Enzymes BIOCATALYSTS VS

Total Page:16

File Type:pdf, Size:1020Kb

Enzymes BIOCATALYSTS VS ENZYMESENZYMOLOGY BIOCATALYSTS 2009/2010 INGRID ŽITŇANOVÁ HISTORY 17th -18th century – digestion of meat caused by stomach secretions - conversion of starch to glucose by saliva Louis Pasteur 19th century – L. Pasteur – fermentation of sugar to alcohol by yeasts - vital force in yeasts required for this fermentation 1897 – Eduard Buchner – ability of yeast extracts that lacked any living yeast cells to ferment sugar – in 1907 – Nobel Prize for chemistry - discovery of cell free fermentation 1926 – James B. Sumner isolated the first enzyme – urease and prooved its protein character Eduard Buchner en zyme – in yeasts • Enzymes are biocatalysts ✓ Increase the rate of a reaction ✓ Not consumed by the reaction ✓ Enzymes are often very “specific” – promote only 1 particular reaction ✓ In the single cell - more than 3000 enzymes BIOCATALYSTS VS. INORGANIC CATALYSTS Enzymes (biocatalysts): 1) More efficient - higher reaction rate 2) Milder reaction conditions (20 - 40°C, pressure 0.1 MPa, pH = 7) 3) Higher specificity of the reaction 4) Ability to be regulated at different levels (inhibitors, activators) 5) They are non-toxic 6) Enzymes – organic compounds, chemic. catalysts – inorg. compounds Catalyst rate enhancement Inorganic catalysts 102 -104 fold Enzymes up to1020 fold How much is 1020 fold? Catalyst time for reaction With enzyme 1 second Without enzyme 3 x 1012 years ENZYME STRUCTURE • Enzymes are proteins (chain of amino acids) • Enzyme will twist and fold into a specific shape due to how the amino acids are attracted to each other • Enzyme shape attracts specific molecules - substrates – molecules that bind to the enzyme ➢ Enzymes DO NOT change the equilibrium constant of a reaction (accelerate the rate of the forward and reverse reactions equally) Carbonic anhydrase CO2 + H2O H2CO3 Carbonic anhydrase in tissues: CO + H O 2 2 H2CO3 Carbonic anhydrase in lungs: H2CO3 CO2 + H2O ENZYMES SIMPLE COMPLEX (HOLOENZYME) APOENZYMES COFACTOR (Nonprotein) (Protein) ORGANIC INORGANIC COENZYME PROSTHETIC GROUP (loosely bound) (tightly bound) HOLOENZYME Inorganic elements serving as enzyme cofactors Cytochrome oxidase Cytochrome oxidase, catalase, peroxidase Pyruvate kinase Hexokinase, pyruvate kinase Arginase, Dinitrogenase Urease Glutathione peroxidase Carboanhydrase, alcohol dehydrogenase Cu2+, Zn2+, Mn2+ Superoxide dismutase Cofactors Role of organic cofactors: transport of chem. groups from 1 reactant to another ◼ cofactors can serve several apoenzymes: NAD+ (nicotinamide adenine dinucleotide) - a cofactor for a great number of dehydrogenases: alcohol dehydrogenase, malate dehydrogenase lactate dehydrogenase reactions Classification of cofactors according to the type of a transferred molecule 1) Transfer of H atoms NAD+ (nicotine amide adenine dinucleotide) - transport of H- FAD (flavine adenine dinucleotide) – transport of 2H FMN (flavine mononucleotide), lipoic acid - transport of 2H 2) Transfer of electrons coenzyme Q, porfyrin derivatives 3) Transfer of groups of atoms adenosine phosphates (ATP, ADP) - phosphate group coenzyme A – acyl groups thiamine diphosphate - aldehydes pyridoxal phosphate – amine groups biocytin – CO2 tetrahydrofolate (coenzyme F) – one-carbon groups Vitamins are often converted to coenzymes Vitamin Coenzyme Function Thiamin diphosphate decarboxylation B1 Flavin mononucleotide (FMN) carries hydrogen B2 Nicotinamide adenine dinucleotide carries hydrogen H- B3 (NAD+), (NADH) B 5 acyl group carrier pantothenic acid Coenzyme A H (B7) Biocytin CO2 fixation B9-folic acid Tetrahydrofolate carries one carbon units B12-cobalamine Methylcobalamine, adenosylcobalamine ACTIVE SITE Active site Substrate ACTIVE SITE BINDING