The Influence of Visual Stimuli on Sniffing Behavior

Total Page:16

File Type:pdf, Size:1020Kb

The Influence of Visual Stimuli on Sniffing Behavior The influence of visual stimuli on sniffing behavior. Masterthesis Student: G.D. Jongenelen (0358053) Supervisor: P.J. Bulsing The influence of visual stimuli on sniffing behavior Abstract Odor perception is influenced to an important extent by the expectations one has about the characteristics of that odor. Instead of focusing on the effect of cognitive processes on the final olfactory percept, the present experiment focused on the effect that cognitive processes – expectations- have on the early perceptual stage; the sniff. Visual stimuli, positive or negative pictures preceded the presentation of pleasant or unpleasant odors in mostly a congruent manner (positive – pleasant, negative – unpleasant) but sometimes in an incongruent manner (positive-unpleasant, negative – pleasant). Sniff vigor, total inhaled volume and sniff duration were expected to be mediated by expectation. The results showed that visual images have an influence on different sniff characteristics. The total inhaled volume of the odor increased when it was preceded by a positive picture compared to a negative picture, whatever odor was presented. Also, the sniff vigor slightly increased when the odor was preceded by a positive picture. People seem to use different ‘sniff patterns’ tailored to the odor they expect to perceive. 2 The influence of visual stimuli on sniffing behavior Introduction The chance that an odor will be detected, is influenced for a great part by the expectation one has about being exposed to an odor. Furthermore, expectations may have an influence on the fysiological response in odor perception. Engen (1972) showed that the likelihood for people to report an odor was significantly greater when smelling a substance that was colored, than when it was transparent, independent of whether an odor was present or not. The presence of a visual stimulus therefore seemed to induce the expectation about smelling an odor, and as a result increased the likelihood of participants reporting the presence of an odor. Additionally, the more frequently they perceived an odor in the past, the more likely they were to report the presence of an odor later, whether or not it was actually present. In other words, the chance of reporting an odor increased based on the participants expectation to perceive the odor more frequently. That expectation, besides odor detection, also influences odor identification, was demonstrated by Blackwell (1995). Here, participants had to recognize fruit odors when the substance was either colored differently or the same (e.g. yellow substance to represent lemon), from the fruit substance they smelled. This appeared to be significantly more difficult when the solution was colored differently than when it had the same color as the fruit. Also, when the intensities of the odor samples had to be arranged in terms of intensity (from strongest to weakest), this proved to be more difficult when the intensity of the substance color and the odor did not match. The visual cues seemed to distract the participants from making correct decisions about the odor, in both the odor detection and the odor intensity rating experiments. Not only us naïve individuals seem to be fooled by this ‘color’ effect, as even experts rely heavily on visual stimuli. The typical ‘red’ or ‘white’ wine judgments, that wine experts use to rate wines, are influenced by the color of the wine (Morrot et al. 2001). In the Morrot et 3 The influence of visual stimuli on sniffing behavior al. study, white wine was colored red with a non-odorous dye. Consequently, when the experts had to rate the ‘red white’ wine, they did so by using ‘red’ attributes. This showed that color can have a priming effect on odor perception. Furthermore, the integration of visual information, in this case color, seemed to occur in an unconscious way. In line with the previous studies, de Araujo et al. (2005) showed that words, instead of colors, can also influence odor perception. In their experiment, the odor cheddar cheese, was labeled by a visual word descriptor; either ‘cheddar cheese’ or ‘body odor’. Participants rated the odor as significantly more unpleasant when it was labeled ‘body odor’. Surprisingly, the same effect was noticeable when using a neutral odor (clean air). The effect of cognitive modulation was supported by fMRI data, which showed that activated brain regions were correlated with the participants’ pleasantness ratings. This activity thus seemed to be dependent on the word labels that were provided during the odor delivery. Distel and Hudson (2001) suggested that source information about a certain odor activates appropriate mental schemes, which lead to expectations about the odor. In their study, participants received twelve odors. In one condition, the source information (name of the odor) was known to the participants, and in the other condition it was not. The ratings of intensity, pleasantness and familiarity were enhanced when the name of the odor was