Referierte Publikationen

Total Page:16

File Type:pdf, Size:1020Kb

Referierte Publikationen 16 Publikationslisten Referierte Publikationen Abbott, P.B., R. Abbott, T.D. Abbott, ..., J. Greiner, A. von Alberts, S., A. Pope, M. Brodwin, S.M. Chung, R. Cybul- Kienlin, K. Toelge, H.-F. Yu, ..., A. Rau, A. von Kienlin, X. ski, A. Dey, P.R.M. Eisenhardt, A. Galametz, A.H. Gonza- Zhang, ..., T.-W. Chen, et al.: Localization and Broadband lez, B.T. Jannuzi, S.A. Stanford, G.F. Snyder, D. Stern and Follow-up of the Gravitational-wave Transient GW150914. G.R. Zeimann: Star Formation and AGN Activity in Galaxy Ap. J. 826, L13 (2016). Clusters from z=1-2: a Multi-Wavelength Analysis Featu- Abbott, B.P., R. Abbott, T.D. Abbott, ..., J. Greiner, A. von ring Herschel/PACS. Ap. J. 825, 72 (2016). Kienlin, K. Toelge, H.-F. Yu, ..., A. Rau, A. von Kienlin, X. Allen, R.C., J.-C. Zhang, L.M. Kistler, H.E. Spence, R.-L. Zhang, ..., T.-W. Chen, et al.: "Supplement: "Localization Lin, B. Klecker, M.W. Dunlop, M. André and V.K. Jorda- and Broadband Follow-up of the Gravitational-wave Tran- nova: A statistical study of EMIC waves observed by Clu- sient GW150914" (ApJL, 826, L13)". Ap. J. Supp. Ser. ster: 2. Associated plasma conditions. J. Geophys. Res. 225, 26 (2016). (Space Phys.) 121, 6458-6479 (2016). Abbott, T., F.B. Abdalla, S. Allam, ..., J. Weller, et al.: Allevato, V., F. Civano, A. Finoguenov, S. Marchesi, F. Cosmology from cosmic shear with Dark Energy Survey Shankar, G. Zamorani, G. Hasinger, M. Salvato, T. Miyaji, Science Verifi cation data. Physical Review D 94, 022001 R. Gilli, N. Cappelluti, M. Brusa, H. Suh, G. Lanzuisi, B. (2016). Trakhtenbrot, R. Griffi ths, C. Vignali, K. Schawinski and A. Acero, F., M. Ackermann, M. Ajello, ..., A.W. Strong, et al.: Karim: The Chandra COSMOS Legacy Survey: Clustering Development of the Model of Galactic Interstellar Emis- of X-Ray-selected AGNs at 2.9 ≤ z ≤ 5.5 Using Photome- sion for Standard Point-source Analysis of Fermi Large tric Redshift Probability Distribution Functions. Ap. J. 832, Area Telescope Data. Ap. J. Supp. Ser. 223, 26 (2016). 70 (2016). Acero, F., M. Ackermann, M. Ajello, ..., A.W. Strong, et al.: Álvarez-Márquez, J., D. Burgarella, S. Heinis, V. Buat, B. The First Fermi LAT Supernova Remnant Catalog. Ap. J. LoFaro, M. Béthermin, C.E. López-Fortín, A. Cooray, D. Supp. Ser. 224, 8 (2016). Farrah, P. Hurley, E. Ibar, O. Ilbert, A.M. Koekemoer, B.C. Lemaux, I. Pérez-Fournon, G. Rodighiero, M. Salvato, D. Achitouv, I., M. Baldi, E. Puchwein and J. Weller: Imprint Scott, Y. Taniguchi, J.D. Vieira and L. Wang: Dust proper- of f(R) gravity on nonlinear structure formation. Physical ties of Lyman-break galaxies at z ~ 3. Astron. Astrophys. Review D, 93(10): 103522, pp. 1-16 (2016). 