Building Information Modelling Bim
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Alternative Contracting Methods
ALTERNATIVE CONTRACTING METHODS • Conventional Design-Bid-Build • Design/Build • Negotiated General Contractor By Jeff Warner, AIA, LEED AP Principal, ALSC Architects CONVENTIONAL DESIGN-BID-BUILD The most traditional method of delivery of a construction PROS project is where the Architect, after selection by the Client, 1. Costs may be lower due to competition. totally completes the design documents which are then 2. Project design is typically complete prior to start of distributed to General Contractors for bidding. Usually, the construction. low bidder is selected to construct the project and enters 3. Owner receives a single lump sum proposal for the entire into a lump sum type contract agreement directly with the project not subject to cost escalation. Owner. During construction, the Architect typically maintains 4. This approach conforms most directly to public bidding a strong administrative role and is the focal point of most laws. communication on the project between the Contractor and Owner. While proponents of this method of contracting feel that CONS the lowest overall initial costs are obtained through pure 1. If bids exceed budget, the project may require re-design. competitive bidding, an adversarial relationship between 2. Difficult to fast-track or pre-order materials, resulting in principal parties can develop; making the administration of later Owner occupancy. changes more difficult, time consuming and costly. Perhaps 3. The General Contractor may be in an adversarial the biggest potential problem with this approach to a major, relationship with the Owner and Architect/Engineer. complex construction project is that the Owner does not 4. Prices for change order work are typically higher and obtain a firm handle on construction costs until the project has more difficult to control. -
Belgisch BIM-Protocol Nationaal Referentieprotocol Voor Gebouwen Versie 2, Oktober 2018
Belgisch BIM-protocol Nationaal referentieprotocol voor gebouwen Versie 2, oktober 2018 Belgisch BIM-protocol Nationaal referentieprotocol voor gebouwen Versie 2, oktober 2018 Dit document werd opgesteld in opdracht van het Technisch Comité BIM & ICT, in samenwerking met de Cluster BIM (met de steun van VLAIO) en in het kader van het prenormatieve onderzoek Codec (met de steun van de FOD economie). Auteurs: C. Euben (WTCB) en S. Boeykens (D-studio en KU Leuven) Met de medewerking van Confederatie Bouw, Netwerk Architecten Vlaanderen (NAV), Organisatie van Raadgevende Ingenieurs, Engineering- en Consultancybureaus (ORI), Bouwunie en de leden van Cluster BIM. Een werkgroep onder leiding van J. Ceyssens (Kumpen) en animator E. Van Overwaele (NCB) heeft specifiek bijgedragen aan de juridische aspecten in het BIM-protocol. Samenstelling van de werkgroep Voorzitter: R. Collard (BAM) Leden: M. Achten (AT Osborne), M. Baetens (BPC), K. Baggen (Hooyberghs) , S. Binnemans (SCIA), J. Bisschot (CFE), A. Boutemadja (Atelier AKB), M. Brochier (Tase), R. Collard (BAM), C. Dalhuizen (KUBUS), W. Dehuysser (Monument Vandekerckhove), C. Dequidt (NAV), A. Dubuisson (Assar Architects), R. Filomeno Coelho (Kabandy), D. Froyen (Kumpen), T. Gautot (Neanex), G. Girotto (CB/CC), B. Ingelaere (WTCB), R. Klein (KU Leuven), J. Kuppens (iNFRANEA), S. Leenknegt (Ney & Partners), P. Lenaerts (gemeente Anderlecht), M. Léonard (CCW), E. Maggio (Tractebel), V. Marbach (Derbigum), V. Martin (BSolutions), B. Marynissen (SECO), R. Meuleman (Wienerberger), R. Meurisse (NKKCLE/CFCRGE), K. Nys (D-studio), P. Orban (CERAU), J. Poncelet (Valens), A. Sagne (Association of Architects G30), S. Santosa (Willemen), E. Schaerlaecken (Stiersco), D. Schmitz (Knauf), S. Soupart (Art & Build Architect), B. Timmerman (AREMIS), A. -
Download Summary Report
TRANSFORMING HOW WE BUILD HOMES Work package 5: Guide to Creating a BIM Housing Manual February 2021 www.aimch.co.uk Work package 5: Guide to Creating a BIM Housing Manual / February 2021 EXECUTIVE SUMMARY A Guide to Creating a BIM Housing Manual Building Information Modelling (BIM) is a process which can bring benefits to any construction project, but it brings new challenges to the way we work. In housebuilding it will require developers to adopt new design standards and processes, which have been historically developed with bespoke commercial projects in mind. This requires an understanding of those standards and processes, and how they can be applied in a practical way within the house building community. BIM brings many new terms and vocabulary into The UK and Scottish governments have mandated the working environment and navigating through within public procurement the adoption of BIM them can be daunting. There are many forums industry standards, to help cross sector and and guides to help industry transition over from international collaboration while driving efficiency 2D to BIM enabled 3D design processes and into the construction industry, which has been collaborative working practises. However, these lagging in adopting digital practices. tend to reflect bespoke one-off commercial For the housebuilding community to navigate the projects, where uptake has been greatest. They transition from 2D paper based design into BIM do not fully reflect the house building industries enabled 3D digital design, AIMCH has created processes, -