provided. In a third condition, subjects were asked to report whether a given odor name matched their own perception. Ratings of intensity, pleasantness and familiarity were highest when they reported a good match. In this case, the authors speculate that people employ certain perceptual schemas which are activated in perceptual events. Perceptual schema’s can be described as the way in which objects are semantically related. For example, ovens and refrigerators are typically found in kitchens, barns and chickens on a farm and desks and computers in offices. This information is acquired during a lifetime of perceptual experience (Chun & Jiang, 1999). With respect to this description, it can be assumed that perceptual stimuli activate associations throughout different modalities associated with the perceived stimuli. For example, when observing freshly baked bread, the smell and taste of it are activated simultaneously. In the Distel and Hudson experiment, the high ratings in the good 4 The influence of visual stimuli on sniffing behavior match situation probably resulted from a good match between the neural activation of the perceptual schemas, and the actual perceptual input (knowing the source of the odor). Lower ratings, on the other hand, were explained as the result of an incomplete match, leading to reduced neural activity (e.g. not knowing the source of the odor). These findings led to the conclusion that cognitive processes, activated by certain information about the odor, influence odor perception. Gottfried and Dolan (2003) underlined the principle that congruency, or good matches, can facilitate odor perception. They offered picture-odor pairs, which could be semantically congruent (picture of a bus, with diesel odor) or incongruent (picture of cheese, with fish odor). An odor appeared to be detected significantly faster when the picture and the odor were a matched pair. Furthermore, the accuracy of detection responses (odor yes/no) also differed significantly, in the favor of the congruent pairs. Blackwell’s fruit odor experiment, described earlier, showed that it is difficult to ignore visual cues, and more importantly, that these cues seemed to dominate the eventual response. Blackwell (1995) compared this effect to the Stroop effect, where names of colors are printed in ink of a different color. In the Stroop task, higher perceptual processes (reading words) interfere with lower perceptual processes (naming ink colors), resulting in slower reaction times when asked to name the ink color. The same was the case in Blackwell’s study described above; the visual cues seemed to distract participants from making correct decisions about the odor. This, in turn can be integrated with Distel and Hudson’s mental schemata premise, because one process activates a certain set of semantic relations, which is hard to overrule by another process, in this case odor evaluations. So, like in the Stroop task; one of the processes had a dominant effect on the eventual response, in this case the knowledge of the odor source. The studies that have been discussed so far, all focus on the influence of cognitive processes on perception and subjective appreciation of odors. But, in order for a person to be able to smell, odorant transduction, the process of odorant binding at olfactory receptors, has to take place. Here, the first step is for odor molecules to find their way into the nasal cavity 5 The influence of visual stimuli on sniffing behavior where they bind to the olfactory epithelium, a tissue that lies several centimeters in the nasal cavity. In order for the molecules to reach the epithelium, an active process called sniffing has to take place. According to Comroe (1974) sniffing can be best described as “a mechanism for bringing ambient air into contact with the olfactory receptors in the nose without carrying the air (which may contain irritant, toxic materials) deep into the lung”. Olfaction thus actually consists of two parts; sniffing and smelling. The first concerns the airflow in the nostril, regardless of the presence of odor molecules. Secondly, smelling refers to the actual odor perception, regardless of airflow in the nostril. Although olfactory perception is usually assumed to reflect the ‘smelling’ part, it is largely dependent on the ‘sniffing’ part (Mainland & Sobel, 2006). Evidence for this statement lies, among others, in a study done by Bocca et al. (1965). Here, odor molecules were injected intravenously, so that odorants could reach the epithelium through the bloodstream in the absence of sniffing. They found that no odor was perceived, when participants did not sniff. Only when they could breathe normally through the nose or when odorless nitrogen was injected to mimic a sniff, the intravenous odor was perceived. This led them to conclude that the sniff, or mechanical stimulation of the epithelium, is necessary for olfactory perception. This necessity has also been shown by Bensafi et al. (2003). In their experiment, airflow was measured when participants had to imagine different stimuli across modalities, including olfaction (odor imagination).