587, A122 (2016). Ackermann, M., M. Ajello, B. Anderson, ..., A. von Kien- Aniyan, S., K.C. Freeman, O.E. Gerhard, M. Arnaboldi lin, et al.: Fermi LAT Stacking Analysis of Swift Localized and C. Flynn: The infl uence of a kinematically cold young GRBs. Ap. J. 822, 68 (2016). component on disc-halo decompositions in spiral gala- Ackermann, M., M. Ajello, H. An, ..., A. Rau, ..., P. Scha- xies: insights from solar neighbourhood K-giants. Mon. dy, et al.: Contemporaneous Broadband Observations of Not. R. Astron. Soc. 456, 1484-1494 (2016). Three High-redshift BL LAC Objects. Ap. J. 820, 72 (2016). Annis, J., M. Soares-Santos, E. Berger, ..., J.J. Mohr, ..., Adami, C., E. Pompei, T. Sadibekova, N. Clerc, A. Iovi- J. Weller, et al.: A Dark Energy Camera Search for Mis- no, S.L. McGee, L. Guennou, M. Birkinshaw, C. Horellou, sing Supergiants in the LMC after the Advanced LIGO S. Maurogordato, F. Pacaud, M. Pierre, B. Poggianti and Gravitational-wave Event GW150914. Ap. J. Lett. 823, J. Willis: The XXL Survey. VIII. MUSE characterisation of L34 (2016). intracluster light in a z ~ 0.53 cluster of galaxies. Astron. Ansdell, M., J.P. Williams, N. van der Marel, J.M. Carpen- Astrophys. 592, A7 (2016). ter, G. Guidi, M. Hogerheijde, G.S. Mathews, C.F. Manara, Agarwal, B., B. Smith, S. Glover, P. Natarajan and S. A. Miotello, A. Natta, I. Oliveira, M. Tazzari, L. Testi, E.F. Khochfar: New constraints on direct collapse black hole van Dishoeck and S.E. van Terwisga: ALMA Survey of Lu- formation in the early Universe. Mon. Not. R. Astron. Soc., pus Protoplanetary Disks. I. Dust and Gas Masses. Ap. J. 459(4), 4209-4217 (2016). 828, 46 (2016). Ahoranta, J., A. Finoguenov, C. Pinto, J. Sanders, J. Antonellini, S., I. Kamp, F. Lahuis, P. Woitke, W.-F. Thi, R. Kaastra, J. de Plaa and A. Fabian: Observations of asym- Meijerink, G. Aresu, M. Spaans, M. Güdel and A. Liebhart: metric velocity fi elds and gas cooling in the NGC 4636 Mid-IR spectra of pre-main sequence Herbig stars: An galaxy group X-ray halo. Astron. Astrophys. 592, A145 explanation for the non-detections of water lines. Astron. (2016). Astrophys. 585, A61 (2016). Ajello, M., G. Ghisellini, V.S. Paliya, D. Kocevski, G. Ta- Balbinot, E., B. Yanny, T.S. Li, …, D. Gruen, … and The gliaferri, G. Madejski, A. Rau, P. Schady, J. Greiner, F. DES Collaboration. The Phoenix stream: a cold stream Massaro, M. Balokovic, R. Bühler, M. Giomi, L. Marcotulli, in the southern hemisphere. Ap. J. 820(1): 58, pp. 1-8 F. D'Ammando, D. Stern, S.E. Boggs, F.E. Christensen, (2016). W.W. Craig, C.J. Hailey, F.A. Harrison and W.W. Zhang: Bañados, E., B.P. Venemans, R. Decarli, E.P. Farina, C. NuSTAR, Swift, and GROND Observations of the Flaring Mazzucchelli, F. Walter, X. Fan, D. Stern, E. Schlafl y, K.C. MeV Blazar PMN J0641-0320. Ap. J. 826, 76 (2016). Publikationslisten 17 Chambers, H.-W. Rix, L. Jiang, I. McGreer, R. Simcoe, F. activity in bilayered dispersions with wake-mediated inter- Wang, J. Yang, E. Morganson, G. De Rosa, J. Greiner, M. actions. Journal of Chemical Physics 144, 224901 (2016). Balokovi, W.S. Burgett, T. Cooper, P.W. Draper, H. Flewel- Bartnick, J., M. Heinen, A.V. Ivlev and H. Löwen: Structu- ling, K.W. Hodapp, H.D. Jun, N. Kaiser, R.-P. Kudritzki, ral correlations in diff usiophoretic colloidal mixtures with E.A. Magnier, N. Metcalfe, D. Miller, J.