Building Information Modeling (BIM) Standard & Guide
Building Information Modeling (BIM) Standard & Guide Version 1 – December 2014 No portion of this work may be reproduced without the express written permission of the copyright holders. All rights reserved by Florida International University. ` FIU BIM Specification ‐ Final 120814 Table of Contents INTRODUCTION ............................................................................................................................................. 4 Intent: ........................................................................................................................................................ 4 BIM Goals: ................................................................................................................................................. 4 BIM Uses: .................................................................................................................................................. 5 Capital planning support: ...................................................................................................................... 6 Pre‐Design and Programming ............................................................................................................... 6 Site Conditions ‐ Existing Conditions and New Construction ............................................................... 6 Architectural Model ‐ Spatial and Material Design Models .................................................................. 7 Space and Program Validation ............................................................................................................. -
Asset Management in a BIM Environment
Asset Management in a BIM Environment Fulvio Re Cecconi1, Mario Claudio Dejaco2, Daniela Pasini3, Sebastiano Maltese4 1) Ph.D., Associate Professor, Department of Architecture, Built Environment and Construction Engineering, Politecnico di Milano, Milano, Italy. Email: [email protected] 2) Ph.D., Assistant Professor, Department of Architecture, Built Environment and Construction Engineering, Politecnico di Milano, Milano, Italy. Email: [email protected] 3) Ph.D. candidate, Department of Architecture, Built Environment and Construction Engineering, Politecnico di Milano, Milano, Italy. Email: [email protected] 4) Ph.D., Research fellow, Department of Architecture, Built Environment and Construction Engineering, Politecnico di Milano, Milano, Italy. Email: [email protected] Abstract: Nowadays construction projects are more and more delivered by Building Information Models instead of traditional 2D drawings. This allows for information rich projects but this information is, in many cases, accessible only for those who are able to use a BIM authoring software. In the current market, both the top levels (CEO and executives) and the low levels (on site and off site operators) of an asset or a facility management company are not able to use a BIM authoring tool, thus to use the valuable information stored in the model. Moreover, BIM models that work fine for the design stage will be of no use during the operational stage if not correctly created. A research has been carried on to cope with these problems and the preliminary results are shown in this paper. Asset managers’ work procedures and needs have been analyzed to identify what information is needed and when in the operational stage and then an IFC compliant standard has been adopted to store data. -
John Christopher Simon, PE
John Christopher Simon, P.E. Thomas Downey, Ltd. 301 North Fairfax Street, Suite 108, Alexandria, VA 22314 EDUCATION B.S. Engineering Virginia Polytechnic Institute and State University, 1979 Masters Degree Program Participant, Civil Engineering St. Louis University, 1980 PROFESSIONAL BACKGROUND AND EXPERIENCE THOMAS DOWNEY, LTD. Alexandria, VA Vice President 2011 – Present Consulting engineer for building structures, exterior wall systems, windows, masonry, concrete repairs, waterproofing, roofing, historic structures, and construction. Technical oversight for repair and restoration work. Failure investigation, forensic investigation and consultation for litigation work. Capital budget studies for community associations and commercial properties. CONCRETE PROTECTION & RESTORATION, INC. Baltimore, MD Division Manager 2010 – 2011 Oversight and management of the General Repair Division for a major concrete repair and waterproofing specialty contractor. ARCHSTONE COMMUNITIES New York, NY Senior Project Manager 2007 – 2010 Full project oversight for major remediation and renovation of 396 unit multi-family community on Long Island, NY; management of on-site staff, architectural design team and renovation contractors. AMC DELANCEY HC PROPERTIES, LP St. Augustine, FL Vice President / Project Manager 2006 – 2007 Full project oversight for 132 acre $300MM mixed-use residential and commercial community on Anastasia Island, Florida, including selection of design team, oversight of entitlement process, coordination of HOA and condominium documents, -
Design-Build Manual