Recommended publications
  • Taste and Smell Disorders in Clinical Neurology
    TASTE AND SMELL DISORDERS IN CLINICAL NEUROLOGY OUTLINE A. Anatomy and Physiology of the Taste and Smell System B. Quantifying Chemosensory Disturbances C. Common Neurological and Medical Disorders causing Primary Smell Impairment with Secondary Loss of Food Flavors a. Post Traumatic Anosmia b. Medications (prescribed & over the counter) c. Alcohol Abuse d. Neurodegenerative Disorders e. Multiple Sclerosis f. Migraine g. Chronic Medical Disorders (liver and kidney disease, thyroid deficiency, Diabetes). D. Common Neurological and Medical Disorders Causing a Primary Taste disorder with usually Normal Olfactory Function. a. Medications (prescribed and over the counter), b. Toxins (smoking and Radiation Treatments) c. Chronic medical Disorders ( Liver and Kidney Disease, Hypothyroidism, GERD, Diabetes,) d. Neurological Disorders( Bell’s Palsy, Stroke, MS,) e. Intubation during an emergency or for general anesthesia. E. Abnormal Smells and Tastes (Dysosmia and Dysgeusia): Diagnosis and Treatment F. Morbidity of Smell and Taste Impairment. G. Treatment of Smell and Taste Impairment (Education, Counseling ,Changes in Food Preparation) H. Role of Smell Testing in the Diagnosis of Neurodegenerative Disorders 1 BACKGROUND Disorders of taste and smell play a very important role in many neurological conditions such as; head trauma, facial and trigeminal nerve impairment, and many neurodegenerative disorders such as Alzheimer’s, Parkinson Disorders, Lewy Body Disease and Frontal Temporal Dementia. Impaired smell and taste impairs quality of life such as loss of food enjoyment, weight loss or weight gain, decreased appetite and safety concerns such as inability to smell smoke, gas, spoiled food and one’s body odor. Dysosmia and Dysgeusia are very unpleasant disorders that often accompany smell and taste impairments.
    [Show full text]
  • Review Article Olfactory Reference Syndrome
    British Journal of Pharmaceutical and Medical Research Vol.04, Issue 01, Pg.1617-1625, January-February 2019 Available Online at http://www.bjpmr.org BRITISH JOURNAL OF PHARMACEUTICAL AND MEDICAL RESEARCH Review ISSN:2456-9836 ICV: 60.37 Article Murat Eren Özen, Murat Aydin Olfactory Reference Syndrome: A Separate Disorder Or Part Of A Spectrum 1Psychiatrist, Department of Psychiatry, Private Adana Hospital, Adana Büyük şehir Belediyesi kar şısı, No:23, Seyhan-Adana- Türkiye. 2Private Dental Clinics, Gazipa şa bulv. Emre apt n:6 (kitapsan kar şısı) k:2 d:5 Adana- Türkiye. http://drmurataydin.com ARTICLE INFO ABSTRACT This article provides a narrative review of the literature on olfactory reference syndrome Article History: Received on (ORS) to address issues focusing on its clinical features. Similarities and/or differences with other psychiatric disorders such as obsessive-compulsive spectrum disorders, social anxiety 10 th Jan, 2019 Peer Reviewed disorder (including a cultural syndrome; taijin kyofusho), somatoform disorders and hypochondriasis, delusional disorder are discussed. ORS is related to a symptom of taijin on 24 th Jan, 2019 Revised kyofusho (e.g. jikoshu-kyofu variant of taijin kyofusho) Although recognition of this syndromes more than a century provide consistent descriptions of its clinical features, the on 17 th Feb, 2019 Published limited data on this topic make it difficult to form a specific diagnostic criteria. The core on 24 th Feb, symptom of the patients with ORS is preoccupation with the belief that one emits a foul or 2019 offensive body odor, which is not perceived by others. Studies on ORS reveal some limitations.