-T. Schindler, J.L. nonreciprocal interactions. Journal of Physics Condensed Tonry, R.J. Wainscoat, C. Waters and Q. Yang: The Pan- Matter 28, 025102 (2016). STARRS1 Distant z > 5.6 Quasar Survey: More than 100 Quasars within the First Gyr of the Universe. Ap. J. Supp. Baxter, E., J. Clampitt, T. Giannantonio, ..., J.J. Mohr, Ser. 227, 11 (2016). et al.: Joint measurement of lensing-galaxy correlations using SPT and DES SV data. Mon. Not. R. Astron. Soc. Bacmann, A., F. Daniel, P. Caselli, C. Ceccarelli, D. Lis, C. 461, 4099-4114 (2016). Vastel, F. Dumouchel, F. Lique and E. Caux: Stratifi ed NH and ND emission in the prestellar core 16293E in L1689N. Bayliss, M.B., J. Ruel, C.W. Stubbs, ..., J.J. Mohr, et al.: Astron. Astrophys. 587, A26 (2016). SPT-GMOS: A Gemini/GMOS-South Spectroscopic Sur- vey of Galaxy Clusters in the SPT-SZ Survey. Ap. J. Supp. Baczko, A.-K., R. Schulz, M. Kadler, E. Ros, M. Perucho, Ser. 227, 3 (2016). T.P. Krichbaum, M. Böck, M. Bremer, C. Grossberger, M. Lindqvist, A.P. Lobanov, K. Mannheim, I. Martí-Vidal, C. Beck, M.C., A.M. Beck, R. Beck, K. Dolag, A.W. Strong Müller, J. Wilms and J.A. Zensus: A highly magnetized and P. Nielaba: New constraints on modelling the random twin-jet base pinpoints a supermassive black hole. Astron. magnetic fi eld of the MW. J. of Cosmology and Astroparti- Astrophys. 593, A47 (2016). cle Phys. 5, 056 (2016). Balestra, I., A. Mercurio, B. Sartoris, M. Girardi, C. Gril- Beck, A. M., G. Murante, A. Arth, R-S. Remus, A.F. Te- lo, M. Nonino, P. Rosati, A. Biviano, S. Ettori, W. For- klu, J.M.F. Donnert, S. Planelles, M.C. Beck, P. Förster, man, C. Jones, A. Koekemoer, E. Medezinski, J. Merten, M. Imgrund, K. Dolag and S. Borgani: An improved SPH G.A. Ogrean, P. Tozzi, K. Umetsu, E. Vanzella, R.J. van scheme for cosmological simulations. Mon. Not. R. As- Weeren, A. Zitrin, M. Annunziatella, G.B. Caminha, T. tron. Soc., 455(2), 2110-2130 (2016). Broadhurst, D. Coe, M. Donahue, A. Fritz, B. Frye, D. Kel- Becker, M.R., M.A. Troxel, N. MacCrann, ..., J.J. Mohr, son, M. Lombardi, C. Maier, M. Meneghetti, A. Monna, M. et al.: Cosmic shear measurements with Dark Energy Postman, M. Scodeggio, S. Seitz and B. Ziegler: CLASH- Survey Science Verifi cation data. Physical Review D 94, VLT: Dissecting the Frontier Fields Galaxy Cluster MACS 022002 (2016). J0416.1-2403 with ~800 Spectra of Member Galaxies. Ap. Behrendt, M., A. Burkert and M. Schartmann: Clusters of J. Supp. Ser. 224, 33 (2016). Small Clumps Can Explain the Peculiar Properties of Gi- Ballone, A., M. Schartmann, A. Burkert, S. Gillessen, P.M. ant Clumps in High-redshift Galaxies. Ap. J. Lett. 819, L2 Plewa, R. Genzel, O. Pfuhl, F. Eisenhauer, T. Ott, E.M. (2016). George and M. Habibi: The G2+G2t Complex as a Fast Bel, J., E. Branchini, C.D. Porto, …, S. Phleps, et al.: The and Massive Outfl ow?. Ap. J. Lett. 819, L28 (2016). VIMOS Public Extragalactic Redshift Survey (VIPERS) - Balogh, M.L., S.L. McGee, A. Mok, A. Muzzin, R.F.J. van On the recovery of the count-in-cell probability distribution der Burg, R.G.
