ethanol, 2-(2-(2-methoxyethoxy)ethoxy)- 112-35-6 10 - 30 No PEL No TLV Ethanol, 2-(2-(2-butoxyethoxy)ethoxy)- 143-22-6 5 - 10 No PEL No TLV Tetraethylene glycol 112-60-7 1 - 5 No PEL No TLV Polyethylenglykolmonobutylether 9004-77-7 1 - 5 No PEL No TLV Triethylene glycol 112-27-6 1 - 5 No PEL No TLV Hexaethylene glycol 2615-15-8 0.1 - 1 No PEL No TLV Polyethylene glycol 25322-68-3 0.1 - 1 No PEL No TLV Diethylene glycol 111-46-6 0.1 - 1 No PEL No TLV Ethanol, 2-(2-butoxyethoxy)- 112-34-5 0.1 - 1 No PEL No TLV Pentaethylene glycol 4792-15-8 0.1 - 1 No PEL No TLV Trisodium phosphate 7601-54-9 0.1 - 1 No PEL No TLV Sodium dihydrogen phosphate 7558-80-7 0.1 - 1 No PEL No TLV Phosphoric acid, monopotassium salt 7778-77-0 0.1 - 1 No PEL No TLV 2-Propanol, 1,1''-iminodi- 110-97-4 0.1 - 1 No PEL No TLV Components not listed are not physical or health hazards as defined in 29 CFR 1910.1200 (Hazard Communication Standard).
    [Show full text]
  • Novel Application of PEG/SDS Interaction As a Wettability Modifier of Hydrophobic Carbonate Surfaces
    Petroleum Science (2019) 16:318–327 https://doi.org/10.1007/s12182-018-0260-z (0123456789().,-volV)(0123456789().,- volV) ORIGINAL PAPER Novel application of PEG/SDS interaction as a wettability modifier of hydrophobic carbonate surfaces 1 2 3 2 Nasim Heydari • Mahdi Asgari • Narjes Shojai Kaveh • Zahra Fakhroueian Received: 24 April 2018 / Published online: 10 October 2018 Ó The Author(s) 2018 Abstract Wettability alteration of carbonate reservoirs from oil-wet to water-wet is an important method to increase the efficiency of oil recovery. Interaction between surfactants and polymers can enhance the effectiveness of surfactants in EOR applica- tions. In this study, the interaction of polyethylene glycol (PEG) with an ionic surfactant, sodium dodecyl sulphate (SDS), is evaluated on an oil-wet carbonate rock surface by using contact angle measurements. The results reveal that wettability alteration of carbonate rocks is achieved through PEG/SDS interaction on the rock surface above a critical aggregation concentration (CAC). The behaviour of PEG/SDS aqueous solutions is evaluated using surface and interfacial tension measurements. Furthermore, the effect of PEG and SDS concentrations and impact of electrolyte addition on PEG/SDS interaction are investigated. It is shown that electrolyte (NaCl) can effectively decrease the CAC values and accordingly initiate the wettability alteration of rocks. Moreover, in a constant SDS concentration, the addition of NaCl leads to a reduction in the contact angle, which can also be obtained by increasing the aging time, temperature and pre-adsorption of PEG on the rock surface. Keywords Sodium dodecyl sulphate (SDS) Á Polyethylene glycol (PEG) Á Wettability alteration Á Contact angle Á Critical aggregation concentration Á Carbonate surface 1 Introduction 2000, 2003; Zhang et al.
    [Show full text]
  • Preparation, Characterization and Optimization of Ibuprofen Ointment Intended for Topical and Systemic Delivery
    Aukunuru et al Tropical Journal of Pharmaceutical Research, December 2007; 6 (4): 855-860 © Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, Nigeria. All rights reserved. Available online at http://www.tjpr.org Research Article Preparation, Characterization and Optimization of Ibuprofen Ointment Intended for Topical and Systemic Delivery J Aukunuru1*, C Bonepally and V Guduri Vaagdevi College of Pharmacy, Ramnagar, Hanamkonda, Warangal, AP, India-506001 1Technology Consultants, Pharmaceutical Sciences and Drug Delivery Technologies, Warangal, 506001 Abstract Purpose: To develop an ibuprofen ointment with a potential for both topical and systemic delivery of the drug. Method: A co-solvency technique with a trial and error approach was used to develop a 10% ibioprofen ointment in petrolatum base, with the entire drug dissolved in the base. An insertion cell was used to evaluate drug release from the formulations. Further, factorial design multiple regression (FDMRA) analysis, a statistical optimization technique, was used in the optimization of the final formulation. Result: The desired ibuprofen ointments were developed. Release depended on vehicle and proportion of co-solvents. Best fit equations for optimization purposes including various fluxes (initial, steady-state and total) and diffusion coefficient as dependent variables and the concentrations of co-solvents as independent variables were obtained using SAS programme. Dependent variables strongly depended (p<0.05) on the independent variables and followed the polynomial equations generated. Conclusion: The ointments consisting of petrolatum base (80%), PEG 400 (6%) and propylene glycol (4%) and ibuprofen (10%) and that consisting of petrolatum base (75%), PEG 400 (6%), propylene glycol (4%), menthol (5%) and ibuprofen (10%) can be used for topical and systemic delivery of the active, ingredient respectively.
    [Show full text]