DISTRICT OF COLUMBIA DEPARTMENT OF TRANSPORTATION DESIGN BUILD MANUAL May 2014 DISTRICT OF COLUMBIA DEPARTMENT OF TRANSPORTATION MATTHEW BROWN - ACTING DIRECTOR MUHAMMED KHALID, P.E. – INTERIM CHIEF ENGINEER ACKNOWLEDGEMENTS M. ADIL RIZVI, P.E. RONALDO NICHOLSON, P.E. MUHAMMED KHALID, P.E. RAVINDRA GANVIR, P.E. SANJAY KUMAR, P.E. RICHARD KENNEY, P.E. KEITH FOXX, P.E. E.J. SIMIE, P.E. WASI KHAN, P.E. FEDERAL HIGHWAY ADMINISTRATION Design-Build Manual Table of Contents 1.0 Overview ...................................................................................................................... 1 1.1. Introduction .................................................................................................................................. 1 1.2. Authority and Applicability ........................................................................................................... 1 1.3. Future Changes and Revisions ...................................................................................................... 1 2.0 Project Delivery Methods .............................................................................................. 2 2.1. Design Bid Build ............................................................................................................................ 2 2.2. Design‐Build .................................................................................................................................. 3 2.3. Design‐Build Operate Maintain.................................................................................................... -
Early Implementation of Building Information Modeling Into a Cold-Formed Steel Company: Providing Novel Project Management Techniques and Solutions to Industry
American Journal of Civil Engineering and Architecture, 2013, Vol. 1, No. 6, 164-173 Available online at http://pubs.sciepub.com/ajcea/1/6/6 © Science and Education Publishing DOI:10.12691/ajcea-1-6-6 Early Implementation of Building Information Modeling into a Cold-Formed Steel Company: Providing Novel Project Management Techniques and Solutions to Industry Samuel A. Barrett1, John P. Spillane1,*, James B. P. Lim2 1School of Planning, Architecture & Civil Engineering, Queen’s University Belfast, Belfast, United Kingdom 2Department of Civil and Environmental Engineering, University of Auckland, Auckland, New Zealand *Corresponding author: [email protected] Received October 12, 2013; Revised November 04, 2013; Accepted November 13, 2013 Abstract The ability of building information modeling (BIM) to positively impact projects in the AEC through greater collaboration and integration is widely acknowledged. This paper aims to examine the development of BIM and how it can contribute to the cold-formed steel (CFS) building industry. This is achieved through the adoption of a qualitative methodology encompassing a literature review, exploratory interviews with industry experts, culminating in the development of e-learning material for the sector. In doing so, the research team have collaborated with one of the United Kingdom’s largest cold-formed steel designer/fabricators. By demonstrating the capabilities of BIM software and providing technical and informative videos in its creation, this project has found two key outcomes. Firstly, to provide invaluable assistance in the transition from traditional processes to a fully collaborative 3D BIM as required by the UK Government under the “Government Construction Strategy” by 2016 in all public sector projects. -
An Overview of the Building Delivery Process
An Overview of the Building Delivery CHAPTER Process 1 (How Buildings Come into Being) CHAPTER OUTLINE 1.1 PROJECT DELIVERY PHASES 1.11 CONSTRUCTION PHASE: CONTRACT ADMINISTRATION 1.2 PREDESIGN PHASE 1.12 POSTCONSTRUCTION PHASE: 1.3 DESIGN PHASE PROJECT CLOSEOUT 1.4 THREE SEQUENTIAL STAGES IN DESIGN PHASE 1.13 PROJECT DELIVERY METHOD: DESIGN- BID-BUILD METHOD 1.5 CSI MASTERFORMAT AND SPECIFICATIONS 1.14 PROJECT DELIVERY METHOD: 1.6 THE CONSTRUCTION TEAM DESIGN-NEGOTIATE-BUILD METHOD 1.7 PRECONSTRUCTION PHASE: THE BIDDING 1.15 PROJECT DELIVERY METHOD: CONSTRUCTION DOCUMENTS MANAGEMENT-RELATED METHODS 1.8 PRECONSTRUCTION PHASE: THE SURETY BONDS 1.16 PROJECT DELIVERY METHOD: DESIGN-BUILD METHOD 1.9 PRECONSTRUCTION PHASE: SELECTING THE GENERAL CONTRACTOR AND PROJECT 1.17 INTEGRATED PROJECT DELIVERY METHOD DELIVERY 1.18 FAST-TRACK PROJECT SCHEDULING 1.10 CONSTRUCTION PHASE: SUBMITTALS AND CONSTRUCTION PROGRESS DOCUMENTATION Building construction is a complex, significant, and rewarding process. It begins with an idea and culminates in a structure that may serve its occupants for several decades, even centuries. Like the manufacturing of products, building construction requires an ordered and planned assembly of materials. It is, however, far more complicated than product manufacturing. Buildings are assembled outdoors by a large number of diverse constructors and artisans on all types of sites and are subject to all kinds of weather conditions. Additionally, even a modest-sized building must satisfy many performance criteria and legal constraints, requires an immense variety of materials, and involves a large network of design and production firms. Building construction is further complicated by the fact that no two buildings are identical; each one must be custom built to serve a unique function and respond to its specific context and the preferences of its owner, user, and occupant. -