Recommended publications
  • The X-Ray Universe 2011
    THE X-RAY UNIVERSE 2011 27 - 30 June 2011 Berlin, Germany A conference organised by the XMM-Newton Science Operations Centre, European Space Astronomy Centre (ESAC), European Space Agency (ESA) ABSTRACT BOOK Oral Communications and Posters Edited by Andy Pollock with the help of Matthias Ehle, Cristina Hernandez, Jan-Uwe Ness, Norbert Schartel and Martin Stuhlinger Organising Committees Scientific Organising Committee Giorgio Matt (Universit`adegli Studi Roma Tre, Italy) Chair Norbert Schartel (XMM-Newton SOC, Madrid, ESA) Co-Chair M. Ali Alpar (Sabanci University, Istanbul, Turkey) Didier Barret (Centre d’Etude Spatiale des Rayonnements, Toulouse, France) Ehud Behar (Technion Israel Institute of Technology, Haifa, Israel) Hans B¨ohringer (MPE, Garching, Germany) Graziella Branduardi-Raymont (University College London-MSSL, Dorking, UK) Francisco J. Carrera (Instituto de F´ısicade Cantabria, Santander, Spain) Finn E. Christensen (Danmarks Tekniske Universitet, Copenhagen, Denmark) Anne Decourchelle (Commissariat `al’´energie atomique et aux ´energies alternatives, Saclay, France) Jan-Willem den Herder (SRON, Utrecht, The Netherlands) Rosario Gonzalez-Riestra (XMM-Newton SOC, Madrid, ESA) Coel Hellier (Keele University, UK) Stefanie Komossa (MPE, Garching, Germany) Chryssa Kouveliotou (NASA/Marshall Space Flight Center, Huntsville, Alabama, USA) Kazuo Makishima (University of Tokyo, Japan) Sera Markoff (University of Amsterdam, The Netherlands) Brian McBreen (University College Dublin, Ireland) Brian McNamara (University of Waterloo, Canada)
    [Show full text]
  • Weak Lensing Galaxy Cluster Field Reconstruction
    Mon. Not. R. Astron. Soc. 000, 1–12 (2012) Printed 14 October 2018 (MN LATEX style file v2.2) Weak Lensing Galaxy Cluster Field Reconstruction E. Jullo1, S. Pires2, M. Jauzac3 & J.-P. Kneib4;1 1Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, 13388, Marseille, France 2Laboratoire AIM, CEA/DSM-CNRS, Université Paris 7 Diderot, IRFU/SAp-SEDI, Service d’Astrophysique, CEA Saclay, Orme des Merisiers, 91191 Gif-sur-Yvette, France 3Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa 4LASTRO, Ecole polytechnique fédérale de Lausanne, Suisse Released 2013 Xxxxx XX ABSTRACT In this paper, we compare three methods to reconstruct galaxy cluster density fields with weak lensing data. The first method called FLens integrates an inpainting concept to invert the shear field with possible gaps, and a multi-scale entropy denoising proce- dure to remove the noise contained in the final reconstruction, that arises mostly from the random intrinsic shape of the galaxies. The second and third methods are based on a model of the density field made of a multi-scale grid of radial basis functions. In one case, the model parameters are computed with a linear inversion involving a singular value decomposition. In the other case, the model parameters are estimated using a Bayesian MCMC optimization implemented in the lensing software Lenstool. Methods are compared on simulated data with varying galaxy density fields. We pay particular attention to the errors estimated with resampling. We find the multi-scale grid model optimized with MCMC to provide the best results, but at high computational cost, especially when considering resampling.
    [Show full text]
  • Remembering Bill Bogardus Photographing the Moon
    Published by the Astronomical League Vol. 71, No. 2 March 2019 REMEMBERING BILL BOGARDUS PHOTOGRAPHING THE MOON 7.20.69 5 YEARS TREASURES OF THE LINDA HALL LIBRARY APOLLO 11 THE COSMIC WEB ONOMY T STR O T A H G E N P I E Contents G O N P I L R E B 4 . Reflector Mail ASTRONOMY DAY Join a Tour This Year! 4 . President’s Corner May 11 & 5 . International Dark-Sky Association From 37,000 feet above the Pacific Total Eclipse Flight: Chile October 5, 2019 6 . Night Sky Network Ocean, you’ll be high above any clouds, July 2, 2019 For a FREE 76-page seeing up to 3¼ minutes of totality in a dark sky that makes the Sun’s corona look 6 . Deep-Sky Objects Astronomy Day Handbook incredibly dramatic. Our flight will de- full of ideas and suggestions, part from and return to Santiago, Chile. 9 . Remembering Bill Bogardus skyandtelescope.com/2019eclipseflight go to: 10 . From Around the League www.astroleague.org Click on "Astronomy Day” African Stargazing Safari Join astronomer Stephen James PAGE 19 13 . Observing Awards Scroll down to "Free O’Meara in wildlife-rich Botswana July 29–August 4, 2019 Astronomy Day Handbook" for evening stargazing and daytime 14 . Basic Small-Scope Lunar Imaging safari drives at three luxury field For more information, contact: camps. Only 16 spaces available! 18 . The Vault of Heaven – Gary Tomlinson Optional extension to Victoria Falls. ̨̨̨̨̨̨̨̨̨̨̨̨̨̨̨Treasures of the Linda Hall Library Astronomy Day Coordinator skyandtelescope.com/botswana2019 [email protected] 24 . The Cosmic Web Iceland Aurorae 27 .