SITE CATALYTIC SITE (where a substrate binds) (where the reaction proceeds) ▪ ACTIVE SITE = pocket in the enzyme where substrates bind and catalytic reaction occur ▪ Some enzymes contain more active sites (2 - 4), they can bind more substrate molecules ▪ Aminoacids of the active site can be located at different regions of a polypeptide chain Aminoacids of the active site can be located at different regions of a polypeptide chain ➢ Substrates bind in active site by following interactions: ➢ hydrogen bonds ➢ hydrophobic interactions ➢ ionic interactions ➢ covalent bonds (occasionally) ➢ The interactions hold the substrate in the proper orientation for most effective catalysis ➢ The ENERGY derived from these interactions = “Binding energy“ binding pocket hydrophobic ionic interaction hydrogen interaction bonding ionic interaction 2. non-covalent interactions between substrate and Interactionsthe active site:between enzyme and substrate - hydrogen bonding - ionic interactions - hydrophobic interactions Stages of enzyme reaction 1/ E + S E-S Formation of E-S complex 2/ E-S E-S* Activation of the complex 3/ E-S* E-P Conversion of substrate to a product 4/ E-P E + P Separation of product from enzyme ES* = enzyme/transition state complex First step of enzyme catalysis FORMATION OF THE ENZYME-SUBSTRATE COMPLEX E + S ES Second step FORMATION OF THE TRANSITION STATE COMPLEX Note change ES transition state complex Transition State: a. Old bonds break and new ones form. b. Substance is neither substrate nor product c. Unstable short lived species with an equal probability of going forward or backward. Third step FORMATION OF THE ENZYME-PRODUCT COMPLEX ES* EP Fourth step RELEASE OF THE PRODUCT EP E + P Mechanisms of substrate conversion • Enzyme binds • Charges in the • Deformation of S 2 substrates, active site facilitates its that they are in induce changes conversion to a close vicinity in the charges in product S molecule MECHANISM OF ENZYME ACTION • Enzymes decrease the activation energy of a reaction by formation of the active enzyme - substrate complex • Activation energy is the energy required to start a reaction. Transition state Uncatalyzed reaction Catalyzed reaction Substrate Energy Product • The lower the free energy of activation, the more molecules have sufficient energy to pass through the transition state, and, thus, the faster the rate of the reaction. Enzyme activity Enzyme Substrate Product The katal (symbol: kat) - the SI unit of catalytic activity One katal is the catalytic activity that changes one mole of substrate per second at optimal pH. 1 kat = mol . s-1 ◼ SPECIFIC ACTIVITY – katal/kg (μkat/mg) protein ◼ MOLAR ACTIVITY – katal/mol protein 1 U = μmol . min-1 1 kat = mol/s = 60 mol/min= 60.106 μmol.min-1 = 6.107 U 1 U = μmol.min-1 = 10-6 mol/60 s = 16.7 . 10-9 kat ENZYME SPECIFICITY Enzyme has SPECIFICITY – it can discriminate among possible substrate molecules: S S S Substrate Enzyme Enzyme Enzymes are very specific and only work with certain substrates SUBSTRATE SPECIFICITY (apoenzyme responsible) 1) Strictly specific enzymes - only react with a single substrate (DNA polymerase, urease) 2) Less specific enzymes a. Group specific - recognize a functional group (-OH, -NH2...) (alcoholdehydrogenase - converts methanol, ethanol, ethylene glycol) b. Linkage specific – particular type of chemical bond regardless . of the rest of the molecular structure (peptidase, esterase) SPECIFICITY OF EFFECT (cofactor responsible) OXIDOREDUCTASES – oxidation/reduction reactions - transfer of H and O atoms or electrons from one substance to another (alcoholdehydrogenase) TRANSFERASES – transfer of a functional group - methyl-, acyl-, amino- or phosphate group (hexokinase) HYDROLASES – catalyze hydrolysis of various bonds (carboxypeptidase A) LYASES – cleave bonds by means other than hydrolysis and oxidation (pyruvate decarboxylase) ISOMERASES – intramolecular changes of „S“ (maleate isomerase) LIGASES – join two molecules with covalent bonds with the use of energy from ATP (pyruvate carboxylase) MODELS FOR ENZYME/SUBSTRATE INTERACTIONS 1) Lock and Key Model (Emil Fischer 1894) Substrate Active site ES complex Enzyme ➢ This model assumed that only a substrate of a proper shape could fit with the enzyme 1) Lock and Key Model (Emil Fischer 1894) Substrate Enzyme A. Substrate (key) fits into a perfectly shaped space in the enzyme (lock) B. Highly stereospecific C. Site is preformed and rigid 2) Induced Fit Model (Daniel Koshland 1958) Substrate Active site Enzyme ES complex ➢ This model assumes continuous changes in the active site structure as a substrate binds Induced fit model ◼ Takes into account the flexibility of proteins ◼ A substrate fits into a general shape in the enzyme, causing the enzyme to change shape (conformation) ◼ Change in protein configuration leads to a near perfect fit of substrate with enzyme Principles of Catalysis • Uncatalyzed reactions often are extremely slow. • They are slow because of the heigh activation energy • Enzymes lower the activation energy by creating an ES (enzyme-substrate) complex which reduces bond strength in the substrate and makes the substrate easier to convert to the product. Enzyme Nomenclature 1. Trivial names 2. Systematic nomenclature Enzyme Nomenclature 1. Trivial names ◼ everyday use (pepsin, trypsin) Usually named by suffix –ase to: - the name of a substrate (urease) - the catalytic reaction (glucose oxidase) Some examples: Alcohol dehydrogenase - oxidation of alcohols DNA polymerase - polymerization of nucleotides Protease - hydrolysis of proteins Methyltransferase - methyl group transfer 2. Systematic names ◼ Introduced in 1961 (enzyme commision of IUB) ◼ Systematic names: a) characterizing catalytic reaction b) recommended – commonly used c) international – code number 2. Systematic names L-lactate + NAD+ pyruvate + NADH + H+ name of substrates
Recommended publications
  • WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US).
    [Show full text]
  • United States Patent (10) Patent No.: US 9,562,241 B2 Burk Et Al
    USOO9562241 B2 (12) United States Patent (10) Patent No.: US 9,562,241 B2 Burk et al. (45) Date of Patent: Feb. 7, 2017 (54) SEMI-SYNTHETIC TEREPHTHALIC ACID 5,487.987 A * 1/1996 Frost .................... C12N 9,0069 VLAMCROORGANISMIS THAT PRODUCE 5,504.004 A 4/1996 Guettler et all 435,142 MUCONCACID 5,521,075- W I A 5/1996 Guettler et al.a (71) Applicant: GENOMATICA, INC., San Diego, CA 3. A '95 seal. (US) 5,686,276 A 11/1997 Lafend et al. 5,700.934 A 12/1997 Wolters et al. (72) Inventors: Mark J. Burk, San Diego, CA (US); (Continued) Robin E. Osterhout, San Diego, CA (US); Jun Sun, San Diego, CA (US) FOREIGN PATENT DOCUMENTS (73) Assignee: Genomatica, Inc., San Diego, CA (US) CN 1 358 841 T 2002 EP O 494 O78 7, 1992 (*) Notice: Subject to any disclaimer, the term of this (Continued) patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. OTHER PUBLICATIONS (21) Appl. No.: 14/308,292 Abadjieva et al., “The Yeast ARG7 Gene Product is Autoproteolyzed to Two Subunit Peptides, Yielding Active (22) Filed: Jun. 18, 2014 Ornithine Acetyltransferase,” J. Biol. Chem. 275(15): 11361-11367 2000). (65) Prior Publication Data . al., “Discovery of amide (peptide) bond synthetic activity in US 2014/0302573 A1 Oct. 9, 2014 Acyl-CoA synthetase,” J. Biol. Chem. 28.3(17): 11312-11321 (2008). Aberhart and Hsu, "Stereospecific hydrogen loss in the conversion Related U.S. Application Data of H, isobutyrate to f—hydroxyisobutyrate in Pseudomonas (63) Continuation of application No.