    [Show full text]
  • Respiration, Neural Oscillations, and the Free Energy Principle
    fnins-15-647579 June 23, 2021 Time: 17:40 # 1 REVIEW published: 29 June 2021 doi: 10.3389/fnins.2021.647579 Keeping the Breath in Mind: Respiration, Neural Oscillations, and the Free Energy Principle Asena Boyadzhieva1*† and Ezgi Kayhan2,3† 1 Department of Philosophy, University of Vienna, Vienna, Austria, 2 Department of Developmental Psychology, University of Potsdam, Potsdam, Germany, 3 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany Scientific interest in the brain and body interactions has been surging in recent years. One fundamental yet underexplored aspect of brain and body interactions is the link between the respiratory and the nervous systems. In this article, we give an overview of the emerging literature on how respiration modulates neural, cognitive and emotional processes. Moreover, we present a perspective linking respiration to the free-energy principle. We frame volitional modulation of the breath as an active inference mechanism Edited by: in which sensory evidence is recontextualized to alter interoceptive models. We further Yoko Nagai, propose that respiration-entrained gamma oscillations may reflect the propagation of Brighton and Sussex Medical School, United Kingdom prediction errors from the sensory level up to cortical regions in order to alter higher level Reviewed by: predictions. Accordingly, controlled breathing emerges as an easily accessible tool for Rishi R. Dhingra, emotional, cognitive, and physiological regulation. University of Melbourne, Australia Georgios D. Mitsis, Keywords: interoception, respiration-entrained neural oscillations, controlled breathing, free-energy principle, McGill University, Canada self-regulation *Correspondence: Asena Boyadzhieva [email protected] INTRODUCTION † These authors have contributed “The “I think” which Kant said must be able to accompany all my objects, is the “I breathe” which equally to this work actually does accompany them.
    [Show full text]
  • Multi-Odor Discrimination by Rat Sniffing for Potential Monitoring Of
    sensors Article Multi-Odor Discrimination by Rat Sniffing for Potential Monitoring of Lung Cancer and Diabetes Yunkwang Oh 1,2, Ohseok Kwon 3, Sun-Seek Min 4, Yong-Beom Shin 1,5, Min-Kyu Oh 2,* and Moonil Kim 1,5,* 1 Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) 125 Gwahang-ro, Yuseong-gu, Daejeon 34141, Korea; [email protected] (Y.O.); [email protected] (Y.-B.S.) 2 Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Sungbuk-gu, Seoul 02841, Korea 3 Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) 125 Gwahang-ro, Yuseong-gu, Daejeon 34141, Korea; [email protected] 4 Department of Physiology and Biophysics, Eulji University School of Medicine, 77 Gyeryong-ro, Jung-gu, Daejeon 34824, Korea; [email protected] 5 KRIBB School, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea * Correspondence: [email protected] (M.-K.O.); [email protected] (M.K.); Tel.: +82-2-3290-3308 (M.-K.O.); +82-42-879-8447 (M.K.); Fax: +82-2-926-6102 (M.-K.O.); +82-42-879-8594 (M.K.) Abstract: The discrimination learning of multiple odors, in which multi-odor can be associated with different responses, is important for responding quickly and accurately to changes in the external environment. However, very few studies have been done on multi-odor discrimination by animal sniffing. Herein, we report a novel multi-odor discrimination system by detection rats based on the combination of 2-Choice and Go/No-Go (GNG) tasks into a single paradigm, in which the Go response of GNG was replaced by 2-Choice, for detection of toluene and acetone, which Citation: Oh, Y.; Kwon, O.; Min, S.-S.; are odor indicators of lung cancer and diabetes, respectively.
    [Show full text]
  • Characterization of the Sniff Magnitude Test
    ORIGINAL ARTICLE Characterization of the Sniff Magnitude Test Robert A. Frank, PhD; Robert C. Gesteland, PhD; Jason Bailie, BS; Konstantin Rybalsky, BS; Allen Seiden, MD; Mario F. Dulay, PhD Objective: To evaluate the potential utility of the Sniff Results: The SMT generally showed good agreement with Magnitude Test (SMT) as a clinical measure of olfactory UPSIT diagnostic categories, although SMT scores were function. only modestly elevated in the mild and modest hypo- smia range of the UPSIT. Age-related decline in olfac- Design: Between-subject designs were used to com- tory ability was evident on the UPSIT at younger ages than pare the SMT and University of Pennsylvania Smell Iden- that seen with the SMT. As predicted, otolaryngology pa- tification Test (UPSIT) in study participants from a broad tients with olfactory complaints were found to be im- range of ages. paired on both the UPSIT and SMT. Subjects: A total of 361 individuals from retirement com- Conclusions: The SMT provides a novel method for munities and an urban university and patients from an evaluating the sense of smell that shows good general otolaryngology clinic. agreement with the UPSIT. Its minimal dependence on language and cognitive abilities provides some advan- Intervention: Study participants completed the SMT and UPSIT using standard procedures. tages over odor identification tests. There is some indi- cation that the UPSIT may be more sensitive to olfac- Main Outcome Measures: The UPSIT was scored us- tory (and/or nonolfactory) deficits. We conclude that ing standard procedures to calculate the number of cor- sniffing behavior can be exploited for the clinical evalu- rectly identified odors; a score that can range from 0 to ation of olfaction.