    [Show full text]
  • X-Ray Calibration of SZ Scaling Relations with the ACCEPT
    Mon. Not. R. Astron. Soc. 000, 1–10 (2011) Printed 11 October 2018 (MN LATEX style file v2.2) X-ray calibration of SZ scaling relations with the ACCEPT catalogue of galaxy clusters observed by Chandra B. Comis1⋆, M. De Petris1, A. Conte1, L. Lamagna1 and S. De Gregori1 1Sapienza University of Rome, Department of Physics, P.le A. Moro, 2 Rome, Italy Accepted for publication in MNRAS ABSTRACT We explore the scaling relation between the flux of the Sunyaev-Zel’dovich (SZ) ef- fect and the total mass of galaxy clusters using already reduced Chandra X-ray data present in the ACCEPT (Archive of Chandra Cluster Entropy Profile Tables) cata- logue. The analysis is conducted over a sample of 226 objects, examining the relatively small scale corresponding to a cluster overdensity equal to 2500 times the critical density of the background universe, at which the total masses have been calculated exploiting the hydrostatic equilibrium hypothesis. Core entropy (K0) is strongly corre- lated with the central cooling time, and is therefore used to identify cooling-core (CC) objects in our sample. Our results confirm the self-similarity of the scaling relation between the integrated Comptonization parameter (Y ) and the cluster mass, for both CC and NCC (non-cooling-core) clusters. The consistency of our calibration with re- cent ones has been checked, with further support for Y as a good mass proxy. We also investigate the robustness of the constant gas fraction assumption, for fixed overden- sity, and of the YX proxy (Kravtsov et al. 2007) considering CC and NCC clusters, again sorted on K0 from our sample.
    [Show full text]
  • Galaxy Data Name Constell
    Galaxy Data name constell. quadvel km/s z type width ly starsDist. Satellite Milky Way many many 0 0.0000 SBbc 106K 200M 0 M31 Andromeda NQ1 -301 -0.0010 SA 220K 1T 2.54Mly M32 Andromeda NQ1 -200 -0.0007 cE2 Sat. 5K 2.49Mly M31 M110 Andromeda NQ1 -241 -0.0008 dE 15K 2.69M M31 NGC 404 Andromeda NQ1 -48 -0.0002 SA0 no 10M NGC 891 Andromeda NQ1 528 0.0018 SAb no 27.3M NGC 680 Aries NQ1 2928 0.0098 E pec no 123M NGC 772 Aries NQ1 2472 0.0082 SAb no 130M Segue 2 Aries NQ1 -40 -0.0001 dSph/GC?. 100 5E5 114Kly MW NGC 185 Cassiopeia NQ1 -185 -0.0006dSph/E3 no 2.05Mly M31 Dwingeloo 1 Cassiopeia NQ1 110 0.0004 SBcd 25K 10Mly Dwingeloo 2 Cassiopeia NQ1 94 0.0003Iam no 10Mly Maffei 1 Cassiopeia NQ1 66 0.0002 S0pec E3 75K 9.8Mly Maffei 2 Cassiopeia NQ1 -17 -0.0001 SABbc 25K 9.8Mly IC 1613 Cetus NQ1 -234 -0.0008Irr 10K 2.4M M77 Cetus NQ1 1177 0.0039 SABd 95K 40M NGC 247 Cetus NQ1 0 0.0000SABd 50K 11.1M NGC 908 Cetus NQ1 1509 0.0050Sc 105K 60M NGC 936 Cetus NQ1 1430 0.0048S0 90K 75M NGC 1023 Perseus NQ1 637 0.0021 S0 90K 36M NGC 1058 Perseus NQ1 529 0.0018 SAc no 27.4M NGC 1263 Perseus NQ1 5753 0.0192SB0 no 250M NGC 1275 Perseus NQ1 5264 0.0175cD no 222M M74 Pisces NQ1 857 0.0029 SAc 75K 30M NGC 488 Pisces NQ1 2272 0.0076Sb 145K 95M M33 Triangulum NQ1 -179 -0.0006 SA 60K 40B 2.73Mly NGC 672 Triangulum NQ1 429 0.0014 SBcd no 16M NGC 784 Triangulum NQ1 0 0.0000 SBdm no 26.6M NGC 925 Triangulum NQ1 553 0.0018 SBdm no 30.3M IC 342 Camelopardalis NQ2 31 0.0001 SABcd 50K 10.7Mly NGC 1560 Camelopardalis NQ2 -36 -0.0001Sacd 35K 10Mly NGC 1569 Camelopardalis NQ2 -104 -0.0003Ibm 5K 11Mly NGC 2366 Camelopardalis NQ2 80 0.0003Ibm 30K 10M NGC 2403 Camelopardalis NQ2 131 0.0004Ibm no 8M NGC 2655 Camelopardalis NQ2 1400 0.0047 SABa no 63M Page 1 2/28/2020 Galaxy Data name constell.