    [Show full text]
  • Redacted for Privacy Abstract Approved: Dr
    AN ABSTRACT OF THE THESIS OF WARD EDWARD SHINE for the DOCTOR OF PHILOSOPHY (Name of student) (Degree) in BIOCHEMISTRY presented on ,...64-(,<,a4 /9'zi3 (Major) (Date) Title:TRANS-CIS ISOMERIZATION OF GERANIOL AND GERANYL PHOSPHATE BY CELL-FREE ENZYMES FROM HIGHER PLANTS Redacted for privacy Abstract approved: Dr. W. David Loomis Neryl pyrophosphate, rather than geranyl pyrophosphate, is believed to be the immediate biological precursor of the cyclohexanoid monoterpenes because the cis-2, 3-double bond readily permits cycli- zation.Biosynthesis of neryl pyrophosphate could occur by either of two principal mechanisms: direct cis condensation of dimethylallyl pyrophosphate with isopentenyl pyrophosphate or trans-cis isomeriza- tion of geranyl pyrophosphate,Flavin-dependent enzymes that catalyze the isomerization of geraniol and geranyl phosphate to nerol and neryl phosphate, respectively, have now been isolated from peppermint and pea leaves, and carrot tops.Isomerization also occurs non-enzymatically but is greatly accelerated in the presence of the enzyme extracts. Various factors are required in order to demonstrate enzymatic isomerization.These factors are:(1) a flavin (FAD or FMN); (2) a thiol or sulfide (glutathione, dithiothreitol, (i-rnercaptoethanol, or Na2S); and (3) light (400-500 nm wavelength). If the flavin is partially reduced chemically, light is not required. Non-enzymatic isomerization also occurs if sulfite is the sulfur compound added. When a cell-free peppermint extract is utilized, enzymatic isomerization in the light isa function of:enzyme, sub- strate, FAD, and dithiothreitol concentrations; temperature (at 35° the rate is twice the rate at 25° ); and pH (7. 5 optimum). Isomeri- zation is also increased by anaerobic conditions.Complete reduc- tion of the flavin inhibits isomerization.Inhibition is also observed if N-ethylmaleimide is present during the reaction, but pretreatment of the enzyme with NEM or 2-hydroxymercuribenzoate, which is removed prior to incubation with substrate,causes no inhibition.
    [Show full text]
  • Metabolic Engineering for Fumaric and Malic Acids Production
    Metabolic Engineering for Fumaric and Malic Acids Production Dissertation Presented in Partial Fulfillment of the Requirement for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Baohua Zhang, M.S. Ohio State Biochemistry Program The Ohio State University 2012 Dissertation Committee: Professor Shang-Tian Yang, Advisor Professor Jeffrey Chalmers Professor Hua Wang Copyright by Baohua Zhang 2012 ABSTRACT Fumaric acid is a natural organic acid widely found in nature. With a chemical structure of two acid carbonyl groups and a trans-double bond, fumaric acid has extensive applications in the polymer industry, such as in the manufacture of polyesters, resins, plasticizers and miscellaneous applications including lubricating oils, inks, lacquers, styrenebutadiene rubber, etc. It is also used as acidulant in foods and beverages because of its nontoxic feature. Currently, fumaric acid is mainly produced via petrochemical processes with benzene or n-butane as the feedstock. However, with the increasing crude oil prices and concerns about the pollution problems caused by chemical synthesis, a sustainable, bio-based manufacturing process for fumaric acid production has attracted more interests in recent years. Rhizopus oryzae is a filamentous fungus that has been extensively studied for fumaric acid production. It produces fumaric acid from various carbon sources under aerobic conditions. Malic acid and ethanol are produced as byproducts, and the latter is accumulated mainly when oxygen is limited. Like most organic acid fermentations, the production of fumaric acid is limited by low productivity, yield and final concentration influenced by many factors including the microbial strain used and its morphology, medium composition, and neutralizing agents.