Building Information Modeling (BIM) Impact on Construction Performance
Georgia Southern University Digital Commons@Georgia Southern Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of Summer 2018 Building Information Modeling (BIM) Impact on Construction Performance David D. John Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd Part of the Architectural Engineering Commons, Civil Engineering Commons, Construction Engineering Commons, and the Construction Engineering and Management Commons Recommended Citation John, D D. (2018). Building Information Modeling (BIM) Impact on Construction Performance. Master’s thesis, Georgia Southern University, Statesboro, Georgia. This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. BUILDING INFORMATION MODELING (BIM) IMPACT ON CONSTRUCTION PERFORMANCE by DAVID DYLAN JOHN (Under the Direction of Yunfeng (Cindy) Chen) ABSTRACT This study is designed to address the need for having a measure for Construction Performance on BIM-assisted construction projects. Through this study a new Construction Key Performance Indicator (CKPI) matrix is identified and created by the author. The CKPI could be used to assess BIM-assisted projects. Utilizing a sequential mixed methodology approach, academic and practitioner perspectives are assessed. A qualitative content analysis and quantitative descriptive analysis based on demographics are conducted to establish a better understanding of BIM and Construction Performance. The academic perspective is used to assess the relevance of BIMM and CKPI indicators, and the practitioner perspective is used to assess the extent to which BIM addresses the indicators. -
9783030335694.Pdf
Research for Development Bruno Daniotti Marco Gianinetto Stefano Della Torre Editors Digital Transformation of the Design, Construction and Management Processes of the Built Environment Research for Development Series Editors Emilio Bartezzaghi, Milan, Italy Giampio Bracchi, Milan, Italy Adalberto Del Bo, Politecnico di Milano, Milan, Italy Ferran Sagarra Trias, Department of Urbanism and Regional Planning, Universitat Politècnica de Catalunya, Barcelona, Barcelona, Spain Francesco Stellacci, Supramolecular NanoMaterials and Interfaces Laboratory (SuNMiL), Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Vaud, Switzerland Enrico Zio, Politecnico di Milano, Milan, Italy; Ecole Centrale Paris, Paris, France The series Research for Development serves as a vehicle for the presentation and dissemination of complex research and multidisciplinary projects. The published work is dedicated to fostering a high degree of innovation and to the sophisticated demonstration of new techniques or methods. The aim of the Research for Development series is to promote well-balanced sustainable growth. This might take the form of measurable social and economic outcomes, in addition to environmental benefits, or improved efficiency in the use of resources; it might also involve an original mix of intervention schemes. Research for Development focuses on the following topics and disciplines: Urban regeneration and infrastructure, Info-mobility, transport, and logistics, Environment and the land, Cultural heritage and landscape, Energy, Innovation in processes and technologies, Applications of chemistry, materials, and nanotech- nologies, Material science and biotechnology solutions, Physics results and related applications and aerospace, Ongoing training and continuing education. Fondazione Politecnico di Milano collaborates as a special co-partner in this series by suggesting themes and evaluating proposals for new volumes. -
Working Collaboratively Within a Tekla Structures Model
Tekla Structures 2019 Share models and files March 2019 ©2019 Trimble Solutions Corporation Contents 1 Working collaboratively within a Tekla Structures model....... 9 1.1 What is Tekla Model Sharing..........................................................................10 Prerequisites for Tekla Model Sharing................................................................................ 11 Tekla Model Sharing licenses............................................................................................... 12 How Tekla Model Sharing uses the sharing service.......................................................... 12 Get to know Tekla Model Sharing basic working methods...............................................13 1.2 Work with Tekla Model Sharing ....................................................................16 Share a model in Tekla Model Sharing................................................................................17 Start sharing a model.......................................................................................................17 User roles in Tekla Model Sharing..................................................................................18 Information on users and sharing actions in Tekla Model Sharing............................20 Join a shared model in Tekla Model Sharing...................................................................... 21 Join a shared model......................................................................................................... 21 Information on shared