    [Show full text]
  • A Filament of Dark Matter Between Two Clusters of Galaxies
    A filament of dark matter between two clusters of galaxies Jorg¨ P. Dietrich1, Norbert Werner2, Douglas Clowe3, Alexis Finoguenov4, Tom Kitching5, Lance Miller6 & Aurora Simionescu2 1Physics Dept. and Michigan Center for Theoretical Physics, University of Michigan, 450 Church Street, Ann Arbor, MI 48109-1040, USA 2Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305-4060, USA 3Dept.of Physics & Astronomy, Ohio University, Clippinger Lab 251B, Athens, OH 45701, USA 4Max-Planck-Institut fur¨ extraterrestrische Physik, Giessenbachstraße, 85748 Garching b. Munchen,¨ Germany 5Institute for Astronomy, The University of Edinburgh, Royal Observatory, Blackford Hill, Edin- burgh EH9 3HJ, U.K. 6Department of Physics, University of Oxford, The Denys Wilkinson Building, Keble Road, Ox- ford OX1 3RH, U.K. It is a firm prediction of the concordance Cold Dark Matter (CDM) cosmological model that galaxy clusters live at the intersection of large-scale structure filaments1. The thread-like structure of this “cosmic web” has been traced by galaxy redshift surveys for decades2,3. More recently the Warm-Hot Intergalactic Medium (WHIM) residing in low redshift fila- ments has been observed in emission4 and absorption5, 6. However, a reliable direct detection of the underlying Dark Matter skeleton, which should contain more than half of all matter7, remained elusive, as earlier candidates for such detections8–10 were either falsified11, 12 or suffered from low signal-to-noise ratios8, 10 and unphysical misalignements of dark and lumi- nous matter9,10. Here we report the detection of a dark matter filament connecting the two main components of the Abell 222/223 supercluster system from its weak gravitational lens- ing signal, both in a non-parametric mass reconstruction and in parametric model fits.
    [Show full text]
  • 1991MNRAS.252...19S Mon. Not. R. Asir. Soc. (1991)
    Mon. Not. R. asir. Soc. (1991) 252, 19-29 A statistically complete survey for arc-like features in images of distant rich clusters of galaxies 1991MNRAS.252...19S I. Small,1 R. S. Ellis,1 M. J. Fitchett,1 H, U. Norgaard-Nielsen,2 L. Hansen3 and H. E. Jorgensen3 1 Department of Physics, University of Durham DH1 3LE 2 Danish Space Research Institute, Lyngby, Copenhagen 3 University Observatory, Ostervolgáde, Copenhagen Accepted 1991 April 24. Received 1991 April 23; in original form 1990 October 22 SUMMARY Using data from an earlier search for supernovae in distant clusters, we have constructed a homogeneous set of V images for 19 rich clusters of mean redshift ¿ = 0.32. By considering the images above a fixed surface brightness limit, we have analysed the data for extended arc-like features which might arise from gravitational lensing of background sources. A list of 20 candidate arcs is presented. We examine the usefulness of such a catalogue for deriving the background source redshift distribution, N{z). Whilst the number and shape distribution of arc candidates is consistent with the lensing hypothesis, cluster velocity dispersions of very high preci- sion would be needed to provide useful constraints on the fraction of high-redshift galaxies to faint limits. We show how, in principle, a likelihood ratio test based on the radial distribution of arcs in a single well-studied cluster could determine whether a significant fraction of the faint galaxy population is at high redshift. This test also pro- vides a means of determining accurate cluster velocity dispersions at any redshift.
    [Show full text]
  • Spectroscopy of the Neighboring Massive Clusters Abell 222 and Abell 223
    A&A 394, 395–403 (2002) Astronomy DOI: 10.1051/0004-6361:20021195 & c ESO 2002 Astrophysics Spectroscopy of the neighboring massive clusters Abell 222 and Abell 223 J. P. Dietrich1,D.I.Clowe1, and G. Soucail2 1 Institut f¨ur Astrophysik und Extraterrestrische Forschung, Universit¨at Bonn, Auf dem H¨ugel 71, 53121, Bonn, Germany 2 Observatoire Midi–Pyr´en´ees, UMR5572, 14 Av. Edouard´ Belin, 31400 Toulouse, France Received 29 May 2002 / Accepted 9 August 2002 Abstract. We present a spectroscopic catalog of the neighboring massive clusters Abell 222 and Abell 223. The catalog contains the positions, redshifts, R magnitudes, V − R color, as well as the equivalent widths for a number of lines for 183 galaxies, 153 of them belonging to the A 222 and A 223 system. We determine the heliocentric redshifts to be z = 0.2126 ± 0.0008 for A 222 and z = 0.2079 ± 0.0008 for A 223. The velocity dispersions of both clusters in the cluster restframe are about the same: +90 −1 +99 −1 σ = 1014 −71 km s and σ = 1032 −76 km s for A 222 and A 223, respectively. While we find evidence for substructure in the spatial distribution of A 223, no kinematic substructure can be detected. From the red cluster sequence identified in a color–magnitude–diagram we determine the luminosity of both clusters and derive mass–to–light ratios in the R–band of (M/L)A222 = (202 ± 43) h70 M/L and (M/L)A223 = (149 ± 33) h70 M/L. Additionally we identify a group of background galaxies at z ∼ 0.242.