    [Show full text]
  • Lecture 14 --Olfaction.Pdf
    14 Olfaction ClickChapter to edit 14 MasterOlfaction title style • Olfactory Physiology • Neurophysiology of Olfaction • From Chemicals to Smells • Olfactory Psychophysics, Identification, and Adaptation • Olfactory Hedonics • Associative Learning and Emotion: Neuroanatomical and Evolutionary Considerations ClickIntroduction to edit Master title style Olfaction: The sense of smell Gustation: The sense of taste ClickOlfactory to edit Physiology Master title style Odor: The translation of a chemical stimulus into a smell sensation. Odorant: A molecule that is defined by its physiochemical characteristics, which are capable of being translated by the nervous system into the perception of smell. To be smelled, odorants must be: • Volatile (able to float through the air) • Small • Hydrophobic (repellent to water) Figure 14.1 Odorants ClickOlfactory to edit Physiology Master title style The human olfactory apparatus • Unlike other senses, smell is tacked onto an organ with another purpose— the nose. Primary purpose—to filter, warm, and humidify air we breathe . Nose contains small ridges, olfactory cleft, and olfactory epithelium ClickOlfactory to edit Physiology Master title style The human olfactory apparatus (continued) • Olfactory cleft: A narrow space at the back of the nose into which air flows, where the main olfactory epithelium is located. • Olfactory epithelium: A secretory mucous membrane in the human nose whose primary function is to detect odorants in inhaled air. Figure 14.2 The nose ClickOlfactory to edit Physiology Master title style Olfactory epithelium: The “retina” of the nose • Three types of cells . Supporting cells: Provide metabolic and physical support for the olfactory sensory neurons. Basal cells: Precursor cells to olfactory sensory neurons. Olfactory sensory neurons (OSNs): The main cell type in the olfactory epithelium.
    [Show full text]
  • Nasal Secretion Insufficiency Syndrome (New Concept of Ozena)
    Journal of Lung, Pulmonary & Respiratory Research Online Report Open Access Nasal secretion insufficiency syndrome (new concept of ozena) Abstract Volume 7 Issue 2 - 2020 The patient complained of nasal odor and was referred to a psychiatrist by the Department Toshiro Takami of Otolaryngology as a case of olfactory reference syndrome. The patient had a strong nasal Akiyama hospital, Japan odor. The doctor denied the existence of atrophic rhinitis and rhinophobia. If you look around the internet, there are many who suffer from similar conditions. Almost Correspondence: Toshiro takami, Akiyama hospital, 47-8 Kuyamadai Isahaya-shi Nagasaki-prefecture, 854-0067, Japan, all of them complain of an unusually dry nose. It was thought that Pseudomonas aeruginosa Tel 080-5211-3990, Email or some fungus grew abnormally in the devastated nasal mucosa of the endogenous nasal cavity, and due to inadequate nasal secretion, the bacterial metabolites could not be forced Received: August 22, 2020 | Published: September 18, 2020 down the throat or other parts of the body, giving off a strong nasal odor. This disorder is often neglected or diagnosed by psychiatrists as olfactory reference syndrome. The term “nasal secretion insufficiency syndrome” is used to describe this condition. This is a new concept of nasal odor disease, which remains unnoticed, partly because there is no crusting or atrophy of the native nasal cavity, and partly because endoscopy reveals only the devastation of the nasal mucosa, and partly because it is hidden behind the veil of atrophic rhinitis and ozena. In all seven cases, the foul odor is weakened, albeit temporarily, by the use of saliva- enhancing drugs.