    [Show full text]
  • The Chemistry and Evolution of Enzyme Function
    The Chemistry and Evolution of Enzyme Function: Isomerases as a Case Study Sergio Mart´ınez Cuesta EMBL - European Bioinformatics Institute Gonville and Caius College University of Cambridge A thesis submitted for the degree of Doctor of Philosophy 31st July 2014 This dissertation is the result of my own work and contains nothing which is the outcome of work done in collaboration except where specifically indicated in the text. No part of this dissertation has been submitted or is currently being submitted for any other degree or diploma or other qualification. This thesis does not exceed the specified length limit of 60.000 words as defined by the Biology Degree Committee. This thesis has been typeset in 12pt font using LATEX according to the specifications de- fined by the Board of Graduate Studies and the Biology Degree Committee. Cambridge, 31st July 2014 Sergio Mart´ınezCuesta To my parents and my sister Contents Abstract ix Acknowledgements xi List of Figures xiii List of Tables xv List of Publications xvi 1 Introduction 1 1.1 Chemistry of enzymes . .2 1.1.1 Catalytic sites, mechanisms and cofactors . .3 1.1.2 Enzyme classification . .5 1.2 Evolution of enzyme function . .6 1.3 Similarity between enzymes . .8 1.3.1 Comparing sequences and structures . .8 1.3.2 Comparing genomic context . .9 1.3.3 Comparing biochemical reactions and mechanisms . 10 1.4 Isomerases . 12 1.4.1 Metabolism . 13 1.4.2 Genome . 14 1.4.3 EC classification . 15 1.4.4 Applications . 18 1.5 Structure of the thesis . 20 2 Data Resources and Methods 21 2.1 Introduction .
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur Et Al
    US 20150240226A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur et al. (43) Pub. Date: Aug. 27, 2015 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/16 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/02 (2006.01) CI2N 9/78 (2006.01) (71) Applicant: BP Corporation North America Inc., CI2N 9/12 (2006.01) Naperville, IL (US) CI2N 9/24 (2006.01) CI2O 1/02 (2006.01) (72) Inventors: Eric J. Mathur, San Diego, CA (US); CI2N 9/42 (2006.01) Cathy Chang, San Marcos, CA (US) (52) U.S. Cl. CPC. CI2N 9/88 (2013.01); C12O 1/02 (2013.01); (21) Appl. No.: 14/630,006 CI2O I/04 (2013.01): CI2N 9/80 (2013.01); CI2N 9/241.1 (2013.01); C12N 9/0065 (22) Filed: Feb. 24, 2015 (2013.01); C12N 9/2437 (2013.01); C12N 9/14 Related U.S. Application Data (2013.01); C12N 9/16 (2013.01); C12N 9/0061 (2013.01); C12N 9/78 (2013.01); C12N 9/0071 (62) Division of application No. 13/400,365, filed on Feb. (2013.01); C12N 9/1241 (2013.01): CI2N 20, 2012, now Pat. No. 8,962,800, which is a division 9/2482 (2013.01); C07K 2/00 (2013.01); C12Y of application No. 1 1/817,403, filed on May 7, 2008, 305/01004 (2013.01); C12Y 1 1 1/01016 now Pat. No. 8,119,385, filed as application No. PCT/ (2013.01); C12Y302/01004 (2013.01); C12Y US2006/007642 on Mar. 3, 2006.