    [Show full text]
  • The Clusters Abell~ 222 and Abell~ 223: a Multi-Wavelength View
    Astronomy & Astrophysics manuscript no. Durret c ESO 2018 June 18, 2018 The clusters Abell 222 and Abell 223: a multi-wavelength view ⋆ F. Durret1,2, T. F. Lagan´a3, C. Adami4, and E. Bertin1,2 1 UPMC Universit´eParis 06, UMR 7095, Institut d’Astrophysique de Paris, F-75014, Paris, France 2 CNRS, UMR 7095, Institut d’Astrophysique de Paris, F-75014, Paris, France 3 IAG, USP, R. do Mat˜ao 1226, 05508-090. S˜ao Paulo/SP, Brazil 4 LAM, Pˆole de l’Etoile Site de Chˆateau-Gombert, 38 rue Fr´ed´eric Joliot-Curie, 13388 Marseille Cedex 13, France Accepted . Received ; Draft printed: June 18, 2018 ABSTRACT Context. The Abell 222 and 223 clusters are located at an average redshift z∼0.21 and are separated by 0.26 deg. Signatures of mergers have been previously found in these clusters, both in X-rays and at optical wavelengths, thus motivating our study. In X-rays, they are relatively bright, and Abell 223 shows a double structure. A filament has also been detected between the clusters both at optical and X-ray wavelengths. Aims. We analyse the optical properties of these two clusters based on deep imaging in two bands, derive their galaxy luminosity functions (GLFs) and correlate these properties with X-ray characteristics derived from XMM-Newton data. Methods. The optical part of our study is based on archive images obtained with the CFHT Megaprime/Megacam camera, covering a total region of about 1 deg2, or 12.3×12.3 Mpc2 at a redshift of 0.21. The X-ray analysis is based on archive XMM-Newton images.
    [Show full text]
  • H0, 4, 12, 13, 16, 47, 79, 98, 123, 128, 163–165, 169, 171, 174–178, 180
    Index H0, 4, 12, 13, 16, 47, 79, 98, 123, AGAPE, 478 128, 163–165, 169, 171, 174–178, angle 180–182, 194, 255, 300, 303, 357, deflection, 18, 461 358, 397 scaled deflection, 21 Ω0 = Ωtot,48 angular correlation function, 423 ΩCMB,48 angular diameter distance, 45, 50, 52, ΩΛ, 47–49, 64 53, 98, 164, 194, 271, 357 Ωm, 47–49, 64 aperture mass, 315, 343, 345, 347, 363, Ωr, 47–49, 64 423 Σ(ξ), 34, 36 dispersion, 368, 393, 395, 420 μp,56 map, 346 σ(Δθ), 56 third-order statistics, 433 σ8, 69, 70, 72, 79, 81, 311, 361, 367, APM 08279+5255, 17, 59, 61, 94, 118, 384, 385, 387, 396, 397, 400 220, 243 σQ,56 arc, 7, 9, 10, 15, 304, 306, 310–312, 315, σv,36 335, 341, 352 σtot(Q), 57 arclet, 7, 10, 270, 304, 306, 315, 441 0047–2808, 160, 250 astroid, 43 2dF Galaxy Redshift Survey, 78, 183 astroid curve, 114, 116, 192, 202, 245 3-D gravitational potential, 398 B 0218+357, 170, 173, 174, 196, 240, lensing, 397 242, 531 B 1359+154, 94 Abell 1689, 305, 310, 313, 315, 334, 335, B 1422+231, 156, 170, 171, 221, 243 341 B 1600+434, 170, 174, 177, 178, 181, Abell 1705, 352 196, 531 Abell 2218, 10, 17, 309 B 1608+656, 156, 160, 170, 173, 180 Abell 222/223, 335, 336 B 1933+503, 94, 98, 145, 146 Abell 2390, 306, 307 B 1938+666, 12 Abell 370, 270, 309, 315 B 2108+213, 211 Abell 901/902, 335 B-modes, 371, 372, 374, 392, 393, 433 ACS, 281, 298, 305, 313, 390 background galaxies, 332, 393, 406, 409 adiabatic equation, 45 baryonic matter, 129, 178, 179, 192, affine parameter, 19 211–217, 231, 300, 347 542 Index Bessel functions, 362, 364 Charge Coupled Device (CCD), 5, 478,
    [Show full text]
  • X-Ray Spectroscopy of Clusters of Galaxies and of the Cosmic Web