    [Show full text]
  • Sniffing Behavior Communicates Social Hierarchy
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Current Biology 23, 575–580, April 8, 2013 ª2013 Elsevier Ltd All rights reserved http://dx.doi.org/10.1016/j.cub.2013.02.012 Report Sniffing Behavior Communicates Social Hierarchy Daniel W. Wesson1,* directed behaviors such as grooming each corresponded 1Department of Neurosciences, Case Western Reserve with unique modulations in sniffing frequency (Figures S1C– University, Cleveland, OH 44106, USA S1E), demonstrating the reliability of video-based measures in indexing time of respiratory modulation. In order to control the moment of the first physical interac- Summary tion between rats, I used a solid black plastic divider to parti- tion them and removed this divider after 5 min of acclimation. Sniffing is a specialized respiratory behavior that is essential Upon first social interactions, sniffing behavior was character- for the acquisition of odors [1–4]. Perhaps not independent ized by highly aberrant and rapid alterations in both frequency of this, sniffing is commonly displayed during motivated and amplitude (Figure S1F), corresponding with periods of [5–7] and social behaviors [8, 9]. No measures of sniffing vigorous, bidirectional investigations directed toward the among interacting animals are available, however, calling face, flank, and anogenital regions of the individual, as well into question the utility of this behavior in the social context. as with other general exploratory behaviors (e.g., rearing). From radiotelemetry recordings of nasal respiration, I found Over continued interaction, the number of social behavioral that investigation by one rat toward the facial region of events decreased, as did sniffing frequency (Figure S1G), a conspecific often elicits a decrease in sniffing frequency reflecting habituation toward the novel conspecific.
    [Show full text]
  • Deficits in Olfactory Sensitivity in a Mouse Model of Parkinson's
    www.nature.com/scientificreports OPEN Defcits in olfactory sensitivity in a mouse model of Parkinson’s disease revealed by plethysmography of odor-evoked snifng Michaela E. Johnson1,4, Liza Bergkvist1,4, Gabriela Mercado1, Lucas Stetzik1, Lindsay Meyerdirk1, Emily Wolfrum2, Zachary Madaj2, Patrik Brundin1 ✉ & Daniel W. Wesson3 ✉ Hyposmia is evident in over 90% of Parkinson’s disease (PD) patients. A characteristic of PD is intraneuronal deposits composed in part of α-synuclein fbrils. Based on the analysis of post-mortem PD patients, Braak and colleagues suggested that early in the disease α-synuclein pathology is present in the dorsal motor nucleus of the vagus, as well as the olfactory bulb and anterior olfactory nucleus, and then later afects other interconnected brain regions. Here, we bilaterally injected α-synuclein preformed fbrils into the olfactory bulbs of wild type male and female mice. Six months after injection, the anterior olfactory nucleus and piriform cortex displayed a high α-synuclein pathology load. We evaluated olfactory perceptual function by monitoring odor-evoked snifng behavior in a plethysmograph at one-, three- and six-months after injection. No overt impairments in the ability to engage in snifng were evident in any group, suggesting preservation of the ability to coordinate respiration. At all-time points, females injected with fbrils exhibited reduced odor detection sensitivity, which was observed with the semi-automated plethysmography apparatus, but not a buried pellet test. In future studies, this sensitive methodology for assessing olfactory detection defcits could be used to defne how α-synuclein pathology afects other aspects of olfactory perception and to clarify the neuropathological underpinnings of these defcits.
    [Show full text]
  • Sniffing Fast: Paradoxical Effects on Odor Concentration Discrimination at the Levels of Olfactory Bulb Output and Behavior
    New Research Sensory and Motor Systems Sniffing Fast: Paradoxical Effects on Odor Concentration Discrimination at the Levels of Olfactory Bulb Output and Behavior Rebecca Jordan,1,2 Mihaly Kollo,1,2 and Andreas T. Schaefer1,2 https://doi.org/10.1523/ENEURO.0148-18.2018 1Neurophysiology of Behaviour Laboratory, Francis Crick Institute, London, NW1 1AT, UK and 2Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK Abstract In awake mice, sniffing behavior is subject to complex contextual modulation. It has been hypothesized that variance in inhalation dynamics alters odor concentration profiles in the naris despite a constant environmental concentration. Using whole-cell recordings in the olfactory bulb of awake mice, we directly demonstrate that rapid sniffing mimics the effect of odor concentration increase at the level of both mitral and tufted cell (MTC) firing rate responses and temporal responses. Paradoxically, we find that mice are capable of discriminating fine concen- tration differences within short timescales despite highly variable sniffing behavior. One way that the olfactory system could differentiate between a change in sniffing and a change in concentration would be to receive information about the inhalation parameters in parallel with information about the odor. We find that the sniff-driven activity of MTCs without odor input is informative of the kind of inhalation that just occurred, allowing rapid detection of a change in inhalation. Thus, a possible reason for sniff modulation of the early olfactory system may be to directly inform downstream centers of nasal flow dynamics, so that an inference can be made about environmental concentration independent of sniff variance.