    [Show full text]
  • A Case Study Involving Hexagenia Spp
    A Molecular Evolutionary Approach for Targeted-transcriptomics of PCB Exposure: A Case Study Involving Hexagenia spp. by Gina Louise Capretta A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Master of Science in Integrative Biology Guelph, Ontario, Canada © Gina Capretta, DecemBer, 2015 ABSTRACT A MOLECULAR EVOLUTIONARY APPROACH FOR TARGETED- TRANSCRIPTOMICS OF PCB EXPOSURE: A CASE STUDY INVOLVING Hexagenia spp. Gina Louise Capretta Advisor: University of Guelph, 2015 Dr. Mehrdad Hajibabaei This thesis developed a methodology to target candidate xenobiotic- interacting genes conserved across taxa, as well as tested the methodology as a tool to indicate chemical exposure and elucidate possible biological effects. Using PCBs as the chemical class, this thesis identified conserved candidate PCB-interacting genes and designed and tested degenerate primers to amplify those genes in divergent species. Using next-generation sequencing technology, this thesis also investigated the targeted-transcriptome response of H. rigida, a common ecotoxicological test species, following exposure of Hexagenia spp. to PCB-52 in a 96-hour water-only test, in which survivorship and bioaccumulation were also measured. Transcript sequences of target genes were generated for H. rigida and successfully annotated. Significant down-regulation of three genes (HSP90AB1, TUBA1C, and ALDH6A1) elucidated the biological processes that may be disrupted. This research shows the potential for linking molecular events to outcomes at higher levels of biological organization, an approach relevant to environmental risk assessment. Dedication To my family iii Acknowledgements There are many people to whom I owe a debt of gratitude; their contributions helped support and encourage me throughout this journey.
    [Show full text]
  • WO 2016/112295 Al 14 July 2016 (14.07.2016) W P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/112295 Al 14 July 2016 (14.07.2016) W P O PCT (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 38/12 (2006.01) C07K 7/64 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 47/48 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (21) Number: International Application DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US2016/012656 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (22) International Filing Date: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, 8 January 2016 (08.01 .2016) MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (25) Filing Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 62/101,945 ' January 20 15 (09.01 .2015) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (71) Applicant: WARP DRIVE BIO, INC.
    [Show full text]
  • The Nic Cluster from Pseudomonas Putida KT2440
    Deciphering the genetic determinants for aerobic nicotinic acid degradation: The nic cluster from Pseudomonas putida KT2440 Jose´I. Jime´nez*†, Angeles´ Canales‡, Jesu´s Jime´nez-Barbero‡, Krzysztof Ginalski§, Leszek Rychlewski¶, Jose´L. Garcı´a*, and Eduardo Dı´az*ʈ Departments of *Molecular Microbiology and ‡Protein Science, Centro de Investigaciones Biolo´gicas–Consejo Superior de Investigaciones Cientı´ficas,28040 Madrid, Spain; §Interdisciplinary Centre for Mathematical and Computational Modeling, University of Warsaw, 02-106 Warsaw, Poland; and ¶BioInfoBank Institute, 60-744 Poznan, Poland Edited by David T. Gibson, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, and approved May 21, 2008 (received for review March 11, 2008) The aerobic catabolism of nicotinic acid (NA) is considered a model microorganisms for Ͼ50 years (1, 2, 5–7), the complete set of system for degradation of N-heterocyclic aromatic compounds, genes encoding this pathway as well as the structural–functional some of which are major environmental pollutants; however, the relationships of most of the enzymes involved in this process have complete set of genes as well as the structural–functional relation- not been reported and analyzed so far in any organism. In many ships of most of the enzymes involved in this process are still bacteria, the aerobic degradation of NA produces 2,5DHP as a unknown. We have characterized a gene cluster (nic genes) from central intermediate, which is further degraded according to a Pseudomonas putida KT2440 responsible for the aerobic NA deg- scheme (maleamate pathway) that has been outlined (Fig. 1) (1, radation in this bacterium and when expressed in heterologous 2, 6, 7).