    X-ray spectroscopy of clusters of galaxies and of the cosmic web Norbert Werner May 13, 2008 Cover image: Pair of clusters of galaxies Abell 222 and Abell 223 connected by a cosmic web filament permeated by hot X-ray emitting gas. Image obtained by the XMM- Newton X-ray observatory. The image with the spiders symbolizing clusters of galax- ies as dense nodes on the cosmic web was designed by G´abor Szentp´etery and Aurora Simionescu. c 2008 Norbert Werner All rights reserved. X-ray spectroscopy of clusters of galaxies and of the cosmic web R¨ontgen spectroscopie van clusters van melkwegstelsels en van het kosmische web (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof. dr. J.C. Stoof, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op dinsdag 13 mei 2008 des middags te 2.30 uur door Norbert Werner geboren op 12 maart 1981, te Rozˇnavaˇ (Slowakije) promotor : Prof. dr. F.W.M. Verbunt co-promotor : Dr. J.S. Kaastra Contents 1 Introduction 1 1.1 Chemical enrichment . ......................... 3 1.2 Clusters in the context of the cosmic web .................. 4 2 XMM-Newton Spectroscopy of the Cluster of Galaxies 2A 0335+096 7 2.1Introduction................................... 8 2.2Observationsanddatareduction....................... 9 2.2.1 EPIC analysis . ......................... 9 2.2.2 RGS analysis . ......................... 12 2.3Spectralmodels................................. 12 2.4Globalspectrum................................. 13 2.4.1 EPIC . ................................ 13 2.4.2 RGS . ................................ 16 2.5 Radial profiles.................................. 18 2.5.1 Projected spectra .
    [Show full text]
  • Joint Meeting of the American Astronomical Society & The
    American Association of Physics Teachers Joint Meeting of the American Astronomical Society & Joint Meeting of the American Astronomical Society & the 5-10 January 2007 / Seattle, Washington Final Program FIRST CLASS US POSTAGE PAID PERMIT NO 1725 WASHINGTON DC 2000 Florida Ave., NW Suite 400 Washington, DC 20009-1231 MEETING PROGRAM 2007 AAS/AAPT Joint Meeting 5-10 January 2007 Washington State Convention and Trade Center Seattle, WA IN GRATITUDE .....2 Th e 209th Meeting of the American Astronomical Society and the 2007 FOR FURTHER Winter Meeting of the American INFORMATION ..... 5 Association of Physics Teachers are being held jointly at Washington State PLEASE NOTE ....... 6 Convention and Trade Center, 5-10 January 2007, Seattle, Washington. EXHIBITS .............. 8 Th e AAS Historical Astronomy Divi- MEETING sion and the AAS High Energy Astro- REGISTRATION .. 11 physics Division are also meeting in LOCATION AND conjuction with the AAS/AAPT. LODGING ............ 12 Washington State Convention and FRIDAY ................ 44 Trade Center 7th and Pike Streets SATURDAY .......... 52 Seattle, WA AV EQUIPMENT . 58 SUNDAY ............... 67 AAS MONDAY ........... 144 2000 Florida Ave., NW, Suite 400, Washington, DC 20009-1231 TUESDAY ........... 241 202-328-2010, fax: 202-234-2560, [email protected], www.aas.org WEDNESDAY..... 321 AAPT AUTHOR One Physics Ellipse INDEX ................ 366 College Park, MD 20740-3845 301-209-3300, fax: 301-209-0845 [email protected], www.aapt.org Acknowledgements Acknowledgements IN GRATITUDE AAS Council Sponsors Craig Wheeler U. Texas President (6/2006-6/2008) Ball Aerospace Bob Kirshner CfA Past-President John Wiley and Sons, Inc. (6/2006-6/2007) Wallace Sargent Caltech Vice-President National Academies (6/2004-6/2007) Northrup Grumman Paul Vanden Bout NRAO Vice-President (6/2005-6/2008) PASCO Robert W.
    [Show full text]