    [Show full text]
  • Olfactory Adaptation
    1 In: Handbook of Olfaction and Gustation, 1st Edition (R.L. Doty, ed.). Marcel Dekker, New York, 1995, pp. 257-281. Olfactory Adaptation J. Enrique Cometto-Muñiz*1,2 and William S. Cain John B. Pierce Laboratory and Yale University, 290 Congress Avenue, New Haven, CT 06519, USA *Present affiliation: University of California, San Diego, California 1Correspondence to Dr. J. Enrique Cometto-Muñiz at: [email protected] 2Member of the Carrera del Investigador Científico, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), República Argentina 2 Table of Contents Introduction I Effects on Thresholds. II Effects on Suprathreshold Odor Intensities. III Effects on Reaction Times. IV Effects on Odor Quality. V Self-adaptation vs. Cross-adaptation. VI Ipsi-lateral vs. Contra-lateral Adaptation: Implications for Locus of Adaptation VII Adaptation and Mixtures of Odorants. VIII Adaptation and Trigeminal Attributes of Odorants. IX Cellular and Molecular Mechanisms of Adaptation. X Clinical Implications. Summary 3 Introduction The phenomenon of olfactory adaptation reflects itself in a temporary decrease in olfactory sensitivity following stimulation of the sense of smell. Olfactory adaptation can be seen in increases in odor thresholds and decreases in odor intensities. Adaptation poses issues that require understanding in their own right, such as the magnitude of desensitization, the time-course of desensitization and recovery to normal sensitivity, and ultimately the mechanisms responsible for these phenomena. In principle, however, the study of adaptation could also provide important clues regarding receptor specificity. Behind this hope lies the expectation that stimuli impinging upon many receptors in common will induce substantial cross-adaptation (where the adapting stimuli differ from the test stimuli), whereas stimuli impinging on very few receptors in common will not.
    [Show full text]
  • Adaptations of Olfactometry and Odour Measurement with COVID-19 Crisis J.M
    A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 85, 2021 The Italian Association of Chemical Engineering Online at www.cetjournal.it Guest Editors: Selena Sironi, Laura Capelli Copyright © 2021, AIDIC Servizi S.r.l. ISBN 978-88-95608-83-9; ISSN 2283-9216 Adaptations of olfactometry and odour measurement with COVID-19 crisis J.M. Guillot IMT Mines Ales, LSR, 30319 Alès cedex, France [email protected] The year 2020 was characterised by a worldwide pandemic crisis due to dissemination of a Coronavirus, the SARS-CoV-2 also named COVID-19. Many economic and social domains were impacted by adaptions or restrictions by the objective to limit local dispersion and more global flow of the virus. Without describing all human health effects of this virus, one characteristic is temporary anosmia. In this paper, firstly the physiological impact is synthetized to explain the anosmia. Secondly, because olfactometry need human smell, adaptations of sensorial methods are described. These adapted methods were proposed by laboratories/companies in charge of olfactometry or odour measurement and mainly concern how the distance guarantees between panellists were proposed. 1. Introduction The aim of this paper is to summarize two aspects of olfactory impact of COVID-19 crisis. The first part concerns the short description of the physiological impact taking into account that many studies are in progress to study mechanisms of action of this virus on sensorial receptors. Then it is just a synthesis of scientific results or hypothesis known at the beginning of year 2021. The second part, more developed, is dedicated to technical measurement of odours.
    [Show full text]