    [Show full text]
  • WO 2017/187183 Al 02 November 2017 (02.11.2017) W!P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/187183 Al 02 November 2017 (02.11.2017) W!P O PCT (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 39/00 (2006.01) C07K 16/28 (2006.01) kind of national protection available): AE, AG, AL, AM, C07K 14/78 (2006.01) G01N 33/74 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, PCT/GB2017/05 1188 HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR, (22) International Filing Date: KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, 27 April 2017 (27.04.2017) MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (25) Filing Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, (26) Publication Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 62/328,355 27 April 2016 (27.04.2016) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (71) Applicant: ITARA THERAPEUTICS [GB/GB]; UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 158-160 North Gower Street, London NW1 2ND (GB).
    [Show full text]
  • Identification of a Specific Maleate Hydratase in the Direct Hydrolysis
    Identification of a Specific Maleate Hydratase in the Direct Hydrolysis Route of the Gentisate Pathway Kun Liu, Ying Xu, Ning-Yi Zhou State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China, and Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China In contrast to the well-characterized and more common maleylpyruvate isomerization route of the gentisate pathway, the direct hydrolysis route occurs rarely and remains unsolved. In Pseudomonas alcaligenes NCIMB 9867, two gene clusters, xln and hbz, were previously proposed to be involved in gentisate catabolism, and HbzF was characterized as a maleylpyruvate hydrolase con- verting maleylpyruvate to maleate and pyruvate. However, the complete degradation pathway of gentisate through direct hydro- lysis has not been characterized. In this study, we obtained from the NCIMB culture collection a Pseudomonas alcaligenes spon- taneous mutant strain that lacked the xln cluster and designated the mutant strain SponMu. The hbz cluster in strain SponMu was resequenced, revealing the correct location of the stop codon for hbzI and identifying a new gene, hbzG. HbzIJ was demon- strated to be a maleate hydratase consisting of large and small subunits, stoichiometrically converting maleate to enantiomeri- cally pure D-malate. HbzG is a glutathione-dependent maleylpyruvate isomerase, indicating the possible presence of two alterna- tive pathways of maleylpyruvate catabolism. However, the hbzF-disrupted mutant could still grow on gentisate, while disruption of hbzG prevented this ability, indicating that the direct hydrolysis route was not a complete pathway in strain SponMu. Subse- quently, a D-malate dehydrogenase gene was introduced into the hbzG-disrupted mutant, and the engineered strain was able to grow on gentisate via the direct hydrolysis route.
    [Show full text]
  • A Review and Perspectives on Aspartic Acid Production
    fermentation Review Sweet Dreams (Are Made of This): A Review and Perspectives on Aspartic Acid Production Holly Appleton and Kurt A. Rosentrater * Department of Agricultural and Biosystems Engineering, College of Engineering, Iowa State University, Ames, IA 50011, USA; [email protected] * Correspondence: [email protected] Abstract: Aspartic acid, or “aspartate,” is a non-essential, four carbon amino acid produced and used by the body in two enantiomeric forms: L-aspartic acid and D-aspartic acid. The L-configuration of amino acids is the dominant form used in protein synthesis; thus, L-aspartic acid is by far the more common configuration. However, D-aspartic acid is one of only two known D-amino acids biosynthesized by eukaryotes. While L-aspartic acid is used in protein biosynthesis and neuro- transmission, D-aspartic acid is associated with neurogenesis and the endocrine system. Aspartic acid production and use has been growing in recent years. The purpose of this article is to discuss various perspectives on aspartic acid, including its industrial utility, global markets, production and manufacturing, optimization, challenges, and future outlook. As such, this review will provide a thorough background on this key biochemical. Keywords: bio-based; bio-chemicals; bio-materials; fermentation; synthesis Citation: Appleton, H.; Rosentrater, 1. Industrial Utility K.A. Sweet Dreams (Are Made of In addition to its biofunctionality, aspartic acid has wide application in the food, This): A Review and Perspectives on beverage, pharmaceutical, cosmetic, and agricultural industries [1]. L-aspartic acid is used Aspartic Acid Production. as a nutritional supplement in both functional foods and beverages, but its primary use Fermentation 2021, 7, 49.
    [Show full text]